Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.900
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 93(1): 261-287, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38621236

RESUMEN

Activating mutations in leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of monogenic Parkinson's disease. LRRK2 is a large multidomain protein kinase that phosphorylates a specific subset of the ∼65 human Rab GTPases, which are master regulators of the secretory and endocytic pathways. After phosphorylation by LRRK2, Rabs lose the capacity to bind cognate effector proteins and guanine nucleotide exchange factors. Moreover, the phosphorylated Rabs cannot interact with their cognate prenyl-binding retrieval proteins (also known as guanine nucleotide dissociation inhibitors) and, thus, they become trapped on membrane surfaces. Instead, they gain the capacity to bind phospho-Rab-specific effector proteins, such as RILPL1, with resulting pathological consequences. Rab proteins also act upstream of LRRK2 by controlling its activation and recruitment onto membranes. LRRK2 signaling is counteracted by the phosphoprotein phosphatase PPM1H, which selectively dephosphorylates phospho-Rab proteins. We present here our current understanding of the structure, biochemical properties, and cell biology of LRRK2 and its related paralog LRRK1 and discuss how this information guides the generation of LRRK2 inhibitors for the potential benefit of patients.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Proteínas de Unión al GTP rab , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Fosforilación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/química , Animales , Transducción de Señal , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/química , Unión Proteica , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/química
2.
Annu Rev Biochem ; 92: 435-464, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37018845

RESUMEN

The polyamines putrescine, spermidine, and spermine are abundant polycations of vital importance in mammalian cells. Their cellular levels are tightly regulated by degradation and synthesis, as well as by uptake and export. Here, we discuss the delicate balance between the neuroprotective and neurotoxic effects of polyamines in the context of Parkinson's disease (PD). Polyamine levels decline with aging and are altered in patients with PD, whereas recent mechanistic studies on ATP13A2 (PARK9) demonstrated a driving role of a disturbed polyamine homeostasis in PD. Polyamines affect pathways in PD pathogenesis, such as α-synuclein aggregation, and influence PD-related processes like autophagy, heavy metal toxicity, oxidative stress, neuroinflammation, and lysosomal/mitochondrial dysfunction. We formulate outstanding research questions regarding the role of polyamines in PD, their potential as PD biomarkers, and possible therapeutic strategies for PD targeting polyamine homeostasis.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Poliaminas/metabolismo , Neuroprotección , Espermidina/metabolismo , Mamíferos/metabolismo
3.
Cell ; 186(24): 5394-5410.e18, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37922901

RESUMEN

Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Its symptoms are typically treated with levodopa or dopamine receptor agonists, but its action lacks specificity due to the wide distribution of dopamine receptors in the central nervous system and periphery. Here, we report the development of a gene therapy strategy to selectively manipulate PD-affected circuitry. Targeting striatal D1 medium spiny neurons (MSNs), whose activity is chronically suppressed in PD, we engineered a therapeutic strategy comprised of a highly efficient retrograde adeno-associated virus (AAV), promoter elements with strong D1-MSN activity, and a chemogenetic effector to enable precise D1-MSN activation after systemic ligand administration. Application of this therapeutic approach rescues locomotion, tremor, and motor skill defects in both mouse and primate models of PD, supporting the feasibility of targeted circuit modulation tools for the treatment of PD in humans.


Asunto(s)
Terapia Genética , Enfermedad de Parkinson , Animales , Humanos , Ratones , Cuerpo Estriado/metabolismo , Levodopa/uso terapéutico , Levodopa/genética , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Primates , Receptores de Dopamina D1/metabolismo , Modelos Animales de Enfermedad
4.
Cell ; 185(11): 1943-1959.e21, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35545089

RESUMEN

Parthanatos-associated apoptosis-inducing factor (AIF) nuclease (PAAN), also known as macrophage migration inhibitor factor (MIF), is a member of the PD-D/E(X)K nucleases that acts as a final executioner in parthanatos. PAAN's role in Parkinson's disease (PD) and whether it is amenable to chemical inhibition is not known. Here, we show that neurodegeneration induced by pathologic α-synuclein (α-syn) occurs via PAAN/MIF nuclease activity. Genetic depletion of PAAN/MIF and a mutant lacking nuclease activity prevent the loss of dopaminergic neurons and behavioral deficits in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Compound screening led to the identification of PAANIB-1, a brain-penetrant PAAN/MIF nuclease inhibitor that prevents neurodegeneration induced by α-syn PFF, AAV-α-syn overexpression, or MPTP intoxication in vivo. Our findings could have broad relevance in human pathologies where parthanatos plays a role in the development of cell death inhibitors targeting the druggable PAAN/MIF nuclease.


Asunto(s)
Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Enfermedad de Parkinson , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Endonucleasas/metabolismo , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
5.
Cell ; 182(6): 1508-1518.e16, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32783917

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of familial Parkinson's disease. LRRK2 is a multi-domain protein containing a kinase and GTPase. Using correlative light and electron microscopy, in situ cryo-electron tomography, and subtomogram analysis, we reveal a 14-Å structure of LRRK2 bearing a pathogenic mutation that oligomerizes as a right-handed double helix around microtubules, which are left-handed. Using integrative modeling, we determine the architecture of LRRK2, showing that the GTPase and kinase are in close proximity, with the GTPase closer to the microtubule surface, whereas the kinase is exposed to the cytoplasm. We identify two oligomerization interfaces mediated by non-catalytic domains. Mutation of one of these abolishes LRRK2 microtubule-association. Our work demonstrates the power of cryo-electron tomography to generate models of previously unsolved structures in their cellular environment.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Microtúbulos/metabolismo , Enfermedad de Parkinson/metabolismo , Citoplasma/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Humanos , Microscopía Electrónica de Transmisión , Microtúbulos/química , Modelos Químicos , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Dominios Proteicos , Repeticiones WD40
6.
Annu Rev Cell Dev Biol ; 36: 237-264, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32749865

RESUMEN

Parkinson's disease (PD) is a leading cause of neurodegeneration that is defined by the selective loss of dopaminergic neurons and the accumulation of protein aggregates called Lewy bodies (LBs). The unequivocal identification of Mendelian inherited mutations in 13 genes in PD has provided transforming insights into the pathogenesis of this disease. The mechanistic analysis of several PD genes, including α-synuclein (α-syn), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and Parkin, has revealed central roles for protein aggregation, mitochondrial damage, and defects in endolysosomal trafficking in PD neurodegeneration. In this review, we outline recent advances in our understanding of these gene pathways with a focus on the emergent role of Rab (Ras analog in brain) GTPases and vesicular trafficking as a common mechanism that underpins how mutations in PD genes lead to neuronal loss. These advances have led to previously distinct genes such as vacuolar protein-sorting-associated protein 35 (VPS35) and LRRK2 being implicated in a common signaling pathway. A greater understanding of these common nodes of vesicular trafficking will be crucial for linking other PD genes and improving patient stratification in clinical trials underway against α-syn and LRRK2 targets.


Asunto(s)
Enfermedad de Parkinson/metabolismo , Animales , Autofagia , Vesículas Citoplasmáticas/metabolismo , Humanos , Mitocondrias/metabolismo , Enfermedad de Parkinson/genética , Agregado de Proteínas , Transporte de Proteínas
7.
Annu Rev Biochem ; 86: 21-26, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28441058

RESUMEN

The majority of protein molecules must fold into defined three-dimensional structures to acquire functional activity. However, protein chains can adopt a multitude of conformational states, and their biologically active conformation is often only marginally stable. Metastable proteins tend to populate misfolded species that are prone to forming toxic aggregates, including soluble oligomers and fibrillar amyloid deposits, which are linked with neurodegeneration in Alzheimer and Parkinson disease, and many other pathologies. To prevent or regulate protein aggregation, all cells contain an extensive protein homeostasis (or proteostasis) network comprising molecular chaperones and other factors. These defense systems tend to decline during aging, facilitating the manifestation of aggregate deposition diseases. This volume of the Annual Review of Biochemistry contains a set of three articles addressing our current understanding of the structures of pathological protein aggregates and their associated disease mechanisms. These articles also discuss recent insights into the strategies cells have evolved to neutralize toxic aggregates by sequestering them in specific cellular locations.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/metabolismo , Deficiencias en la Proteostasis/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Regulación de la Expresión Génica , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Conformación Proteica , Pliegue de Proteína , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/patología
8.
Annu Rev Cell Dev Biol ; 34: 545-568, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30044648

RESUMEN

Most neurodegenerative diseases are characterized by the accumulation of protein aggregates, some of which are toxic to cells. Mounting evidence demonstrates that in several diseases, protein aggregates can pass from neuron to neuron along connected networks, although the role of this spreading phenomenon in disease pathogenesis is not completely understood. Here we briefly review the molecular and histopathological features of protein aggregation in neurodegenerative disease, we summarize the evidence for release of proteins from donor cells into the extracellular space, and we highlight some other mechanisms by which protein aggregates might be transmitted to recipient cells. We also discuss the evidence that supports a role for spreading of protein aggregates in neurodegenerative disease pathogenesis and some limitations of this model. Finally, we consider potential therapeutic strategies to target spreading of protein aggregates in the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Neuronas/metabolismo , Agregado de Proteínas/genética , Agregación Patológica de Proteínas/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Encefalopatía Traumática Crónica/genética , Encefalopatía Traumática Crónica/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Enfermedades Neurodegenerativas/clasificación , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Agregación Patológica de Proteínas/patología
9.
Nat Rev Mol Cell Biol ; 20(7): 421-435, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733602

RESUMEN

Ageing is a major risk factor for the development of many diseases, prominently including neurodegenerative disorders such as Alzheimer disease and Parkinson disease. A hallmark of many age-related diseases is the dysfunction in protein homeostasis (proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a complex proteostasis network, comprising molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation. However, sustaining proteome balance is a challenging task in the face of various external and endogenous stresses that accumulate during ageing. These stresses lead to the decline of proteostasis network capacity and proteome integrity. The resulting accumulation of misfolded and aggregated proteins affects, in particular, postmitotic cell types such as neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur during ageing inform strategies to improve proteostasis. The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedad de Parkinson/metabolismo , Pliegue de Proteína , Proteolisis , Proteostasis , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Humanos , Chaperonas Moleculares/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología
10.
Cell ; 163(2): 324-39, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26451483

RESUMEN

Neurodegenerative diseases have been linked to inflammation, but whether altered immunomodulation plays a causative role in neurodegeneration is not clear. We show that lack of cytokine interferon-ß (IFN-ß) signaling causes spontaneous neurodegeneration in the absence of neurodegenerative disease-causing mutant proteins. Mice lacking Ifnb function exhibited motor and cognitive learning impairments with accompanying α-synuclein-containing Lewy bodies in the brain, as well as a reduction in dopaminergic neurons and defective dopamine signaling in the nigrostriatal region. Lack of IFN-ß signaling caused defects in neuronal autophagy prior to α-synucleinopathy, which was associated with accumulation of senescent mitochondria. Recombinant IFN-ß promoted neurite growth and branching, autophagy flux, and α-synuclein degradation in neurons. In addition, lentiviral IFN-ß overexpression prevented dopaminergic neuron loss in a familial Parkinson's disease model. These results indicate a protective role for IFN-ß in neuronal homeostasis and validate Ifnb mutant mice as a model for sporadic Lewy body and Parkinson's disease dementia.


Asunto(s)
Interferón beta/metabolismo , Neuronas/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Animales , Autofagia , Modelos Animales de Enfermedad , Terapia Genética , Interferón beta/genética , Interferón beta/uso terapéutico , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Receptor de Interferón alfa y beta/genética , Transducción de Señal , Transcriptoma , alfa-Sinucleína/metabolismo
11.
Annu Rev Neurosci ; 44: 87-108, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236893

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.


Asunto(s)
Enfermedad de Parkinson , Humanos , Lisosomas , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
12.
Nat Rev Neurosci ; 25(6): 393-413, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600347

RESUMEN

Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.


Asunto(s)
Enfermedad de Parkinson , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Humanos , Animales , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/metabolismo , Lisosomas/metabolismo , Lisosomas/genética , Sinapsis/patología , Sinapsis/genética , Sinapsis/metabolismo
13.
Cell ; 155(6): 1351-64, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24290359

RESUMEN

Parkinson's disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A53T α-syn A9 DA neurons (hNs). We report a pathway whereby basal and toxin-induced nitrosative/oxidative stress results in S-nitrosylation of transcription factor MEF2C in A53T hNs compared to corrected controls. This redox reaction inhibits the MEF2C-PGC1α transcriptional network, contributing to mitochondrial dysfunction and apoptotic cell death. Our data provide mechanistic insight into gene-environmental interaction (GxE) in the pathogenesis of PD. Furthermore, using small-molecule high-throughput screening, we identify the MEF2C-PGC1α pathway as a therapeutic target to combat PD.


Asunto(s)
Interacción Gen-Ambiente , Mitocondrias/efectos de los fármacos , Paraquat/toxicidad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción MEF2 , Mutación/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies de Nitrógeno Reactivo/metabolismo , Sustancia Negra/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Cell ; 154(4): 737-47, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23953109

RESUMEN

Mitochondria have long been implicated in the pathogenesis of Parkinson's disease (PD). Mutations in the mitochondrial kinase PINK1 that reduce kinase activity are associated with mitochondrial defects and result in an autosomal-recessive form of early-onset PD. Therapeutic approaches for enhancing the activity of PINK1 have not been considered because no allosteric regulatory sites for PINK1 are known. Here, we show that an alternative strategy, a neo-substrate approach involving the ATP analog kinetin triphosphate (KTP), can be used to increase the activity of both PD-related mutant PINK1(G309D) and PINK1(WT). Moreover, we show that application of the KTP precursor kinetin to cells results in biologically significant increases in PINK1 activity, manifest as higher levels of Parkin recruitment to depolarized mitochondria, reduced mitochondrial motility in axons, and lower levels of apoptosis. Discovery of neo-substrates for kinases could provide a heretofore-unappreciated modality for regulating kinase activity.


Asunto(s)
Mitocondrias/metabolismo , Enfermedad de Parkinson/patología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Secuencia de Aminoácidos , Animales , Apoptosis , Axones/metabolismo , Línea Celular , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Cinetina/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Fosforilación , Proteínas Quinasas/química , Ratas , Alineación de Secuencia , Ubiquitina-Proteína Ligasas/metabolismo , Proteína bcl-X/metabolismo
15.
EMBO J ; 42(15): e113410, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366237

RESUMEN

Mutations in LRRK2 are the most common genetic causes of Parkinson's disease (PD). While the enzymatic activity of LRRK2 has been linked to PD, previous work has also provided support for an important role of elevated LRRK2 protein levels, independent of enzymatic activity, in PD pathogenesis. However, the mechanisms underlying the regulation of LRRK2 protein levels remain unclear. Here, we identify a role for the purine biosynthesis pathway enzyme ATIC in the regulation of LRRK2 levels and toxicity. AICAr, the precursor of ATIC substrate, regulates LRRK2 levels in a cell-type-specific manner in vitro and in mouse tissue. AICAr regulates LRRK2 levels through AUF1-mediated mRNA decay. Upon AICAr treatment, the RNA binding protein AUF1 is recruited to the AU-rich elements (ARE) of LRRK2 mRNA leading to the recruitment of the decapping enzyme complex DCP1/2 and decay of LRRK2 mRNA. AICAr suppresses LRRK2 expression and rescues LRRK2-induced dopaminergic neurodegeneration and neuroinflammation in PD Drosophila and mouse models. Together, this study provides insight into a novel regulatory mechanism of LRRK2 protein levels and function via LRRK2 mRNA decay that is distinct from LRRK2 enzymatic functions.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , Mutación
16.
Nat Rev Neurosci ; 23(2): 115-128, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34907352

RESUMEN

For the last two decades, pathogenic concepts in Parkinson disease (PD) have revolved around the toxicity and spread of α-synuclein. Thus, α-synuclein would follow caudo-rostral propagation from the periphery to the central nervous system, first producing non-motor manifestations (such as constipation, sleep disorders and hyposmia), and subsequently impinging upon the mesencephalon to account for the cardinal motor features before reaching the neocortex as the disease evolves towards dementia. This model is the prevailing theory of the principal neurobiological mechanism of disease. Here, we scrutinize the temporal evolution of motor and non-motor manifestations in PD and suggest that, even though the postulated bottom-up mechanisms are likely to be involved, early involvement of the nigrostriatal system is a key and prominent pathophysiological mechanism. Upcoming studies of detailed clinical manifestations with newer neuroimaging techniques will allow us to more closely define, in vivo, the role of α-synuclein aggregates with respect to neuronal loss during the onset and progression of PD.


Asunto(s)
Vías Eferentes/fisiopatología , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/fisiopatología , Animales , Humanos , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/fisiología
17.
PLoS Biol ; 22(4): e3002559, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652714

RESUMEN

Increasing evidence indicates that terminally differentiated neurons in the brain may recommit to a cell cycle-like process during neuronal aging and under disease conditions. Because of the rare existence and random localization of these cells in the brain, their molecular profiles and disease-specific heterogeneities remain unclear. Through a bioinformatics approach that allows integrated analyses of multiple single-nucleus transcriptome datasets from human brain samples, these rare cell populations were identified and selected for further characterization. Our analyses indicated that these cell cycle-related events occur predominantly in excitatory neurons and that cellular senescence is likely their immediate terminal fate. Quantitatively, the number of cell cycle re-engaging and senescent neurons decreased during the normal brain aging process, but in the context of late-onset Alzheimer's disease (AD), these cells accumulate instead. Transcriptomic profiling of these cells suggested that disease-specific differences were predominantly tied to the early stage of the senescence process, revealing that these cells presented more proinflammatory, metabolically deregulated, and pathology-associated signatures in disease-affected brains. Similarly, these general features of cell cycle re-engaging neurons were also observed in a subpopulation of dopaminergic neurons identified in the Parkinson's disease (PD)-Lewy body dementia (LBD) model. An extended analysis conducted in a mouse model of brain aging further validated the ability of this bioinformatics approach to determine the robust relationship between the cell cycle and senescence processes in neurons in this cross-species setting.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Encéfalo , Ciclo Celular , Senescencia Celular , Neuronas , Animales , Humanos , Senescencia Celular/genética , Encéfalo/metabolismo , Encéfalo/patología , Envejecimiento/fisiología , Envejecimiento/genética , Ciclo Celular/genética , Ratones , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Neuronas/patología , Transcriptoma/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Perfilación de la Expresión Génica , Masculino , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Ratones Endogámicos C57BL , Anciano
18.
Nature ; 595(7869): 735-740, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34040254

RESUMEN

The functional engagement between an enhancer and its target promoter ensures precise gene transcription1. Understanding the basis of promoter choice by enhancers has important implications for health and disease. Here we report that functional loss of a preferred promoter can release its partner enhancer to loop to and activate an alternative promoter (or alternative promoters) in the neighbourhood. We refer to this target-switching process as 'enhancer release and retargeting'. Genetic deletion, motif perturbation or mutation, and dCas9-mediated CTCF tethering reveal that promoter choice by an enhancer can be determined by the binding of CTCF at promoters, in a cohesin-dependent manner-consistent with a model of 'enhancer scanning' inside the contact domain. Promoter-associated CTCF shows a lower affinity than that at chromatin domain boundaries and often lacks a preferred motif orientation or a partnering CTCF at the cognate enhancer, suggesting properties distinct from boundary CTCF. Analyses of cancer mutations, data from the GTEx project and risk loci from genome-wide association studies, together with a focused CRISPR interference screen, reveal that enhancer release and retargeting represents an overlooked mechanism that underlies the activation of disease-susceptibility genes, as exemplified by a risk locus for Parkinson's disease (NUCKS1-RAB7L1) and three loci associated with cancer (CLPTM1L-TERT, ZCCHC7-PAX5 and PVT1-MYC).


Asunto(s)
Factor de Unión a CCCTC/genética , Elementos de Facilitación Genéticos , Predisposición Genética a la Enfermedad , Regiones Promotoras Genéticas , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina , Proteínas Cromosómicas no Histona/genética , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Células MCF-7 , Neoplasias/genética , Células-Madre Neurales , Oncogenes , Enfermedad de Parkinson/genética , Cohesinas
19.
Nature ; 591(7850): 431-437, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33505021

RESUMEN

Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Canales de Potasio/metabolismo , Potasio/metabolismo , Animales , Biocatálisis , Neuronas Dopaminérgicas/metabolismo , Femenino , Mutación con Ganancia de Función , Células HEK293 , Humanos , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Noqueados , Destreza Motora , Complejos Multiproteicos/química , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Enfermedad de Parkinson/genética , Canales de Potasio/química , Canales de Potasio/deficiencia , Canales de Potasio/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , alfa-Sinucleína/metabolismo
20.
Mol Cell ; 73(5): 1028-1043.e5, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733118

RESUMEN

Mutations in PTEN-induced kinase 1 (PINK1) can cause recessive early-onset Parkinson's disease (PD). Import arrest results in PINK1 kinase activation specifically on damaged mitochondria, triggering Parkin-mediated mitophagy. Here, we show that PINK1 import is less dependent on Tim23 than on mitochondrial membrane potential (ΔΨm). We identified a negatively charged amino acid cluster motif that is evolutionarily conserved just C-terminal to the PINK1 transmembrane. PINK1 that fails to accumulate at the outer mitochondrial membrane, either by mutagenesis of this negatively charged motif or by deletion of Tom7, is imported into depolarized mitochondria and cleaved by the OMA1 protease. Some PD patient mutations also are defective in import arrest and are rescued by the suppression of OMA1, providing a new potential druggable target for PD. These results suggest that ΔΨm loss-dependent PINK1 import arrest does not result solely from Tim23 inactivation but also through an actively regulated "tug of war" between Tom7 and OMA1.


Asunto(s)
Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/enzimología , Proteínas Quinasas/metabolismo , Secuencias de Aminoácidos , Antiparkinsonianos/farmacología , Transporte Biológico , Diseño de Fármacos , Activación Enzimática , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/genética , Metaloendopeptidasas/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/genética , Proteolisis , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA