Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.754
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 172(5): 893-895, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474917

RESUMEN

Kermany et al. report an application of a neural network trained on millions of everyday images to a database of thousands of retinal tomography images that they gathered and expert labeled, resulting in a rapid and accurate diagnosis of retinal diseases.


Asunto(s)
Aprendizaje Profundo , Enfermedades de la Retina , Humanos , Redes Neurales de la Computación
2.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38349741

RESUMEN

The mechanosensitive PIEZO channel family has been linked to over 26 disorders and diseases. Although progress has been made in understanding these channels at the structural and functional levels, the underlying mechanisms of PIEZO-associated diseases remain elusive. In this study, we engineered four PIEZO-based disease models using CRISPR/Cas9 gene editing. We performed an unbiased chemical mutagen-based genetic suppressor screen to identify putative suppressors of a conserved gain-of-function variant pezo-1[R2405P] that in human PIEZO2 causes distal arthrogryposis type 5 (DA5; p. R2718P). Electrophysiological analyses indicate that pezo-1(R2405P) is a gain-of-function allele. Using genomic mapping and whole-genome sequencing approaches, we identified a candidate suppressor allele in the C. elegans gene gex-3. This gene is an ortholog of human NCKAP1 (NCK-associated protein 1), a subunit of the Wiskott-Aldrich syndrome protein (WASP)-verprolin homologous protein (WAVE/SCAR) complex, which regulates F-actin polymerization. Depletion of gex-3 by RNAi, or with the suppressor allele gex-3(av259[L353F]), significantly increased brood size and ovulation rate, as well as alleviating the crushed oocyte phenotype of the pezo-1(R2405P) mutant. Expression of GEX-3 in the soma is required to rescue the brood size defects in pezo-1(R2405P) animals. Actin organization and orientation were disrupted and distorted in the pezo-1 mutants. Mutation of gex-3(L353F) partially alleviated these defects. The identification of gex-3 as a suppressor of the pathogenic variant pezo-1(R2405P) suggests that the PIEZO coordinates with the cytoskeleton regulator to maintain the F-actin network and provides insight into the molecular mechanisms of DA5 and other PIEZO-associated diseases.


Asunto(s)
Actinas , Artrogriposis , Oftalmoplejía , Enfermedades de la Retina , Animales , Femenino , Humanos , Actinas/genética , Artrogriposis/genética , Caenorhabditis elegans/genética , Canales Iónicos , Mutación/genética , Polimerizacion
3.
Cell ; 151(5): 1029-41, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23178122

RESUMEN

Defects in primary cilia lead to devastating disease because of their roles in sensation and developmental signaling but much is unknown about ciliary structure and mechanisms of their formation and maintenance. We used cryo-electron tomography to obtain 3D maps of the connecting cilium and adjacent cellular structures of a modified primary cilium, the rod outer segment, from wild-type and genetically defective mice. The results reveal the molecular architecture of the cilium and provide insights into protein functions. They suggest that the ciliary rootlet is involved in cellular transport and stabilizes the axoneme. A defect in the BBSome membrane coat caused defects in vesicle targeting near the base of the cilium. Loss of the proteins encoded by the Cngb1 gene disrupted links between the disk and plasma membranes. The structures of the outer segment membranes support a model for disk morphogenesis in which basal disks are enveloped by the plasma membrane.


Asunto(s)
Cilios/ultraestructura , Enfermedades de la Retina/patología , Segmento Externo de la Célula en Bastón/ultraestructura , Animales , Membrana Celular/metabolismo , Cilios/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retina/química , Retina/metabolismo , Segmento Externo de la Célula en Bastón/química , Segmento Externo de la Célula en Bastón/metabolismo , Vesículas Transportadoras/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(18): e2311028121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657052

RESUMEN

Increased cellular senescence burden contributes in part to age-related organ dysfunction and pathologies. In our study, using mouse models of natural aging, we observed structural and functional decline in the aged retina, which was accompanied by the accumulation of senescent cells and senescence-associated secretory phenotype factors. We further validated the senolytic and senomorphic properties of procyanidin C1 (PCC1) both in vitro and in vivo, the long-term treatment of which ameliorated age-related retinal impairment. Through high-throughput single-cell RNA sequencing (scRNA-seq), we comprehensively characterized the retinal landscape after PCC1 administration and deciphered the molecular basis underlying the senescence burden increment and elimination. By exploring the scRNA-seq database of age-related retinal disorders, we revealed the role of cellular senescence and the therapeutic potential of PCC1 in these pathologies. Overall, these results indicate the therapeutic effects of PCC1 on the aged retina and its potential use for treating age-related retinal disorders.


Asunto(s)
Envejecimiento , Catequina , Senescencia Celular , Proantocianidinas , Retina , Animales , Retina/metabolismo , Retina/efectos de los fármacos , Ratones , Proantocianidinas/farmacología , Proantocianidinas/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Senescencia Celular/efectos de los fármacos , Catequina/farmacología , Catequina/metabolismo , Catequina/química , Biflavonoides/farmacología , Senoterapéuticos/farmacología , Ratones Endogámicos C57BL , Humanos , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología
5.
Hum Mol Genet ; 33(11): 945-957, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38453143

RESUMEN

Inherited retinal diseases (IRDs) are a group of rare genetic eye conditions that cause blindness. Despite progress in identifying genes associated with IRDs, improvements are necessary for classifying rare autosomal dominant (AD) disorders. AD diseases are highly heterogenous, with causal variants being restricted to specific amino acid changes within certain protein domains, making AD conditions difficult to classify. Here, we aim to determine the top-performing in-silico tools for predicting the pathogenicity of AD IRD variants. We annotated variants from ClinVar and benchmarked 39 variant classifier tools on IRD genes, split by inheritance pattern. Using area-under-the-curve (AUC) analysis, we determined the top-performing tools and defined thresholds for variant pathogenicity. Top-performing tools were assessed using genome sequencing on a cohort of participants with IRDs of unknown etiology. MutScore achieved the highest accuracy within AD genes, yielding an AUC of 0.969. When filtering for AD gain-of-function and dominant negative variants, BayesDel had the highest accuracy with an AUC of 0.997. Five participants with variants in NR2E3, RHO, GUCA1A, and GUCY2D were confirmed to have dominantly inherited disease based on pedigree, phenotype, and segregation analysis. We identified two uncharacterized variants in GUCA1A (c.428T>A, p.Ile143Thr) and RHO (c.631C>G, p.His211Asp) in three participants. Our findings support using a multi-classifier approach comprised of new missense classifier tools to identify pathogenic variants in participants with AD IRDs. Our results provide a foundation for improved genetic diagnosis for people with IRDs.


Asunto(s)
Simulación por Computador , Linaje , Enfermedades de la Retina , Humanos , Enfermedades de la Retina/genética , Femenino , Masculino , Mutación , Genes Dominantes , Predisposición Genética a la Enfermedad , Biología Computacional/métodos , Fenotipo , Adulto
6.
Hum Mol Genet ; 32(12): 2005-2015, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811936

RESUMEN

Despite increasing success in determining genetic diagnosis for patients with inherited retinal diseases (IRDs), mutations in about 30% of the IRD cases remain unclear or unsettled after targeted gene panel or whole exome sequencing. In this study, we aimed to investigate the contributions of structural variants (SVs) to settling the molecular diagnosis of IRD with whole-genome sequencing (WGS). A cohort of 755 IRD patients whose pathogenic mutations remain undefined were subjected to WGS. Four SV calling algorithms including include MANTA, DELLY, LUMPY and CNVnator were used to detect SVs throughout the genome. All SVs identified by any one of these four algorithms were included for further analysis. AnnotSV was used to annotate these SVs. SVs that overlap with known IRD-associated genes were examined with sequencing coverage, junction reads and discordant read pairs. Polymerase Chain Reaction (PCR) followed by Sanger sequencing was used to further confirm the SVs and identify the breakpoints. Segregation of the candidate pathogenic alleles with the disease was performed when possible. A total of 16 candidate pathogenic SVs were identified in 16 families, including deletions and inversions, representing 2.1% of patients with previously unsolved IRDs. Autosomal dominant, autosomal recessive and X-linked inheritance of disease-causing SVs were observed in 12 different genes. Among these, SVs in CLN3, EYS and PRPF31 were found in multiple families. Our study suggests that the contribution of SVs detected by short-read WGS is about 0.25% of our IRD patient cohort and is significantly lower than that of single nucleotide changes and small insertions and deletions.


Asunto(s)
Enfermedades de la Retina , Humanos , Enfermedades de la Retina/genética , Mutación , Secuenciación Completa del Genoma , Secuenciación del Exoma , Alelos , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Proteínas del Ojo/genética
7.
Hum Mol Genet ; 32(1): 122-138, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35925866

RESUMEN

Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive retinal degenerative disease characterized by yellow-white crystal deposits in the posterior pole, degeneration of the retinal pigment epithelium (RPE), and sclerosis of the choroid. Mutations in the cytochrome P450 4V2 gene (CYP4V2) cause BCD, which is associated with lipid metabolic disruption. The use of gene-replacement therapy in BCD has been hampered by the lack of disease models. To advance CYP4V2 gene-replacement therapy, we generated BCD patient-specific induced pluripotent stem cell (iPSC)-RPE cells and Cyp4v3 knockout (KO) mice as disease models and AAV2/8-CAG-CYP4V2 as treatment vectors. We demonstrated that after adeno-associated virus (AAV)-mediated CYP4V2 gene-replacement therapy BCD-iPSC-RPE cells presented restored cell survival and reduced lipid droplets accumulation; restoration of vision in Cyp4v3 KO mice was revealed by elevated electroretinogram amplitude and ameliorated RPE degeneration. These results suggest that AAV-mediated gene-replacement therapy in BCD patients is a promising strategy.


Asunto(s)
Distrofias Hereditarias de la Córnea , Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Enfermedades de la Retina , Animales , Ratones , Distrofias Hereditarias de la Córnea/genética , Sistema Enzimático del Citocromo P-450/genética , Familia 4 del Citocromo P450/genética , Familia 4 del Citocromo P450/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Enfermedades de la Retina/genética , Humanos
8.
FASEB J ; 38(10): e23679, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38780117

RESUMEN

Retinal vascular diseases (RVDs), in particular diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity, are leading contributors to blindness. The pathogenesis of RVD involves vessel dilatation, leakage, and occlusion; however, the specific underlying mechanisms remain unclear. Recent findings have indicated that pericytes (PCs), as critical members of the vascular mural cells, significantly contribute to the progression of RVDs, including detachment from microvessels, alteration of contractile and secretory properties, and excessive production of the extracellular matrix. Moreover, PCs are believed to have mesenchymal stem properties and, therefore, might contribute to regenerative therapy. Here, we review novel ideas concerning PC characteristics and functions in RVDs and discuss potential therapeutic strategies based on PCs, including the targeting of pathological signals and cell-based regenerative treatments.


Asunto(s)
Pericitos , Pericitos/metabolismo , Humanos , Animales , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Enfermedades de la Retina/terapia , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/terapia , Retinopatía Diabética/patología
9.
FASEB J ; 38(4): e23493, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38363575

RESUMEN

Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease that could cause blindness. It has been established that Norrin forms dimers to activate ß-catenin signaling, yet the core interface for Norrin dimerization and the precise mechanism by which Norrin dimerization contributes to the pathogenesis of FEVR remain elusive. Here, we report an NDP variant, c.265T>C (p.Phe89Leu), that interrupted ß-catenin signaling by disrupting Norrin dimerization. Structural and functional analysis revealed that the Phe-89 of one Norrin monomer interacts with Pro-98, Ser-101, Arg-121, and Ile-123 of another, forming two core symmetrical dimerization interfaces that are pivotal for the formation of a "hand-by-arm" dimer. Intriguingly, we proved that one of the two core symmetrical interfaces is sufficient for dimerization and activation of ß-catenin signaling, with a substantial contribution from the Phe-89/Pro-98 interaction. Further functional analysis revealed that the disruption of both dimeric interfaces eliminates potential binding sites for LRP5, which could be partially restored by over-expression of TSPAN12. In conclusion, our findings unveil a core dimerization interface that regulates Norrin/LRP5 interaction, highlighting the essential role of Norrin dimerization on ß-catenin signaling and providing potential therapeutic avenues for the treatment of FEVR.


Asunto(s)
Enfermedades Hereditarias del Ojo , Enfermedades de la Retina , Humanos , Vitreorretinopatías Exudativas Familiares/genética , beta Catenina/genética , beta Catenina/metabolismo , Dimerización , Enfermedades Hereditarias del Ojo/genética , Transducción de Señal , Enfermedades de la Retina/metabolismo , Mutación , Tetraspaninas/genética , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Receptores Frizzled/genética , Análisis Mutacional de ADN
10.
Arterioscler Thromb Vasc Biol ; 44(1): 143-155, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942611

RESUMEN

BACKGROUND: BETs (bromodomain and extraterminal domain-containing epigenetic reader proteins), including BRD4 (bromodomain-containing protein 4), orchestrate transcriptional programs induced by pathogenic stimuli, as intensively studied in cardiovascular disease and elsewhere. In endothelial cells (ECs), BRD4 directs induced proinflammatory, proatherosclerotic transcriptional responses; BET inhibitors, like JQ1, repress these effects and decrease atherosclerosis. While BET effects in pathogenic conditions have prompted therapeutic BET inhibitor development, BET action under basal conditions, including ECs, has remained understudied. To understand BET action in basal endothelial transcriptional programs, we first analyzed EC RNA-Seq data in the absence versus presence of JQ1 before using BET regulation to identify novel determinants of EC biology and function. METHODS: RNA-Seq datasets of human umbilical vein ECs without and with JQ1 treatment were analyzed. After identifying C12orf34, also known as FAM222A (family with sequence similarity 222 member A), as a previously unreported, basally expressed, potently JQ1-induced EC gene, FAM222A was studied in endothelial and angiogenic responses in vitro using small-interference RNA silencing and lentiviral overexpression, in vitro, ex vivo and in vivo, including aortic sprouting, matrigel plug assays, and murine neonatal oxygen-induced retinopathy. RESULTS: Resting EC RNA-Seq data indicate BETs direct transcriptional programs underlying core endothelial properties including migration, proliferation, and angiogenesis. BET inhibition in resting ECs also significantly induced a subset of mRNAs, including FAM222A-a unique BRD4-regulated gene with no reported EC role. Silencing endothelial FAM222A significantly decreased cellular proliferation, migration, network formation, aorta sprouting, and Matrigel plug vascularization through coordinated modulation of VEGF (vascular endothelial growth factor) and NOTCH mediator expression in vitro, ex vivo, in vivo; lentiviral FAM222A overexpression had opposite effects. In vivo, siFAM222A significantly repressed retinal revascularization in neonatal murine oxygen-induced retinopathy through similar angiogenic signaling modulation. CONCLUSIONS: BET control over the basal endothelial transcriptome includes FAM222A, a novel, BRD4-regulated, key determinant of endothelial biology and angiogenesis.


Asunto(s)
Enfermedades de la Retina , Factores de Transcripción , Animales , Humanos , Ratones , Angiogénesis , Biología , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxígeno , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Factor A de Crecimiento Endotelial Vascular/genética
11.
Brain ; 147(6): 2085-2097, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38735647

RESUMEN

Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism and hair anomalies. PNPLA6 encodes neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a systematic evidence-based review of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6-associated clinical diagnoses unambiguously reclassified 36 variants as pathogenic and 10 variants as likely pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship, and the generation of a preclinical animal model, pave the way for therapeutic trials, using NTE as a biomarker.


Asunto(s)
Fenotipo , Animales , Femenino , Humanos , Masculino , Ratones , Aciltransferasas , Hidrolasas de Éster Carboxílico/genética , Mutación Missense , Fosfolipasas/genética , Enfermedades de la Retina/genética
12.
Exp Cell Res ; 436(1): 113975, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367657

RESUMEN

Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.


Asunto(s)
Facies , Linfedema , Microcefalia , Enfermedades de la Retina , Displasia Retiniana , Animales , Puntos de Control del Ciclo Celular/genética , Inestabilidad Cromosómica , Discapacidades del Desarrollo , Cinesinas/genética , Cinesinas/metabolismo , Microcefalia/genética , Fenotipo , Pez Cebra/genética , Pez Cebra/metabolismo
13.
Cell Mol Life Sci ; 81(1): 51, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252153

RESUMEN

Retinitis pigmentosa (RP) and macular dystrophy (MD) cause severe retinal dysfunction, affecting 1 in 4000 people worldwide. This disease is currently assumed to be intractable, because effective therapeutic methods have not been established, regardless of genetic or sporadic traits. Here, we examined a RP mouse model in which the Prominin-1 (Prom1) gene was deficient and investigated the molecular events occurring at the outset of retinal dysfunction. We extracted the Prom1-deficient retina subjected to light exposure for a short time, conducted single-cell expression profiling, and compared the gene expression with and without stimuli. We identified the cells and genes whose expression levels change directly in response to light stimuli. Among the genes altered by light stimulation, Igf1 was decreased in rod photoreceptor cells and astrocytes under the light-stimulated condition. Consistently, the insulin-like growth factor (IGF) signal was weakened in light-stimulated photoreceptor cells. The recovery of Igf1 expression with the adeno-associated virus (AAV) prevented photoreceptor cell death, and its treatment in combination with the endothelin receptor antagonist led to the blockade of abnormal glial activation and the promotion of glycolysis, thereby resulting in the improvement of retinal functions, as assayed by electroretinography. We additionally demonstrated that the attenuation of mammalian/mechanistic target of rapamycin (mTOR), which mediates IGF signalling, leads to complications in maintaining retinal homeostasis. Together, we propose that combinatorial manipulation of distinct mechanisms is useful for the maintenance of the retinal condition.


Asunto(s)
Degeneración Macular , Enfermedades de la Retina , Retinitis Pigmentosa , Animales , Ratones , Endotelinas , Factor I del Crecimiento Similar a la Insulina/genética , Retina , Células Fotorreceptoras Retinianas Bastones
14.
J Med Genet ; 61(3): 224-231, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37798099

RESUMEN

BACKGROUND: Inherited retinal diseases (IRDs) include a range of vision loss conditions caused by variants in different genes. The clinical and genetic heterogeneity make identification of the genetic cause challenging. Here, a cohort of 491 unsolved cases from our cohort of Israeli and Palestinian families with IRDs underwent whole exome sequencing (WES), including detection of CNVs as well as single nucleotide variants (SNVs). METHODS: All participants underwent clinical examinations. Following WES on DNA samples by 3 billion, initial SNV analysis was performed by 3 billion and SNV and CNV analysis by Franklin Genoox. The CNVs indicated by the programme were confirmed by PCR followed by gel electrophoresis. RESULTS: WES of 491 IRD cases revealed the genetic cause of disease in 51% of cases, of which 11% were due wholly or in part to CNVs. In two cases, we clarified previously incorrect or unclear clinical diagnoses. This analysis also identified ESRRB and DNM1 as potential novel genes. CONCLUSION: This analysis is the most extensive one to include CNVs to examine IRD causing genes in the Israeli and Palestinian populations. It has allowed us to identify the causative variant of many patients with IRDs including ones with unclear diagnoses and potential novel genes.


Asunto(s)
Enfermedades de la Retina , Humanos , Secuenciación del Exoma , Enfermedades de la Retina/genética , Análisis de Secuencia de ADN/métodos , ADN , Variaciones en el Número de Copia de ADN/genética
15.
Proc Natl Acad Sci U S A ; 119(19): e2117553119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35522714

RESUMEN

Regional phenotypic and functional differences in the retinal pigment epithelium (RPE) monolayer have been suggested to account for regional susceptibility in ocular diseases such as age-related macular degeneration (AMD), late-onset retinal degeneration (L-ORD), and choroideremia (CHM). However, a comprehensive description of human topographical RPE diversity is not yet available, thus limiting the understanding of regional RPE diversity and degenerative disease sensitivity in the eye. To develop a complete morphometric RPE map of the human eye, artificial intelligence­based software was trained to recognize, segment, and analyze RPE borders. Five statistically different, concentric RPE subpopulations (P1 to P5) were identified using cell area as a parameter, including a subpopulation (P4) with cell area comparable to that of macular cells in the far periphery of the eye. This work provides a complete reference map of human RPE subpopulations and their location in the eye. In addition, the analysis of cadaver non-AMD and AMD eyes and ultra-widefield fundus images of patients revealed differential vulnerability of the five RPE subpopulations to different retinal diseases.


Asunto(s)
Mácula Lútea , Enfermedades de la Retina , Inteligencia Artificial , Humanos , Enfermedades de la Retina/genética , Epitelio Pigmentado de la Retina
16.
Proc Natl Acad Sci U S A ; 119(48): e2208934119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409895

RESUMEN

In ischemic retinopathy, overactivated retinal myeloid cells are a crucial driving force of pathological angiogenesis and inflammation. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) signaling are key regulators of inflammation. This study aims to investigate the association of cGAS-STING signaling with ischemic retinopathy and the regulation of its activation. We found that protein levels of cGAS and STING were markedly up-regulated in retinal myeloid cells isolated from mice with oxygen-induced retinopathy (OIR). Knockout of Sting and pharmacological inhibition of STING both alleviated retinal neovascularization (NV) and reduced retinal vascular leakage in OIR. Further, Sting knockout and STING inhibitor also alleviated leukocyte adhesion to retinal vasculature and infiltration into the retina as well as microglial activation in OIR. These results suggest that cGAS-STING signaling played a pathogenic role in retinal myeloid cell activation and NV in ischemic retinopathy. To identify the regulation of cGAS-STING signaling in OIR, we evaluated the role of transcription factor peroxisome proliferator-activated receptor α (PPARα). The results demonstrated that PPARα was down-regulated in OIR retinas, primarily in myeloid cells. Furthermore, Pparα knockout significantly up-regulated cGAS and STING levels in retinal CD11b+ cells, while PPARα agonist inhibited cGAS-STING signaling and cytosolic mitochondrial DNA (mtDNA) release, a causative feature for cGAS activation. Knockout of Sting ameliorated retinal NV, hyperpermeability, and leukostasis in Pparα-/- mice with OIR. These observations suggest that PPARα regulates cGAS-STING signaling, likely through mtDNA release, and thus, is a potential therapeutic target for ischemic retinopathy.


Asunto(s)
PPAR alfa , Enfermedades de la Retina , Animales , Ratones , Modelos Animales de Enfermedad , ADN Mitocondrial , Inflamación , Isquemia/complicaciones , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Neovascularización Patológica , Nucleotidiltransferasas/metabolismo , PPAR alfa/genética , Enfermedades de la Retina/genética
17.
Ann Intern Med ; 177(1): JC10, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163375

RESUMEN

SOURCE CITATION: Wei Y, Herzog K, Ahlqvist E, et al. All-cause mortality and cardiovascular and microvascular diseases in latent autoimmune diabetes in adults. Diabetes Care. 2023;46:1857-1865. 37635682.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Diabetes Autoinmune Latente del Adulto , Enfermedades de la Retina , Adulto , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 1/complicaciones
18.
Gene Ther ; 31(5-6): 314-323, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38565634

RESUMEN

Amidst rapid advancements in ocular gene therapy, understanding patient perspectives is crucial for shaping future treatment choices and research directions. This international cross-sectional survey evaluated knowledge, attitudes, and perceptions of ocular genetic therapies among potential recipients with inherited retinal diseases (IRDs). Survey instruments included the Attitudes to Gene Therapy-Eye (AGT-Eye), EQ-5D-5L, National Eye Institute Visual Functioning Questionnaire (NEI-VFQ-25), and Patient Attitudes to Clinical Trials (PACT-22) instruments. This study included 496 participant responses (89% adults with IRDs; 11% parents/guardians/carers) from 35 countries, with most from the United States of America (USA; 69%) and the United Kingdom (11%). Most participants (90%) indicated they would likely accept gene therapy if it was available, despite only 45% agreeing that they had good knowledge of gene therapy. The main sources of information were research registries (60% of participants) and the internet (61%). Compared to data from our recently published Australian national survey of people with IRDs (n = 694), USA respondents had higher knowledge of gene therapy outcomes, and Australian respondents indicated a higher perceived value of gene therapy treatments. Addressing knowledge gaps regarding outcomes and financial implications will be central to ensuring informed consent, promoting shared decision-making, and the eventual clinical adoption of genetic therapies.


Asunto(s)
Terapia Genética , Humanos , Terapia Genética/métodos , Adulto , Masculino , Estudios Transversales , Encuestas y Cuestionarios , Femenino , Persona de Mediana Edad , Conocimientos, Actitudes y Práctica en Salud , Enfermedades de la Retina/terapia , Enfermedades de la Retina/genética , Adulto Joven , Adolescente , Anciano , Estados Unidos
19.
Lab Invest ; 104(4): 102026, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307209

RESUMEN

The epithelial-mesenchymal transition (EMT) is a fundamental process in developing fibrotic diseases, including forming epiretinal membranes (ERMs). ERMs can result in irreversible vision loss. Previous research has demonstrated that vitreous (VIT) derived from patients with proliferative diabetic retinopathy can stimulate angiogenesis through the Axl/PI3K/Akt pathway. Building upon this knowledge, we aimed to explore the influence of VIT from patients with macular membranes in ARPE-19 cells. Our findings reveal that patient-derived VIT from individuals with macular membranes promotes EMT and phosphoinositide 3-kinase-delta (PI3Kδ) expression in ARPE-19 cells. To elucidate the function of PI3Kδ in the ERM, we conducted experiments involving the knockout of p110δ, a key subunit of PI3Kδ, and observed that its absence hinders EMT induced by patient-derived VIT. Moreover, p110δ depletion reduces cell proliferation and migration in ARPE-19 cells. Remarkably, these effects were further corroborated by applying the p110δ inhibitor idelalisib, which blocks fibrosis in the laser-induced fibrosis model. Collectively, our results propose that p110δ plays a critical role in the progression of ERMs. Consequently, targeting p110δ emerges as a promising therapeutic approach for mitigating fibrosis. These findings contribute to a better understanding of the underlying mechanisms involved in ERM formation and highlight the potential for p110δ-directed antifibrotic therapy in retinal diseases.


Asunto(s)
Enfermedades de la Retina , Vitreorretinopatía Proliferativa , Humanos , Transición Epitelial-Mesenquimal , Fibrosis , Fosfatidilinositol 3-Quinasas , Vitreorretinopatía Proliferativa/metabolismo
20.
Hum Mol Genet ; 31(8): 1263-1277, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-34726233

RESUMEN

Pathogenic variants in retinol dehydrogenase 5 (RDH5) attenuate supply of 11-cis-retinal to photoreceptors leading to a range of clinical phenotypes including night blindness because of markedly slowed rod dark adaptation and in some patients, macular atrophy. Current animal models (such as Rdh5-/- mice) fail to recapitulate the functional or degenerative phenotype. Addressing this need for a relevant animal model we present a new domestic cat model with a loss-of-function missense mutation in RDH5 (c.542G > T; p.Gly181Val). As with patients, affected cats have a marked delay in recovery of dark adaptation. In addition, the cats develop a degeneration of the area centralis (equivalent to the human macula). This recapitulates the development of macular atrophy that is reported in a subset of patients with RDH5 mutations and is shown in this paper in seven patients with biallelic RDH5 mutations. There is notable variability in the age at onset of the area centralis changes in the cat, with most developing changes as juveniles but some not showing changes over the first few years of age. There is similar variability in development of macular atrophy in patients and while age is a risk factor, it is hypothesized that genetic modifying loci influence disease severity, and we suspect the same is true in the cat model. This novel cat model provides opportunities to improve molecular understanding of macular atrophy and test therapeutic interventions for RDH5-associated retinopathies.


Asunto(s)
Degeneración Macular , Enfermedades de la Retina , Oxidorreductasas de Alcohol/genética , Animales , Atrofia , Gatos , Electrorretinografía , Humanos , Ratones , Modelos Animales , Fenotipo , Enfermedades de la Retina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA