Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Rev Med Virol ; 34(3): e2550, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801246

RESUMEN

Alzheimer's disease (AD) is a real and current scientific and societal challenge. Alzheimer's disease is characterised by a neurodegenerative neuroinflammatory process, but the etiopathogenetic mechanisms are still unclear. The possible infectious aetiology and potential involvement of Herpes viruses as triggers for the formation of extracellular deposits of amyloid beta (Aß) peptide (amyloid plaques) and intraneuronal aggregates of hyperphosphorylated and misfold could be a possible explanation. In fact, the possible genetic interference of Herpes viruses with the genome of the host neuronal cell or the stimulation of the infection to a continuous immune response with a consequent chronic inflammation could constitute those mechanisms underlying the development of AD, with possible implications in the understanding and management of the disease. Herpes viruses could be significantly involved in the pathogenesis of AD and in particular, their ability to reactivate in particular conditions such as immunocompromise and immunosenescence, could explain the neurological damage characteristic of AD. Our review aims to evaluate the state of the art of knowledge and perspectives regarding the potential relationship between Herpes viruses and AD, in order to be able to identify the possible etiopathogenetic mechanisms and the possible therapeutic implications.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por Herpesviridae , Herpesviridae , Humanos , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/inmunología , Herpesviridae/patogenicidad , Herpesviridae/genética , Herpesviridae/fisiología , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/inmunología , Péptidos beta-Amiloides/metabolismo , Animales
2.
J Neuroinflammation ; 21(1): 176, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026249

RESUMEN

Accumulating evidence implicates that herpes simplex virus type 1 (HSV-1) has been linked to the development and progression of Alzheimer's disease (AD). HSV-1 infection induces ß-amyloid (Aß) deposition in vitro and in vivo, but the effect and precise mechanism remain elusive. Here, we show that HSV-1 infection of the brains of transgenic 5xFAD mice resulted in accelerated Aß deposition, gliosis, and cognitive dysfunction. We demonstrate that HSV-1 infection induced the recruitment of microglia to the viral core to trigger microglial phagocytosis of HSV-GFP-positive neuronal cells. In addition, we reveal that the NLRP3 inflammasome pathway induced by HSV-1 infection played a crucial role in Aß deposition and the progression of AD caused by HSV-1 infection. Blockade of the NLRP3 inflammasome signaling reduces Aß deposition and alleviates cognitive decline in 5xFAD mice after HSV-1 infection. Our findings support the notion that HSV-1 infection is a key factor in the etiology of AD, demonstrating that NLRP3 inflammasome activation functions in the interface of HSV-1 infection and Aß deposition in AD.


Asunto(s)
Enfermedad de Alzheimer , Progresión de la Enfermedad , Herpesvirus Humano 1 , Ratones Transgénicos , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Fagocitosis , Transducción de Señal , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/virología , Ratones , Microglía/metabolismo , Microglía/patología , Microglía/virología , Transducción de Señal/fisiología , Humanos , Herpes Simple/patología , Herpes Simple/inmunología , Herpes Simple/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animales de Enfermedad , Presenilina-1/genética , Presenilina-1/metabolismo
3.
J Neurovirol ; 30(1): 57-70, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167982

RESUMEN

In recent years, we have seen the widespread devastations and serious health complications manifested by COVID-19 globally. Although we have effectively controlled the pandemic, uncertainties persist regarding its potential long-term effects, including prolonged neurological issues. To gain comprehensive insights, we conducted a meta-analysis of mass spectrometry-based proteomics data retrieved from different studies with a total of 538 COVID-19 patients and 523 healthy controls. The meta-analysis revealed that top-enriched pathways were associated with neurological disorders, including Alzheimer's (AD) and Parkinson's disease (PD). Further analysis confirmed a direct correlation in the expression patterns of 24 proteins involved in Alzheimer's and 23 proteins in Parkinson's disease with COVID-19. Protein-protein interaction network and cluster analysis identified SNCA as a hub protein, a known biomarker for Parkinson's disease, in both AD and PD. To the best of our knowledge, this is the first meta-analysis study providing proteomic profiling evidence linking COVID-19 to neurological complications.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , COVID-19 , Enfermedad de Parkinson , Mapas de Interacción de Proteínas , Proteoma , SARS-CoV-2 , COVID-19/sangre , COVID-19/virología , COVID-19/metabolismo , Humanos , Enfermedad de Parkinson/virología , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , alfa-Sinucleína/sangre , alfa-Sinucleína/metabolismo , Proteómica/métodos
4.
Acta Neuropathol ; 147(1): 92, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801558

RESUMEN

The SARS-CoV-2 virus that led to COVID-19 is associated with significant and long-lasting neurologic symptoms in many patients, with an increased mortality risk for people with Alzheimer's disease (AD) and/or Down syndrome (DS). However, few studies have evaluated the neuropathological and inflammatory sequelae in postmortem brain tissue obtained from AD and people with DS with severe SARS-CoV-2 infections. We examined tau, beta-amyloid (Aß), inflammatory markers and SARS-CoV-2 nucleoprotein in DS, AD, and healthy non-demented controls with COVID-19 and compared with non-infected brain tissue from each disease group (total n = 24). A nested ANOVA was used to determine regional effects of the COVID-19 infection on arborization of astrocytes (Sholl analysis) and percent-stained area of Iba-1 and TMEM 119. SARS-CoV-2 antibodies labeled neurons and glial cells in the frontal cortex of all subjects with COVID-19, and in the hippocampus of two of the three DS COVID-19 cases. SARS-CoV-2-related alterations were observed in peri-vascular astrocytes and microglial cells in the gray matter of the frontal cortex, hippocampus, and para-hippocampal gyrus. Bright field microscopy revealed scattered intracellular and diffuse extracellular Aß deposits in the hippocampus of controls with confirmed SARS-CoV-2 infections. Overall, the present preliminary findings suggest that SARS-CoV-2 infections induce abnormal inflammatory responses in Down syndrome.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , COVID-19 , Síndrome de Down , Humanos , Síndrome de Down/patología , Síndrome de Down/metabolismo , Síndrome de Down/complicaciones , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/metabolismo , COVID-19/patología , COVID-19/complicaciones , Masculino , Femenino , Anciano , Persona de Mediana Edad , Encéfalo/patología , Encéfalo/virología , Anciano de 80 o más Años , Astrocitos/patología , Astrocitos/virología , Astrocitos/metabolismo , Péptidos beta-Amiloides/metabolismo , SARS-CoV-2/patogenicidad , Microglía/patología , Microglía/metabolismo , Adulto , Proteínas tau/metabolismo
5.
Environ Res ; 249: 118451, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341073

RESUMEN

Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.


Asunto(s)
COVID-19 , Mucosa Olfatoria , Material Particulado , SARS-CoV-2 , Material Particulado/toxicidad , Humanos , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/virología , COVID-19/inmunología , Contaminantes Atmosféricos/toxicidad , Anciano , Masculino , Femenino , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/virología , Persona de Mediana Edad , Citocinas/metabolismo , Anciano de 80 o más Años , Estrés Oxidativo/efectos de los fármacos
6.
J Infect Public Health ; 17(7): 102462, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824738

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder influenced by age, sex, genetic factors, immune alterations, and infections. Multiple lines of evidence suggest that changes in antibody response are linked to AD pathology. METHODS: To elucidate the mechanisms underlying AD development, we investigated antibodies that target autoimmune epitopes using high-resolution epitope microarrays. Our study compared two groups: individuals with AD (n = 19) and non-demented (ND) controls (n = 19). To validate the results, we measured antibody levels in plasma samples from AD patients (n = 96), mild cognitive impairment (MCI; n = 91), and ND controls (n = 97). To further explore the invlovement of EBV, we performed epitope masking immunofluorescence microscopy analysis and tests to induce lytic replication using the B95-8 cell line. RESULTS: In this study, we analyzed high-resolution epitope-specific serum antibody levels in AD, revealing significant disparities in antibodies targeting multiple epitopes between the AD and control groups. Particularly noteworthy was the significant down-regulation of antibody (anti-DG#29) targeting an epitope of Epstein-Barr virus nuclear antigen 1 (EBNA1). This down-regulation increased AD risk in female patients (odds ratio up to 6.6), but not in male patients. Our investigation further revealed that the down-regulation of the antibody (anti-DG#29) is associated with EBV reactivation in AD, as indicated by the analysis of EBV VCA IgG or IgM levels. Additionally, our data demonstrated that the epitope region on EBNA1 for the antibody is hidden during the EBV lytic reactivation of B95-8 cells. CONCLUSION: Our findings suggest a potential relationship of EBV in the development of AD in female. Moreover, we propose that antibodies targeting the epitope (DG#29) of EBNA1 could serve as valuable indicators of AD risk in female.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos Antivirales , Epítopos , Antígenos Nucleares del Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/sangre , Femenino , Masculino , Antígenos Nucleares del Virus de Epstein-Barr/inmunología , Anciano , Anticuerpos Antivirales/sangre , Epítopos/inmunología , Herpesvirus Humano 4/inmunología , Disfunción Cognitiva/inmunología , Anciano de 80 o más Años , Infecciones por Virus de Epstein-Barr/inmunología , Persona de Mediana Edad
7.
Mol Neurobiol ; 61(8): 5337-5352, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38191694

RESUMEN

Evidence suggests that herpes virus infection is associated with an increased risk of Alzheimer's disease (AD), and innate and adaptive immunity plays an important role in the association. Although there have been many studies, the mechanism of the association is still unclear. This study aims to reveal the underlying molecular and immune regulatory network through multi-omics data and provide support for the study of the mechanism of infection and AD in the future. Here, we found that the herpes virus infection significantly increased the risk of AD. Genes associated with the occurrence and development of AD and genetically regulated by herpes virus infection are mainly enrichment in immune-related pathways. The 22 key regulatory genes identified by machine learning are mainly immune genes. They are also significantly related to the infiltration changes of 3 immune cell in AD. Furthermore, many of these genes have previously been reported to be linked, or potentially linked, to the pathological mechanisms of both herpes virus infection and AD. In conclusion, this study contributes to the study of the mechanisms related to herpes virus infection and AD, and indicates that the regulation of innate and adaptive immunity may be an effective strategy for preventing and treating herpes virus infection and AD. Additionally, the identified key regulatory genes, whether previously studied or newly discovered, may serve as valuable targets for prevention and treatment strategies.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por Herpesviridae , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Humanos , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/complicaciones , Redes Reguladoras de Genes , Genómica/métodos , Factores de Riesgo , Multiómica
8.
Biomolecules ; 14(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786010

RESUMEN

Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (MßCD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon MßCD treatment. Moreover, MßCD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. MßCD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (Aß) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Colesterol , Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Colesterol/metabolismo , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Herpes Simple/virología , Herpes Simple/metabolismo , Herpes Simple/tratamiento farmacológico , Herpes Simple/patología , Línea Celular Tumoral , Animales , beta-Ciclodextrinas/farmacología , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Proteínas tau/metabolismo , Fenotipo , Ratones
9.
Transl Psychiatry ; 13(1): 396, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104129

RESUMEN

Although there are indications of a trend towards less severe acute respiratory symptoms and a decline in overall lethality from the novel Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), more and more attention has been paid to the long COVID, including the increased risk of Alzheimer's disease (AD) in COVID-19 patients. In this study, we aim to investigate the involvement of N-terminal amyloid precursor protein (APP) in SARS-CoV-2-induced amyloid-ß (Aß) pathology. Utilizing both in vitro and in vivo methodologies, we first investigated the interaction between the spike protein of SARS-CoV-2 and N-terminal APP via LSPR and CoIP assays. The in vitro impacts of APP overexpression on virus infection were further evaluated in HEK293T/ACE2 cells, SH-SY5Y cells, and Vero cells. We also analyzed the pseudovirus infection in vivo in a mouse model overexpressing human wild-type APP. Finally, we evaluated the impact of APP on pseudovirus infection within human brain organoids and assessed the chronic effects of pseudovirus infection on Aß levels. We reported here for the first time that APP, the precursor of the Aß of AD, interacts with the Spike protein of SARS-CoV-2. Moreover, both in vivo and in vitro data further indicated that APP promotes the cellular entry of the virus, and exacerbates Aß-associated pathology in the APP/PS1 mouse model of AD, which can be ameliorated by N-terminal APP blockage. Our findings provide experimental evidence to interpret APP-related mechanisms underlying AD-like neuropathology in COVID-19 patients and may pave the way to help inform risk management and therapeutic strategies against diseases accordingly.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Internalización del Virus , Animales , Humanos , Ratones , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/virología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Chlorocebus aethiops , COVID-19/complicaciones , Modelos Animales de Enfermedad , Células HEK293 , Ratones Transgénicos , Síndrome Post Agudo de COVID-19 , Presenilina-1 , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus , Células Vero
10.
Rev. méd. Chile ; 139(6): 779-786, jun. 2011. ilus
Artículo en Español | LILACS | ID: lil-603125

RESUMEN

Herpes simplex virus type 1 (HSV-1) is ubiquitous, neurotropic, and the most common pathogenic cause of sporadic acute encephalitis in humans. Herpes simplex encephalitis is associated with a high mortality rate and significant neu-rological, neuropsychological, and neurobehavioral sequels. HSV-1 infects limbic system structures in the central nervous system (CNS), and has been suggested as an environmental risk factor for Alzheimer’s disease. The possibility that HSV-1 reactivates in CNS neurons causing chronic progressive damage at cellular level and altering the neuronal functionality has not been thoroughly investigated. Currently it is ignored if recurrent reactivation of HSV-1 in asymptomatic patients involves some risk of progressive deterioration of the CNS functions caused, in example, by a neuroinflammatory response against the virus or by direct toxicity of the pathogen on neurons. Therefore, studies regarding the routes of dissemination of HSV-1 from the peripheral ganglions to the CNS, as well as the possible cellular and molecular mechanisms implied in generating neuronal damage during latent and productive infection, are of much relevance.


Asunto(s)
Adulto , Humanos , Enfermedad de Alzheimer/virología , Herpes Simple/complicaciones , Herpesvirus Humano 1/patogenicidad , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA