Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 793
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 169(6): 1078-1089.e13, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575671

RESUMEN

In flies, Centrosomin (Cnn) forms a phosphorylation-dependent scaffold that recruits proteins to the mitotic centrosome, but how Cnn assembles into a scaffold is unclear. We show that scaffold assembly requires conserved leucine zipper (LZ) and Cnn-motif 2 (CM2) domains that co-assemble into a 2:2 complex in vitro. We solve the crystal structure of the LZ:CM2 complex, revealing that both proteins form helical dimers that assemble into an unusual tetramer. A slightly longer version of the LZ can form micron-scale structures with CM2, whose assembly is stimulated by Plk1 phosphorylation in vitro. Mutating individual residues that perturb LZ:CM2 tetramer assembly perturbs the formation of these micron-scale assemblies in vitro and Cnn-scaffold assembly in vivo. Thus, Cnn molecules have an intrinsic ability to form large, LZ:CM2-interaction-dependent assemblies that are critical for mitotic centrosome assembly. These studies provide the first atomic insight into a molecular interaction required for mitotic centrosome assembly.


Asunto(s)
Centrosoma/química , Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Mitosis , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/química , Proteínas de Homeodominio/metabolismo , Modelos Moleculares , Fosforilación , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/metabolismo , Alineación de Secuencia
2.
Cell ; 163(4): 934-46, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544940

RESUMEN

Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to 10-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes.


Asunto(s)
Drosophila melanogaster/genética , Cromosomas Politénicos/química , Animales , Núcleo Celular/química , Núcleo Celular/genética , Puffs Cromosómicos , Diploidia , Drosophila melanogaster/química , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Técnicas Genéticas , Larva/química
3.
Cell ; 159(4): 829-43, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417159

RESUMEN

Aging of immune organs, termed as immunosenescence, is suspected to promote systemic inflammation and age-associated disease. The cause of immunosenescence and how it promotes disease, however, has remained unclear. We report that the Drosophila fat body, a major immune organ, undergoes immunosenescence and mounts strong systemic inflammation that leads to deregulation of immune deficiency (IMD) signaling in the midgut of old animals. Inflamed old fat bodies secrete circulating peptidoglycan recognition proteins that repress IMD activity in the midgut, thereby promoting gut hyperplasia. Further, fat body immunosenecence is caused by age-associated lamin-B reduction specifically in fat body cells, which then contributes to heterochromatin loss and derepression of genes involved in immune responses. As lamin-associated heterochromatin domains are enriched for genes involved in immune response in both Drosophila and mammalian cells, our findings may provide insights into the cause and consequence of immunosenescence during mammalian aging. PAPERFLICK:


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cuerpo Adiposo/inmunología , Lamina Tipo B/metabolismo , Envejecimiento , Animales , Proliferación Celular , Drosophila melanogaster/química , Drosophila melanogaster/inmunología , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Tracto Gastrointestinal/crecimiento & desarrollo , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Heterocromatina , Inflamación/inmunología , Mamíferos/inmunología , Modelos Animales , Transducción de Señal
4.
Cell ; 156(1-2): 195-207, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439376

RESUMEN

The WAVE regulatory complex (WRC) controls actin cytoskeletal dynamics throughout the cell by stimulating the actin-nucleating activity of the Arp2/3 complex at distinct membrane sites. However, the factors that recruit the WRC to specific locations remain poorly understood. Here, we have identified a large family of potential WRC ligands, consisting of ∼120 diverse membrane proteins, including protocadherins, ROBOs, netrin receptors, neuroligins, GPCRs, and channels. Structural, biochemical, and cellular studies reveal that a sequence motif that defines these ligands binds to a highly conserved interaction surface of the WRC formed by the Sra and Abi subunits. Mutating this binding surface in flies resulted in defects in actin cytoskeletal organization and egg morphology during oogenesis, leading to female sterility. Our findings directly link diverse membrane proteins to the WRC and actin cytoskeleton and have broad physiological and pathological ramifications in metazoans.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de la Membrana/química , Complejos Multiproteicos/química , Familia de Proteínas del Síndrome de Wiskott-Aldrich/química , Complejo 2-3 Proteico Relacionado con la Actina/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Proteínas de Drosophila/química , Drosophila melanogaster/química , Drosophila melanogaster/citología , Femenino , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Oogénesis , Alineación de Secuencia , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética
5.
Nature ; 615(7950): 111-116, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813962

RESUMEN

Many animals use Earth's magnetic field (also known as the geomagnetic field) for navigation1. The favoured mechanism for magnetosensitivity involves a blue-light-activated electron-transfer reaction between flavin adenine dinucleotide (FAD) and a chain of tryptophan residues within the photoreceptor protein CRYPTOCHROME (CRY). The spin-state of the resultant radical pair, and therefore the concentration of CRY in its active state, is influenced by the geomagnetic field2. However, the canonical CRY-centric radical-pair mechanism does not explain many physiological and behavioural observations2-8. Here, using electrophysiology and behavioural analyses, we assay magnetic-field responses at the single-neuron and organismal levels. We show that the 52 C-terminal amino acid residues of Drosophila melanogaster CRY, lacking the canonical FAD-binding domain and tryptophan chain, are sufficient to facilitate magnetoreception. We also show that increasing intracellular FAD potentiates both blue-light-induced and magnetic-field-dependent effects on the activity mediated by the C terminus. High levels of FAD alone are sufficient to cause blue-light neuronal sensitivity and, notably, the potentiation of this response in the co-presence of a magnetic field. These results reveal the essential components of a primary magnetoreceptor in flies, providing strong evidence that non-canonical (that is, non-CRY-dependent) radical pairs can elicit magnetic-field responses in cells.


Asunto(s)
Criptocromos , Drosophila melanogaster , Campos Magnéticos , Animales , Criptocromos/química , Criptocromos/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Flavina-Adenina Dinucleótido/metabolismo , Triptófano/metabolismo , Electrofisiología , Conducta Animal , Análisis de la Célula Individual , Neuronas/citología , Neuronas/metabolismo
6.
Nature ; 607(7918): 393-398, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768503

RESUMEN

In flies, Argonaute2 (Ago2) and small interfering RNA (siRNA) form an RNA-induced silencing complex to repress viral transcripts1. The RNase III enzyme Dicer-2 associates with its partner protein R2D2 and cleaves long double-stranded RNAs to produce 21-nucleotide siRNA duplexes, which are then loaded into Ago2 in a defined orientation2-5. Here we report cryo-electron microscopy structures of the Dicer-2-R2D2 and Dicer-2-R2D2-siRNA complexes. R2D2 interacts with the helicase domain and the central linker of Dicer-2 to inhibit the promiscuous processing of microRNA precursors by Dicer-2. Notably, our structure represents the strand-selection state in the siRNA-loading process, and reveals that R2D2 asymmetrically recognizes the end of the siRNA duplex with the higher base-pairing stability, and the other end is exposed to the solvent and is accessible by Ago2. Our findings explain how R2D2 senses the thermodynamic asymmetry of the siRNA and facilitates the siRNA loading into Ago2 in a defined orientation, thereby determining which strand of the siRNA duplex is used by Ago2 as the guide strand for target silencing.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Drosophila , ARN Helicasas , ARN Bicatenario , ARN Interferente Pequeño , Proteínas de Unión al ARN , Ribonucleasa III , Animales , Proteínas Argonautas/metabolismo , Emparejamiento Base , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestructura , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , MicroARNs/metabolismo , Multimerización de Proteína , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , Interferencia de ARN , ARN Bicatenario/química , ARN Bicatenario/metabolismo , ARN Bicatenario/ultraestructura , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Complejo Silenciador Inducido por ARN/metabolismo , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Ribonucleasa III/ultraestructura
7.
Genes Dev ; 33(3-4): 236-252, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692204

RESUMEN

The multisubunit CCR4-NOT mRNA deadenylase complex plays important roles in the posttranscriptional regulation of gene expression. The NOT4 E3 ubiquitin ligase is a stable component of the CCR4-NOT complex in yeast but does not copurify with the human or Drosophila melanogaster complex. Here we show that the C-terminal regions of human and D. melanogaster NOT4 contain a conserved sequence motif that directly binds the CAF40 subunit of the CCR4-NOT complex (CAF40-binding motif [CBM]). In addition, nonconserved sequences flanking the CBM also contact other subunits of the complex. Crystal structures of the CBM-CAF40 complex reveal a mutually exclusive binding surface for NOT4 and Roquin or Bag of marbles mRNA regulatory proteins. Furthermore, CAF40 depletion or structure-guided mutagenesis to disrupt the NOT4-CAF40 interaction impairs the ability of NOT4 to elicit decay of tethered reporter mRNAs in cells. Together with additional sequence analyses, our results reveal the molecular basis for the association of metazoan NOT4 with the CCR4-NOT complex and show that it deviates substantially from yeast. They mark the NOT4 ubiquitin ligase as an ancient but nonconstitutive cofactor of the CCR4-NOT deadenylase with potential recruitment and/or effector functions.


Asunto(s)
Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas/fisiología , Receptores CCR4/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Línea Celular , Secuencia Conservada , Cristalización , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Estructura Cuaternaria de Proteína , Estabilidad del ARN/genética , Receptores CCR4/química , Factores de Transcripción/genética
8.
Cell ; 142(4): 568-79, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20723758

RESUMEN

Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the "high-affinity" and "low-affinity" classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Cristalografía por Rayos X , Dimerización , Humanos , Cinética , Modelos Moleculares
9.
Cell ; 138(1): 104-13, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19596238

RESUMEN

Centromeres of higher eukaryotes are epigenetically maintained; however, the mechanism that underlies centromere inheritance is unknown. Centromere identity and inheritance require the assembly of nucleosomes containing the CenH3 histone variant in place of canonical H3. Although H3 nucleosomes wrap DNA in a left-handed manner and induce negative supercoils, we show here that CenH3 nucleosomes reconstituted from Drosophila histones induce positive supercoils. Furthermore, we show that CenH3 likewise induces positive supercoils in functional centromeres in vivo, using a budding yeast minichromosome system and temperature-sensitive mutations in kinetochore proteins. The right-handed wrapping of DNA around the histone core implied by positive supercoiling indicates that centromere nucleosomes are unlikely to be octameric and that the exposed surfaces holding the nucleosome together would be available for kinetochore protein recruitment. The mutual incompatibility of nucleosomes with opposite topologies could explain how centromeres are efficiently maintained as unique loci on chromosomes.


Asunto(s)
Centrómero/química , ADN Superhelicoidal/metabolismo , ADN/química , Drosophila melanogaster/química , Nucleosomas/metabolismo , Animales , ADN/metabolismo , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Cell ; 137(5): 949-60, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19464045

RESUMEN

The consequences of alcohol use disorders (AUDs) are devastating to individuals and society, yet few treatments are currently available. To identify genes regulating the behavioral effects of ethanol, we conducted a genetic screen in Drosophila and identified a mutant, happyhour (hppy), due to its increased resistance to the sedative effects of ethanol. Hppy protein shows strong homology to mammalian Ste20 family kinases of the GCK-1 subfamily. Genetic and biochemical experiments revealed that the epidermal growth factor (EGF)-signaling pathway regulates ethanol sensitivity in Drosophila and that Hppy functions as an inhibitor of the pathway. Acute pharmacological inhibition of the EGF receptor (EGFR) in adult animals altered acute ethanol sensitivity in both flies and mice and reduced ethanol consumption in a preclinical rat model of alcoholism. Inhibitors of the EGFR or components of its signaling pathway are thus potential pharmacotherapies for AUDs.


Asunto(s)
Trastornos Inducidos por Alcohol/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Etanol/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Cruzamientos Genéticos , Dopamina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Femenino , Insulina/metabolismo , Masculino , Ratones , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética
11.
Genes Dev ; 30(9): 1116-27, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27151979

RESUMEN

Polycomb group (PcG) protein complexes repress transcription by modifying target gene chromatin. In Drosophila, this repression requires association of PcG protein complexes with cis-regulatory Polycomb response elements (PREs), but the interactions permitting formation of these assemblies are poorly understood. We show that the Sfmbt subunit of the DNA-binding Pho-repressive complex (PhoRC) and the Scm subunit of the canonical Polycomb-repressive complex 1 (PRC1) directly bind each other through their SAM domains. The 1.9 Å crystal structure of the Scm-SAM:Sfmbt-SAM complex reveals the recognition mechanism and shows that Sfmbt-SAM lacks the polymerization capacity of the SAM domains of Scm and its PRC1 partner subunit, Ph. Functional analyses in Drosophila demonstrate that Sfmbt-SAM and Scm-SAM are essential for repression and that PhoRC DNA binding is critical to initiate PRC1 association with PREs. Together, this suggests that PRE-tethered Sfmbt-SAM nucleates PRC1 recruitment and that Scm-SAM/Ph-SAM-mediated polymerization then results in the formation of PRC1-compacted chromatin.


Asunto(s)
Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica/fisiología , Modelos Moleculares , Complejo Represivo Polycomb 1/química , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Elementos de Respuesta/fisiología , Animales , Cromatina/metabolismo , Cristalografía , Proteínas de Drosophila/química , Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/genética , Complejo Represivo Polycomb 1/aislamiento & purificación , Proteínas del Grupo Polycomb/química , Proteínas del Grupo Polycomb/aislamiento & purificación , Polimerizacion , Unión Proteica , Estructura Terciaria de Proteína
12.
Cell ; 133(7): 1214-27, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18585355

RESUMEN

Hedgehog (Hh) plays crucial roles in tissue-patterning and activates signaling in Patched (Ptc)-expressing cells. Paracrine signaling requires release and transport over many cell diameters away by a process that requires interaction with heparan sulfate proteoglycans (HSPGs). Here, we examine the organization of functional, fluorescently tagged variants in living cells by using optical imaging, FRET microscopy, and mutational studies guided by bioinformatics prediction. We find that cell-surface Hh forms suboptical oligomers, further concentrated in visible clusters colocalized with HSPGs. Mutation of a conserved Lys in a predicted Hh-protomer interaction interface results in an autocrine signaling-competent Hh isoform--incapable of forming dense nanoscale oligomers, interacting with HSPGs, or paracrine signaling. Thus, Hh exhibits a hierarchical organization from the nanoscale to visible clusters with distinct functions.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Tipificación del Cuerpo , Membrana Celular/química , Membrana Celular/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/embriología , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Mutación , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
13.
Cell ; 133(7): 1277-89, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18585360

RESUMEN

We describe the comprehensive characterization of homeodomain DNA-binding specificities from a metazoan genome. The analysis of all 84 independent homeodomains from D. melanogaster reveals the breadth of DNA sequences that can be specified by this recognition motif. The majority of these factors can be organized into 11 different specificity groups, where the preferred recognition sequence between these groups can differ at up to four of the six core recognition positions. Analysis of the recognition motifs within these groups led to a catalog of common specificity determinants that may cooperate or compete to define the binding site preference. With these recognition principles, a homeodomain can be reengineered to create factors where its specificity is altered at the majority of recognition positions. This resource also allows prediction of homeodomain specificities from other organisms, which is demonstrated by the prediction and analysis of human homeodomain specificities.


Asunto(s)
ADN/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/química , Proteínas de Homeodominio/química , Secuencia de Aminoácidos , Animales , Bacterias/química , Bacterias/genética , Secuencia de Bases , ADN/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma de los Insectos , Proteínas de Homeodominio/genética , Humanos , Modelos Moleculares , Filogenia , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos
14.
Mol Cell ; 58(3): 406-17, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25891075

RESUMEN

In previous studies we observed that the helicase domain of Drosophila Dicer-2 (dmDcr-2) governs substrate recognition and cleavage efficiency, and that dsRNA termini are key to this discrimination. We now provide a mechanistic basis for these observations. We show that discrimination of termini occurs during initial binding. Without ATP, dmDcr-2 binds 3' overhanging, but not blunt, termini. By contrast, with ATP, dmDcr-2 binds both types of termini, with highest-affinity binding observed with blunt dsRNA. In the presence of ATP, binding, cleavage, and ATP hydrolysis are optimal with BLT termini compared to 3'ovr termini. Limited proteolysis experiments suggest the optimal reactivity of BLT dsRNA is mediated by a conformational change that is dependent on ATP and the helicase domain. We find that dmDcr-2's partner protein, Loquacious-PD, alters termini dependence, enabling dmDcr-2 to cleave substrates normally refractory to cleavage, such as dsRNA with blocked, structured, or frayed ends.


Asunto(s)
Proteínas de Drosophila/metabolismo , ARN Helicasas/metabolismo , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética , Hidrólisis , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN Helicasas/química , ARN Helicasas/genética , ARN Bicatenario/química , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Ribonucleasa III/química , Ribonucleasa III/genética , Homología de Secuencia de Aminoácido
15.
Genes Dev ; 29(24): 2563-75, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26680301

RESUMEN

Chromatin comprises nucleosomes as well as nonnucleosomal histone-DNA particles. Prenucleosomes are rapidly formed histone-DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼ 80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone-DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone-DNA species in the cell.


Asunto(s)
Cromatina/metabolismo , ADN/metabolismo , Drosophila melanogaster/genética , Nucleosomas/metabolismo , Animales , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Humanos , Microscopía Electrónica , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/ultraestructura , Regiones Promotoras Genéticas , Conformación Proteica , Estabilidad Proteica , Células Sf9
16.
Genes Dev ; 29(4): 440-50, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25691470

RESUMEN

The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX-Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression.


Asunto(s)
Drosophila melanogaster/química , Modelos Moleculares , Receptores Nucleares Huérfanos/química , Receptores Citoplasmáticos y Nucleares/química , Animales , Cristalización , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Receptores Nucleares Huérfanos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
17.
Genes Dev ; 29(17): 1835-49, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26294658

RESUMEN

The eIF4E-binding proteins (4E-BPs) are a diverse class of translation regulators that share a canonical eIF4E-binding motif (4E-BM) with eIF4G. Consequently, they compete with eIF4G for binding to eIF4E, thereby inhibiting translation initiation. Mextli (Mxt) is an unusual 4E-BP that promotes translation by also interacting with eIF3. Here we present the crystal structures of the eIF4E-binding regions of the Drosophila melanogaster (Dm) and Caenorhabditis elegans (Ce) Mxt proteins in complex with eIF4E in the cap-bound and cap-free states. The structures reveal unexpected evolutionary plasticity in the eIF4E-binding mode, with a classical bipartite interface for Ce Mxt and a novel tripartite interface for Dm Mxt. Both interfaces comprise a canonical helix and a noncanonical helix that engage the dorsal and lateral surfaces of eIF4E, respectively. Remarkably, Dm Mxt contains a C-terminal auxiliary helix that lies anti-parallel to the canonical helix on the eIF4E dorsal surface. In contrast to the eIF4G and Ce Mxt complexes, the Dm eIF4E-Mxt complexes are resistant to competition by bipartite 4E-BPs, suggesting that Dm Mxt can bind eIF4E when eIF4G binding is inhibited. Our results uncovered unexpected diversity in the binding modes of 4E-BPs, resulting in eIF4E complexes that display differential sensitivity to 4E-BP regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Drosophila/química , Regulación de la Expresión Génica/fisiología , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas/fisiología , Animales , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Variación Genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados
18.
Proc Natl Acad Sci U S A ; 116(8): 2913-2918, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30705105

RESUMEN

The protein Ebony from Drosophila melanogaster plays a central role in the regulation of histamine and dopamine in various tissues through condensation of these amines with ß-alanine. Ebony is a rare example of a nonribosomal peptide synthetase (NRPS) from a higher eukaryote and contains a C-terminal sequence that does not correspond to any previously characterized NRPS domain. We have structurally characterized this C-terminal domain and have discovered that it adopts the aryl-alkylamine-N-acetyl transferase (AANAT) fold, which is unprecedented in NRPS biology. Through analysis of ligand-bound structures, activity assays, and binding measurements, we have determined how this atypical condensation domain is able to provide selectivity for both the carrier protein-bound amino acid and the amine substrates, a situation that remains unclear for standard condensation domains identified to date from NRPS assembly lines. These results demonstrate that the C terminus of Ebony encodes a eukaryotic example of an alternative type of NRPS condensation domain; they also illustrate how the catalytic components of such assembly lines are significantly more diverse than a minimal set of conserved functional domains.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/química , Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Péptido Sintasas/química , Animales , Dominio Catalítico , Cristalografía por Rayos X , Drosophila melanogaster/química , Dominios Proteicos , Pliegue de Proteína , Estructura Terciaria de Proteína
19.
Genes Dev ; 28(23): 2652-62, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25452275

RESUMEN

The male-specific lethal dosage compensation complex (MSL-DCC) selectively assembles on the X chromosome in Drosophila males and activates gene transcription by twofold through histone acetylation. An MSL recognition element (MRE) sequence motif nucleates the initial MSL association, but how it is recognized remains unknown. Here, we identified the CXC domain of MSL2 specifically recognizing the MRE motif and determined its crystal structure bound to specific and nonspecific DNAs. The CXC domain primarily contacts one strand of DNA duplex and employs a single arginine to directly read out dinucleotide sequences from the minor groove. The arginine is flexible when bound to nonspecific sequences. The core region of the MRE motif harbors two binding sites on opposite strands that can cooperatively recruit a CXC dimer. Specific DNA-binding mutants of MSL2 are impaired in MRE binding and X chromosome localization in vivo. Our results reveal multiple dynamic DNA-binding modes of the CXC domain that target the MSL-DCC to X chromosomes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética) , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Cromosoma X/química , Cromosoma X/metabolismo , Secuencias de Aminoácidos , Animales , Drosophila melanogaster/química , Unión Proteica , Estructura Terciaria de Proteína
20.
Genes Dev ; 28(9): 929-42, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24788516

RESUMEN

The subunits of the nonspecific lethal (NSL) complex, which include the histone acetyltransferase MOF (males absent on the first), play important roles in various cellular functions, including transcription regulation and stem cell identity maintenance and reprogramming, and are frequently misregulated in disease. Here, we provide the first biochemical and structural insights into the molecular architecture of this large multiprotein assembly. We identified several direct interactions within the complex and show that KANSL1 acts as a scaffold protein interacting with four other subunits, including WDR5, which in turn binds KANSL2. Structural analysis of the KANSL1/WDR5/KANSL2 subcomplex reveals how WDR5 is recruited into the NSL complex via conserved linear motifs of KANSL1 and KANSL2. Using structure-based KANSL1 mutants in transgenic flies, we show that the KANSL1-WDR5 interaction is required for proper assembly, efficient recruitment of the NSL complex to target promoters, and fly viability. Our data clearly show that the interactions of WDR5 with the MOF-containing NSL complex and MLL/COMPASS histone methyltransferase complexes are mutually exclusive. We propose that rather than being a shared subunit, WDR5 plays an important role in assembling distinct histone-modifying complexes with different epigenetic regulatory roles.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Animales , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Humanos , Masculino , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA