Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.376
Filtrar
Más filtros

Intervalo de año de publicación
1.
EMBO Rep ; 24(12): e58201, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37877677

RESUMEN

Advances in science and technology that enable the recovery of energy and other valuable compounds from sewage sludge can play an important role in a global transition to renewable energy sources.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
3.
BMC Biotechnol ; 24(1): 29, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720285

RESUMEN

This research investigates the efficacy of a high-performance pilot-scale Internal Circulation Anaerobic Reactor inoculated with Granular Sludge (ICAGSR) for treating cattle slaughterhouse wastewater while concurrently generating biogas. The primary objective is to assess the efficiency and performance of ICAGSR in terms of organic pollutant removal and biogas production using granular anaerobic sludge. The research methodology entails operating the ICAGSR system under ambient conditions and systematically varying key parameters, including different Hydraulic Retention Times (HRTs) (24, 12, and 8 h) and Organic Loading Rates (OLRs) (3.3, 6.14, and 12.83 kg COD/m³. d). The study focuses on evaluating pollutants' removal and biogas production rates. Results reveal that the ICAGSR system achieves exceptional removal efficiency for organic pollutants, with Chemical Oxygen Demand (COD) removal exceeding 74%, 67%, and 68% at HRTs of 24, 12, and 8 h, respectively. Furthermore, the system demonstrates stable and sustainable biogas production, maintaining average methane contents of 80%, 76%, and 72% throughout the experimental period. The successful operation of the ICAGSR system underscores its potential as a viable technology for treating cattle slaughterhouse wastewater and generating renewable biogas. In conclusion, this study contributes to wastewater treatment and renewable energy production by providing a comprehensive analysis of the ICAGSR system's hydrodynamic properties. The research enhances our understanding of the system's performance optimization under varying conditions, emphasizing the benefits of utilizing ICAGSR reactors with granular sludge as an effective and sustainable approach. Identifying current gaps, future research directions aim to further refine and broaden the application of ICAGSR technology in wastewater treatment and renewable energy initiatives.


Asunto(s)
Mataderos , Biocombustibles , Reactores Biológicos , Aguas del Alcantarillado , Aguas Residuales , Animales , Bovinos , Aguas del Alcantarillado/microbiología , Aguas Residuales/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Metano/metabolismo , Análisis de la Demanda Biológica de Oxígeno
4.
Appl Environ Microbiol ; 90(4): e0225323, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38440988

RESUMEN

We evaluated a unique model in which four full-scale wastewater treatment plants (WWTPs) with the same treatment schematic and fed with similar influent wastewater were tracked over an 8-month period to determine whether the community assembly would differ in the activated sludge (AS) and sand filtration (SF) stages. For each WWTP, AS and SF achieved an average of 1-log10 (90%) and <0.02-log10 (5%) reduction of total cells, respectively. Despite the removal of cells, both AS and SF had a higher alpha and beta diversity compared to the influent microbial community. Using the Sloan neutral model, it was observed that AS and SF were individually dominated by different assembly processes. Specifically, microorganisms from influent to AS were predominantly determined by the selective niche process for all WWTPs, while the microbial community in the SF was relatively favored by a stochastic, random migration process, except two WWTPs. AS also contributed more to the final effluent microbial community compared with the SF. Given that each WWTP operates the AS independently and that there is a niche selection process driven mainly by the chemical oxygen demand concentration, operational taxonomic units unique to each of the WWTPs were also identified. The findings from this study indicate that each WWTP has its distinct microbial signature and could be used for source-tracking purposes.IMPORTANCEThis study provided a novel concept that microorganisms follow a niche assembly in the activated sludge (AS) tank and that the AS contributed more than the sand filtration process toward the final microbial signature that is unique to each treatment plant. This observation highlights the importance of understanding the microbial community selected by the AS stage, which could contribute toward source-tracking the effluent from different wastewater treatment plants.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Arena , Ríos , Aguas Residuales
5.
Appl Environ Microbiol ; 90(8): e0059824, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-38995046

RESUMEN

Wastewater treatment plants (WWTPs) are host to diverse microbial communities and receive a constant influx of microbes from influent wastewater. However, the impact of immigrants on the structure and activities of the activated sludge (AS) microbial community remains unclear. To gain insight on this phenomenon known as perpetual community coalescence, the current study utilized controlled manipulative experiments that decoupled the influent wastewater composition from the microbial populations to reveal the fundamental mechanisms involved in immigration between sewers and AS-WWTP. The immigration dynamics of heterotrophs were analyzed by harvesting wastewater biomass solids from three different sewer systems and adding to synthetic wastewater. Immigrating influent populations were observed to contribute up to 14% of the sequencing reads in the AS. By modeling the net growth rate of taxa, it was revealed that immigrants primarily exhibited low or negative net growth rates. By developing a protocol to reproducibly grow AS-WWTP communities in the lab, we have laid down the foundational principles for the testing of operational factors creating community variations with low noise and appropriate replication. Understanding the processes that drive microbial community diversity and assembly is a key question in microbial ecology. In the future, this knowledge can be used to manipulate the structure of microbial communities and improve system performance in WWTPs.IMPORTANCEIn biological wastewater treatment processes, the microbial community composition is essential in the performance and stability of the system. This study developed a reproducible protocol to investigate the impact of influent immigration (or perpetual coalescence of the sewer and activated sludge communities) with appropriate reproducibility and controls, allowing intrinsic definitions of core and immigrant populations to be established. The method developed herein will allow sequential manipulative experiments to be performed to test specific hypothesis and optimize wastewater treatment processes to meet new treatment goals.


Asunto(s)
Bacterias , Microbiota , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Aguas Residuales/microbiología , Eliminación de Residuos Líquidos/métodos
6.
Appl Environ Microbiol ; 90(9): e0217723, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39136491

RESUMEN

This study explores the genetic landscape of nitrous oxide (N2O) reduction in wastewater treatment plants (WWTPs) by profiling 1,083 high-quality metagenome-assembled genomes (HQ MAGs) from 23 Danish full-scale WWTPs. The focus is on the distribution and diversity of nitrous oxide reductase (nosZ) genes and their association with other nitrogen metabolism pathways. A custom pipeline for clade-specific nosZ gene identification with higher sensitivity revealed 503 nosZ sequences in 489 of these HQ MAGs, outperforming existing Kyoto Encyclopedia of Genes and Genomes (KEGG) module-based methods. Notably, 48.7% of the total 1,083 HQ MAGs harbored nosZ genes, with clade II being predominant, accounting for 93.7% of these genes. Taxonomic profiling highlighted the prevalence of nosZ-containing taxa within Bacteroidota and Pseudomonadota. Chloroflexota exhibited unexpected affiliations with both the sec and tat secretory pathways, and all were found to contain the accessory nosB gene, underscoring the importance of investigating the secretory pathway. The majority of non-denitrifying N2O reducers were found within Bacteroidota and Chloroflexota. Additionally, HQ MAGs with genes for dissimilatory nitrate reduction to ammonium and assimilatory nitrate reduction frequently co-occurred with the nosZ gene. Traditional primers targeting nosZ often focus on short-length amplicons. Therefore, we introduced custom-designed primer sets targeting near-full-length nosZ sequences. These new primers demonstrate efficacy in capturing diverse and well-characterized sequences, providing a valuable tool with higher resolution for future research. In conclusion, this comprehensive analysis enhances our understanding of N2O-reducing organisms in WWTPs, highlighting their potential as N2O sinks with the potential for optimizing wastewater treatment processes and mitigating greenhouse gas emissions. IMPORTANCE: This study provides critical insights into the genetic diversity of nitrous oxide reductase (nosZ) genes and the microorganisms harboring them in wastewater treatment plants (WWTPs) by exploring 1,083 high-quality metagenome-assembled genomes (MAGs) from 23 Danish full-scale WWTPs. Despite the pivotal role of nosZ-containing organisms, their diversity remains largely unexplored in WWTPs. Our custom pipeline for detecting nosZ provides near-full-length genes with detailed information on secretory pathways and accessory nos genes. Using these genes as templates, we developed taxonomically diverse clade-specific primers that generate nosZ amplicons for phylogenetic annotation and gene-to-MAG linkage. This approach improves detection and expands the discovery of novel sequences, highlighting the prevalence of non-denitrifying N2O reducers and their potential as N2O sinks. These findings have the potential to optimize nitrogen removal processes and mitigate greenhouse gas emissions from WWTPs by fully harnessing the capabilities of the microbial communities.


Asunto(s)
Metagenoma , Óxido Nitroso , Aguas Residuales , Óxido Nitroso/metabolismo , Aguas Residuales/microbiología , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Genoma Bacteriano , Eliminación de Residuos Líquidos , Dinamarca , Filogenia
7.
Appl Environ Microbiol ; 90(10): e0071524, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39329490

RESUMEN

Wastewater treatment facilities can filter out some plastics before they reach the open environment, yet microplastics often persist throughout these systems. As they age, microplastics in wastewater may both leach and sorb pollutants and fragment to provide an increased surface area for bacterial attachment and conjugation, possibly impacting antimicrobial resistance (AMR) traits. Despite this, little is known about the effects of persistent plastic pollution on microbial functioning. To address this knowledge gap, we deployed five different artificially weathered plastic types and a glass control into the final maturation pond of a municipal wastewater treatment plant in Otautahi-Christchurch, Aotearoa/New Zealand. We sampled the plastic-associated biofilms (plastisphere) at 2, 6, 26, and 52 weeks, along with the ambient pond water, at three different depths (20, 40, and 60 cm from the pond water surface). We investigated the changes in plastisphere microbial diversity and functional potential through metagenomic sequencing. Bacterial 16S ribosomal RNA genes composition did not vary among plastic types and glass controls (P = 0.997) but varied among sampling times [permutational multivariate analysis of variance (PERMANOVA), P = 0.001] and depths (PERMANOVA, P = 0.011). Overall, there was no polymer-substrate specificity evident in the total composition of genes (PERMANOVA, P = 0.67), but sampling time (PERMANOVA, P = 0.002) and depth were significant factors (PERMANOVA, P = 0.001). The plastisphere housed diverse AMR gene families, potentially influenced by biofilm-meditated conjugation. The plastisphere also harbored an increased abundance of genes associated with the biodegradation of nylon, or nylon-associated substances, including nylon oligomer-degrading enzymes and hydrolases.IMPORTANCEPlastic pollution is pervasive and ubiquitous. Occurrences of plastics causing entanglement or ingestion, the leaching of toxic additives and persistent organic pollutants from environmental plastics, and their consequences for marine macrofauna are widely reported. However, little is known about the effects of persistent plastic pollution on microbial functioning. Shotgun metagenomics sequencing provides us with the necessary tools to examine broad-scale community functioning to further investigate how plastics influence microbial communities. This study provides insight into the functional consequence of continued exposure to waste plastic by comparing the prokaryotic functional potential of biofilms on five types of plastic [linear low-density polyethylene (LLDPE), nylon-6, polyethylene terephthalate, polylactic acid, and oxygen-degradable LLDPE], glass, and ambient pond water over 12 months and at different depths (20, 40, and 60 cm) within a tertiary maturation pond of a municipal wastewater treatment plant.


Asunto(s)
Bacterias , Biodegradación Ambiental , Plásticos , Estanques , ARN Ribosómico 16S , Aguas Residuales , Aguas Residuales/microbiología , Estanques/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Microbiota/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Purificación del Agua
8.
Adv Appl Microbiol ; 128: 41-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39059843

RESUMEN

The rapid development of agriculture has led to a large amount of wastewater, which poses a great threat to environmental safety. Microalgae, with diverse species, nutritional modes and cellular status, can adapt well in agricultural wastewater and absorb nutrients and remove pollutants effectively. Besides, after treatment of agricultural wastewater, the accumulated biomass of microalgae has broad applications, such as fertilizer and animal feed. This paper reviewed the current progresses and further perspectives of microalgae-based agricultural wastewater treatment. The characteristics of agricultural wastewater have been firstly introduced; Then the microalgal strains, cultivation modes, cellular status, contaminant metabolism, cultivation systems and biomass applications of microalgae for wastewater treatment have been summarized; At last, the bottlenecks in the development of the microalgae treatment methods, as well as recommendations for optimizing the adaptability of microalgae to wastewater in terms of wastewater pretreatment, microalgae breeding, and microalgae-bacterial symbiosis systems were discussed. This review would provide references for the future developments of microalgae-based agricultural wastewater treatment.


Asunto(s)
Agricultura , Microalgas , Aguas Residuales , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Aguas Residuales/microbiología , Aguas Residuales/química , Agricultura/métodos , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Biomasa , Biodegradación Ambiental
9.
Extremophiles ; 28(1): 11, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240933

RESUMEN

The isolated halophilic bacterial strain Halovibrio variabilis TG-5 showed a good performance in the pretreatment of coal gasification wastewater. With the optimum culture conditions of pH = 7, a temperature of 46 °C, and a salinity of 15%, the chemical oxygen demand and volatile phenol content of pretreated wastewater were decreased to 1721 mg/L and 94 mg/L, respectively. The removal rates of chemical oxygen demand and volatile phenol were over 90% and 70%, respectively. At the optimum salinity conditions of 15%, the total yield of intracellular compatible solutes and the extracellular transient released yield under hypotonic conditions were increased to 6.88 g/L and 3.45 g/L, respectively. The essential compatible solutes such as L-lysine, L-valine, and betaine were important in flocculation mechanism in wastewater pretreatment. This study provided a new method for pretreating coal gasification wastewater by halophilic microorganisms, and revealed the crucial roles of compatible solutes in the flocculation process.


Asunto(s)
Halomonadaceae , Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Floculación , Carbón Mineral , Fenol/análisis , Fenoles , Reactores Biológicos
10.
Microb Cell Fact ; 23(1): 288, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39438859

RESUMEN

This study explores the potential of strain selection and adaptation for developing a fungi-yeast-microalgae consortium capable of integrated bioethanol production and livestock wastewater treatment. We employed a multi-stage approach involving isolation and strain selection/adaptation of these consortiums. The study started with screening some isolated fungi to grow on the cellulosic biomass of the livestock wastewater (saccharification) followed by a fermentation process using yeast for bioethanol production. The results revealed that Penicillium chrysogenum (Cla) and Saccharomyces cerevisiae (Sc) produced a remarkable 99.32 ppm of bioethanol and a concentration of glucose measuring 0.56 mg ml- 1. Following the impact of fungi and yeast, we diluted the livestock wastewater using distilled water and subsequently inoculated Nile River microalgae into the wastewater. The findings demonstrated that Chlorella vulgaris emerged as the dominant species in the microalgal community. Particularly, the growth rate reached its peak at a 5% organic load (0.105385), indicating that this concentration provided the most favorable conditions for the flourishing of microalgae. The results demonstrated the effectiveness of the microalgal treatment in removing the remaining nutrients and organic load, achieving a 92.5% reduction in ammonia, a 94.1% reduction in nitrate, and complete removal of phosphate (100%). The algal treatment also showed remarkable reductions in COD (96.5%) and BOD (96.1%). These findings underscore the potential of fungi, yeast, and Nile River microalgae in the growth and impact on livestock wastewater, with the additional benefit of bioethanol production.


Asunto(s)
Biocombustibles , Etanol , Ganado , Microalgas , Saccharomyces cerevisiae , Aguas Residuales , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Aguas Residuales/microbiología , Etanol/metabolismo , Animales , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Fermentación , Hongos/metabolismo , Hongos/clasificación , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos
11.
Microb Ecol ; 87(1): 105, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133233

RESUMEN

Despite some effectiveness of wastewater treatment processes, microplastics accumulate in sewage sludge and their further use may contribute to the release of plastic microplastics into the environment. There is an urgent need to reduce the amount of microplastics in sewage sludge. Plastic particles serve as solid substrates for various microorganisms, promoting the formation of microbial biofilms with different metabolic activities. The biofilm environment associated with microplastics will determine the efficiency of treatment processes, especially biological methods, and the mechanisms of organic compound conversion. A significant source of microplastics is the land application of sewage sludge from wastewater treatment plants. The detrimental impact of microplastics affects soil enzymatic activity, soil microorganisms, flora, fauna, and plant production. This review article summarizes the development of research related to microplastics and discusses the issue of microplastic introduction from sewage sludge. Given that microplastics can contain complex composite polymers and form a plastisphere, further research is needed to understand their potential environmental impact, pathogenicity, and the characteristics of biofilms in wastewater treatment systems. The article also discusses the physicochemical properties of microplastics in wastewater treatment plants and their role in biofilm formation. Then, the article explained the impact of these properties on the possibility of the formation of biofilms on their surface due to the peculiar structure of microorganisms and also characterized what factors enable the formation of specific plastisphere in wastewater treatment plants. It highlights the urgent need to understand the basic information about microplastics to assess environmental toxicity more rationally, enabling better pollution control and the development of regulatory standards to manage microplastics entering the environment.


Asunto(s)
Biopelículas , Microbiota , Microplásticos , Aguas del Alcantarillado , Aguas Residuales , Microplásticos/análisis , Aguas Residuales/microbiología , Aguas Residuales/química , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Bacterias/clasificación , Bacterias/metabolismo , Plásticos/química
12.
Environ Sci Technol ; 58(36): 16076-16086, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39038180

RESUMEN

Due to the heterogeneity of recycled paper materials and the production conditions, pollutants in papermaking wastewater fluctuate sharply over time. Quality control of the papermaking wastewater treatment process (PWTP) is challenging and costly. As regulations are also growing about the environmental effects of the PWTP on greenhouse gas (GHG) emission, energy consumption, etc., the PWTP formulates a complex multiobjective optimization problem. This research established a multiagent deep reinforcement learning framework to simultaneously optimize process cost, energy consumption, and GHG emission in the PWTP, subjected to the effluent quality, to realize economic, energy, and environmental (3E) goals. The biological treatment process of wastewater in paper mills was simulated using benchmark simulation model no. 1 (BSM1). The data generated based on the BSM manual was utilized for model training, and real data acquired from a local papermaking factory was used to estimate the model performance. The results show that the proposed method outperforms conventional techniques in identifying the best control strategies for multiple targets.


Asunto(s)
Aguas Residuales , Aguas Residuales/química , Papel , Eliminación de Residuos Líquidos/métodos
13.
Environ Sci Technol ; 58(6): 2870-2880, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38181504

RESUMEN

Researchers and engineers are committed to finding effective approaches to reduce dissolved organic nitrogen (DON) to meet more stringent effluent total nitrogen limits and minimize effluent eutrophication potential. Here, we provided a promising approach by adding specific doses of 2-hydroxy-1,4-naphthoquinone (HNQ) to postdenitrification bioreactors. This approach of adding a small dosage of 0.03-0.1 mM HNQ effectively reduced the concentrations of DON in the effluent (ANOVA, p < 0.05) by up to 63% reduction of effluent DON with a dosing of 0.1 mM HNQ when compared to the control bioreactors. Notably, an algal bioassay indicated that DON played a dominant role in stimulating phytoplankton growth, thus effluent eutrophication potential in bioreactors using 0.1 mM HNQ dramatically decreased compared to that in control bioreactors. The microbe-DON correlation analysis showed that HNQ dosing modified the microbial community composition to both weaken the production and promote the uptake of labile DON, thus minimizing the effluent DON concentration. The toxic assessment demonstrated the ecological safety of the effluent from the bioreactors using the strategy of HNQ addition. Overall, HNQ is a promising redox mediator to reduce the effluent DON concentration with the purpose of meeting low effluent total nitrogen levels and remarkably minimizing effluent eutrophication effects.


Asunto(s)
Naftoquinonas , Eliminación de Residuos Líquidos , Aguas Residuales , Materia Orgánica Disuelta , Nitrógeno/análisis , Eutrofización
14.
Environ Sci Technol ; 58(37): 16399-16409, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39235209

RESUMEN

The cyclical variations in environmental temperature generated by natural rhythms constantly impact the wastewater treatment process through the aeration system. Engineering data show that fluctuations in environmental temperature cause the reactor temperature to drop at night, resulting in increased dissolved oxygen concentration and improved effluent wastewater quality. However, the impact of natural temperature variation on wastewater treatment systems and the energy-saving potential has yet to be fully recognized. Here, we conducted a comprehensive study, using a full-scale oxic-hydrolytic and denitrification-oxic (OHO) coking wastewater treatment process as a case and developed a dynamic aeration model integrating thermodynamics and kinetics to elucidate the energy-saving mechanisms of wastewater treatment systems in response to diurnal temperature variations. Our case study results indicate that natural diurnal temperature variations can cut the energy consumption of 660,980 kWh annually (up to 30%) for the aeration unit in the OHO system. Wastewater treatment facilities located in regions with significant environmental temperature variation stand to benefit more from this energy-saving mechanism. Methods such as flow dynamic control, load shifting, and process unit editing can be fitted into the new or retrofitted wastewater treatment engineering.


Asunto(s)
Temperatura , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Coque , Purificación del Agua
15.
Environ Sci Technol ; 58(22): 9471-9486, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38776077

RESUMEN

To date, dozens of pilot-scale microbial fuel cell (MFC) devices have been successfully developed worldwide for treating various types of wastewater. The availability and configurations of separators are determining factors for the economic feasibility, efficiency, sustainability, and operability of these devices. Thus, the concomitant advances between the separators and pilot-scale MFC configurations deserve further clarification. The analysis of separator configurations has shown that their evolution proceeds as follows: from ion-selective to ion-non-selective, from nonpermeable to permeable, and from abiotic to biotic. Meanwhile, their cost is decreasing and their availability is increasing. Notably, the novel MFCs configured with biotic separators are superior to those configured with abiotic separators in terms of wastewater treatment efficiency and capital cost. Herein, a highly comprehensive review of pilot-scale MFCs (>100 L) has been conducted, and we conclude that the intensive stack of the liquid cathode configuration is more advantageous when wastewater treatment is the highest priority. The use of permeable biotic separators ensures hydrodynamic continuity within the MFCs and simplifies reactor configuration and operation. In addition, a systemic comparison is conducted between pilot-scale MFC devices and conventional decentralized wastewater treatment processes. MFCs showed comparable cost, higher efficiency, long-term stability, and significant superiority in carbon emission reduction. The development of separators has greatly contributed to the availability and usability of MFCs, which will play an important role in various wastewater treatment scenarios in the future.


Asunto(s)
Aguas Residuales , Purificación del Agua , Electrodos , Proyectos Piloto , Eliminación de Residuos Líquidos/métodos
16.
Environ Sci Technol ; 58(32): 14282-14292, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39083369

RESUMEN

Biodegradable flocculants are rarely used in waste activated sludge (WAS) fermentation. This study introduces an alginate-based biodegradable flocculant (ABF) to enhance both the dewatering and degradation of WAS during its fermentation. Alginate was identified in structural extracellular polymeric substances (St-EPS) of WAS, with alginate-producing bacteria comprising ∼4.2% of the total bacterial population in WAS. Owing to its larger floc size, higher contact angle, and lower free energy resulting from the Lewis acid-base interaction, the addition of the prepared ABF with a network structure significantly improved the dewaterability of WAS and reduced capillary suction time (CST) by 72%. The utilization of ABF by an enriched alginate-degrading consortium (ADC) resulted in a 35.5% increase in the WAS methane yield owing to its higher hydrolytic activity on both ABF and St-EPS. Additionally, after a 30 day fermentation, CST decreased by 62% owing to the enhanced degradation of St-EPS (74.4%) and lower viscosity in the WAS + ABF + ADC group. The genus Bacteroides, comprising 12% of ADC, used alginate lyase (EC 4.2.2.3) and pectate lyase (EC 4.2.2.2 and EC 4.2.2.9) to degrade alginate and polygalacturonate in St-EPS, respectively. Therefore, this study introduces a new flocculant and elucidates its dual roles in enhancing both the dewaterability and degradability of WAS. These advancements improve WAS fermentation, resulting in higher methane production and lower CSTs.


Asunto(s)
Alginatos , Fermentación , Floculación , Aguas del Alcantarillado , Anaerobiosis , Eliminación de Residuos Líquidos , Biodegradación Ambiental
17.
Environ Sci Technol ; 58(28): 12498-12508, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38900106

RESUMEN

Appropriate mixed carbon sources have great potential to enhance denitrification efficiency and reduce operational costs in municipal wastewater treatment plants (WWTPs). However, traditional methods struggle to efficiently select the optimal mixture due to the variety of compositions. Herein, we developed a machine learning-assisted high-throughput method enabling WWTPs to rapidly identify and optimize mixed carbon sources. Taking a local WWTP as an example, a mixed carbon source denitrification data set was established via a high-throughput method and employed to train a machine learning model. The composition of carbon sources and the types of inoculated sludge served as input variables. The XGBoost algorithm was employed to predict the total nitrogen removal rate and microbial growth, thereby aiding in the assessment of the denitrification potential. The predicted carbon sources exhibited an enhanced denitrification potential over single carbon sources in both kinetic experiments and long-term reactor operations. Model feature analysis shows that the cumulative effect and interaction among individual carbon sources in a mixture significantly enhance the overall denitrification potential. Metagenomic analysis reveals that the mixed carbon sources increased the diversity and complexity of denitrifying bacterial ecological networks in WWTPs. This work offers an efficient method for WWTPs to optimize mixed carbon source compositions and provides new insights into the mechanism behind enhanced denitrification under a supply of multiple carbon sources.


Asunto(s)
Carbono , Desnitrificación , Aprendizaje Automático , Aguas Residuales/química , Nitrógeno , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado/microbiología
18.
Environ Sci Technol ; 58(10): 4648-4661, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38324528

RESUMEN

With global eutrophication and increasingly stringent nitrogen discharge restrictions, dissolved organic nitrogen (DON) holds considerable potential to upgrade advanced wastewater denitrification because of its large contribution to low-nitrogen effluents and stronger stimulation effect for algae. Here, we show that DON from the postdenitrification systems dominates effluent eutrophication potential under different carbon sources. Methanol resulted in significantly lower DON concentrations (0.84 ± 0.03 mg/L) compared with the total nitrogen removal-preferred acetate (1.11 ± 0.02 mg/L) (p < 0.05, ANOVA). With our well-developed mathematical model (R2 = 0.867-0.958), produced DON instead of shared (persist in both influent and effluent) and/or removed DON was identified as the key component for effluent DON variation (Pearson r = 0.992, p < 0.01). The partial least-squares path modeling analysis showed that it is the microbial community (r = 0.947, p < 0.01) rather than the predicted metabolic functions (r = 0.040, p > 0.1) that affected produced DON. Carbon sources rebuild the microorganism-DON interaction by affecting the structure of microbial communities with different abilities to generate and recapture produced DON to finally regulate effluent DON. This study revalues the importance of carbon source selection and overturns the current rationality of pursuing only the total nitrogen removal efficiency by emphasizing DON.


Asunto(s)
Desnitrificación , Aguas Residuales , Materia Orgánica Disuelta , Carbono , Nitrógeno/análisis , Nitrógeno/química , Eliminación de Residuos Líquidos/métodos
19.
Environ Sci Technol ; 58(22): 9582-9590, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780619

RESUMEN

Wastewater treatment contributes substantially to methane (CH4) emissions, yet monitoring and tracing face challenges because the treatment processes are often treated as a "black box". Particularly, despite growing interest, the amount of CH4 carryover and influx from the sewer and its impacts on overall emissions remain unclear. This study quantified CH4 emissions from six wastewater treatment plants (WWTPs) across China, utilizing existing multizonal odor control systems, with a focus on Beijing and Guiyang WWTPs. In the Beijing WWTP, almost 90% of CH4 emissions from the wastewater treatment process were conveyed through sewer pipes, affecting emissions even in the aerobic zone of biological treatment. In the Guiyang WWTP, where most CH4 from the sewer was released at the inlet well, a 24 h online monitoring revealed CH4 fluctuations linked to neighborhood water consumption and a strong correlation to influent COD inputs. CH4 emission factors monitored in six WWTPs range from 1.5 to 13.4 gCH4/kgCODrem, higher than those observed in previous studies using A2O technology. This underscores the importance of considering CH4 influx from sewer systems to avoid underestimation. The odor control system in WWTPs demonstrates its potential as a cost-effective approach for tracing, monitoring, and mitigating CH4.


Asunto(s)
Metano , Aguas del Alcantarillado , Aguas Residuales , Metano/análisis , Aguas Residuales/química , Eliminación de Residuos Líquidos , China , Monitoreo del Ambiente
20.
Environ Sci Technol ; 58(26): 11213-11235, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38885125

RESUMEN

Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Oxidación-Reducción , Incrustaciones Biológicas , Purificación del Agua/métodos , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA