Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.962
Filtrar
Más filtros

Intervalo de año de publicación
1.
Ann Neurol ; 95(5): 984-997, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38391006

RESUMEN

OBJECTIVE: In temporal lobe epilepsy (TLE), a taxonomy classifying patients into 3 cognitive phenotypes has been adopted: minimally, focally, or multidomain cognitively impaired (CI). We examined gray matter (GM) thickness patterns of cognitive phenotypes in drug-resistant TLE and assessed potential use for predicting postsurgical cognitive outcomes. METHODS: TLE patients undergoing presurgical evaluation were categorized into cognitive phenotypes. Network edge weights and distances were calculated using type III analysis of variance F-statistics from comparisons of GM regions within each TLE cognitive phenotype and age- and sex-matched healthy participants. In resected patients, logistic regression models (LRMs) based on network analysis results were used for prediction of postsurgical cognitive outcome. RESULTS: A total of 124 patients (63 females, mean age ± standard deviation [SD] = 36.0 ± 12.0 years) and 117 healthy controls (63 females, mean age ± SD = 36.1 ± 12.0 years) were analyzed. In the multidomain CI group (n = 66, 53.2%), 28 GM regions were significantly thinner compared to healthy controls. Focally impaired patients (n = 37, 29.8%) showed 13 regions, whereas minimally impaired patients (n = 21, 16.9%) had 2 significantly thinner GM regions. Regions affected in both multidomain and focally impaired patients included the anterior cingulate cortex, medial prefrontal cortex, medial temporal, and lateral temporal regions. In 69 (35 females, mean age ± SD = 33.6 ± 18.0 years) patients who underwent surgery, LRMs based on network-identified GM regions predicted postsurgical verbal memory worsening with a receiver operating curve area under the curve of 0.70 ± 0.15. INTERPRETATION: A differential pattern of GM thickness can be found across different cognitive phenotypes in TLE. Including magnetic resonance imaging with clinical measures associated with cognitive profiles has potential in predicting postsurgical cognitive outcomes in drug-resistant TLE. ANN NEUROL 2024;95:984-997.


Asunto(s)
Disfunción Cognitiva , Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Fenotipo , Humanos , Femenino , Masculino , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/patología , Adulto , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Persona de Mediana Edad , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/patología , Imagen por Resonancia Magnética , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Adulto Joven , Grosor de la Corteza Cerebral
2.
Brain ; 147(7): 2483-2495, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701342

RESUMEN

Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.


Asunto(s)
Lobectomía Temporal Anterior , Conectoma , Epilepsia del Lóbulo Temporal , Lóbulo Temporal , Humanos , Femenino , Masculino , Adulto , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Lóbulo Temporal/patología , Lóbulo Temporal/cirugía , Lóbulo Temporal/diagnóstico por imagen , Lobectomía Temporal Anterior/métodos , Persona de Mediana Edad , Adulto Joven , Imagen de Difusión Tensora , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/patología
3.
J Neurophysiol ; 131(2): 294-303, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230870

RESUMEN

Both the hippocampal and striatal systems participate in motor sequence learning (MSL) in healthy subjects, and the prominent role of the hippocampal system in sleep-related consolidation has been demonstrated. However, some pathological states may change the functional dominance between these two systems in MSL consolidation. To better understand the functional performance within these two systems under the pathological condition of hippocampal impairment, we compared the functional differences after consolidation between patients with left medial temporal lobe epilepsy (LmTLE) and healthy control subjects (HCs). We assessed participants' performance on the finger-tapping task (FTT) during acquisition (on day 1) and after consolidation during sleep (on day 2). All participants underwent an MRI scan (T1 and resting state) before each FTT. We found that the LmTLE group showed performance deficits in offline consolidation compared to the HC group. The LmTLE group exhibited structural changes, such as decreased gray matter volume (GMV) in the left hippocampus and increased GMV in the right putamen (striatum). Our results also revealed that whereas the main effect of consolidation was observed in the hippocampus-related functional connection in the HC group, it was only evident in the striatum-related functional loop in the LmTLE group. Our findings indicated that LmTLE patients may rely more on the striatal system for offline consolidation because of structural impairments in the hippocampus. Additionally, this compensatory mechanism may not fully substitute for the role of the impaired hippocampus itself.NEW & NOTEWORTHY Motor sequence learning (MSL) relies on both the hippocampal and striatal systems, but whether functional performance is altered after MSL consolidation when the hippocampus is impaired remains unknown. Our results indicated that whereas the main effect of consolidation was observed in the hippocampus-related functional connection in the healthy control (HC) group, it was only evident in the striatum-related functional loop in the left medial temporal lobe epilepsy (LmTLE) group.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Cuerpo Estriado , Hipocampo/patología , Sueño , Corteza Cerebral , Imagen por Resonancia Magnética/métodos
4.
Neurobiol Dis ; 194: 106482, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522590

RESUMEN

A growing number of clinical and animal studies suggest that the nucleus accumbens (NAc), especially the shell, is involved in the pathogenesis of temporal lobe epilepsy (TLE). However, the role of parvalbumin (PV) GABAergic neurons in the NAc shell involved in TLE is still unclear. In this study, we induced a spontaneous TLE model by intrahippocampal administration of kainic acid (KA), which generally induce acute seizures in first 2 h (acute phase) and then lead to spontaneous recurrent seizures after two months (chronic phase). We found that chemogenetic activation of NAc shell PV neurons could alleviate TLE seizures by reducing the number and period of focal seizures (FSs) and secondary generalized seizures (sGSs), while selective inhibition of PV exacerbated seizure activity. Ruby-virus mapping results identified that the hippocampus (ventral and dorsal) is one of the projection targets of NAc shell PV neurons. Chemogenetic activation of the NAc-Hip PV projection fibers can mitigate seizures while inhibition has no effect on seizure ictogenesis. In summary, our findings reveal that PV neurons in the NAc shell could modulate the seizures in TLE via a long-range NAc-Hip circuit. All of these results enriched the investigation between NAc and epilepsy, offering new targets for future epileptogenesis research and precision therapy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Animales , Epilepsia del Lóbulo Temporal/patología , Núcleo Accumbens/metabolismo , Parvalbúminas/metabolismo , Convulsiones/patología , Hipocampo/patología , Neuronas GABAérgicas/metabolismo , Ácido Kaínico/toxicidad , Modelos Animales de Enfermedad
5.
Hippocampus ; 34(2): 58-72, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049972

RESUMEN

Numerous epilepsy-related genes have been identified in recent decades by unbiased genome-wide screens. However, the available druggable targets for temporal lobe epilepsy (TLE) remain limited. Furthermore, a substantial pool of candidate genes potentially applicable to TLE therapy awaits further validation. In this study, we reveal the significant role of KCNQ2 and KCNQ3, two M-type potassium channel genes, in the onset of seizures in TLE. Our investigation began with a quantitative analysis of two publicly available TLE patient databases to establish a correlation between seizure onset and the downregulated expression of KCNQ2/3. We then replicated these pathological changes in a pilocarpine seizure mouse model and observed a decrease in spike frequency adaptation due to the affected M-currents in dentate gyrus granule neurons. In addition, we performed a small-scale simulation of the dentate gyrus network and confirmed that the impaired spike frequency adaptation of granule cells facilitated epileptiform activity throughout the network. This, in turn, resulted in prolonged seizure duration and reduced interictal intervals. Our findings shed light on an underlying mechanism contributing to ictogenesis in the TLE hippocampus and suggest a promising target for the development of antiepileptic drugs.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ratones , Animales , Humanos , Epilepsia del Lóbulo Temporal/patología , Giro Dentado/metabolismo , Convulsiones/inducido químicamente , Convulsiones/patología , Hipocampo/metabolismo , Neuronas/fisiología , Canal de Potasio KCNQ2/genética
6.
Epilepsia ; 65(1): 218-237, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032046

RESUMEN

OBJECTIVE: Several studies have attributed epileptic activities in temporal lobe epilepsy (TLE) to the hippocampus; however, the participation of nonhippocampal neuronal networks in the development of TLE is often neglected. Here, we sought to understand how these nonhippocampal networks are involved in the pathology that is associated with TLE disease. METHODS: A kainic acid (KA) model of temporal lobe epilepsy was induced by injecting KA into dorsal hippocampus of C57BL/6J mice. Network activation after spontaneous seizure was assessed using c-Fos expression. Protocols to induce seizure using visual or auditory stimulation were developed, and seizure onset zone (SOZ) and frequency of epileptic spikes were evaluated using electrophysiology. The hippocampus was removed to assess seizure recurrence in the absence of hippocampus. RESULTS: Our results showed that cortical and hippocampal epileptic networks are activated during spontaneous seizures. Perturbation of these networks using visual or auditory stimulation readily precipitates seizures in TLE mice; the frequency of the light-induced or noise-induced seizures depends on the induction modality adopted during the induction period. Localization of SOZ revealed the existence of cortical and hippocampal SOZ in light-induced and noise-induced seizures, and the development of local and remote epileptic spikes in TLE occurs during the early stage of the disease. Importantly, we further discovered that removal of the hippocampi does not stop seizure activities in TLE mice, revealing that seizures in TLE mice can occur independent of the hippocampus. SIGNIFICANCE: This study has shown that the network pathology that evolves in TLE is not localized to the hippocampus; rather, remote brain areas are also recruited. The occurrence of light-induced or noise-induced seizures and epileptic discharges in epileptic mice is a consequence of the activation of nonhippocampal brain areas. This work therefore demonstrates the fundamental role of nonhippocampal epileptic networks in generating epileptic activities with or without the hippocampus in TLE disease.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Ratones , Animales , Epilepsia del Lóbulo Temporal/patología , Ratones Endogámicos C57BL , Convulsiones/metabolismo , Hipocampo/patología , Encéfalo/patología , Epilepsia/metabolismo , Modelos Animales de Enfermedad , Ácido Kaínico/farmacología
7.
Epilepsia ; 65(5): 1451-1461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491957

RESUMEN

OBJECTIVE: The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy. METHODS: Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing. RESULTS: Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development. SIGNIFICANCE: This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Hipocampo , Esclerosis , Humanos , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Esclerosis/genética , Esclerosis/patología , Epilepsia Refractaria/genética , Epilepsia Refractaria/etiología , Epilepsia Refractaria/patología , Femenino , Masculino , Adulto , Adulto Joven , Adolescente , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/patología , Niño , Filaminas/genética , Persona de Mediana Edad , Preescolar , Variación Genética/genética , Esclerosis del Hipocampo
8.
Epilepsia ; 65(4): 1092-1106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345348

RESUMEN

OBJECTIVE: Epilepsy patients are often grouped together by clinical variables. Quantitative neuroimaging metrics can provide a data-driven alternative for grouping of patients. In this work, we leverage ultra-high-field 7-T structural magnetic resonance imaging (MRI) to characterize volumetric atrophy patterns across hippocampal subfields and thalamic nuclei in drug-resistant focal epilepsy. METHODS: Forty-two drug-resistant epilepsy patients and 13 controls with 7-T structural neuroimaging were included in this study. We measured hippocampal subfield and thalamic nuclei volumetry, and applied an unsupervised machine learning algorithm, Latent Dirichlet Allocation (LDA), to estimate atrophy patterns across the hippocampal subfields and thalamic nuclei of patients. We studied the association between predefined clinical groups and the estimated atrophy patterns. Additionally, we used hierarchical clustering on the LDA factors to group patients in a data-driven approach. RESULTS: In patients with mesial temporal sclerosis (MTS), we found a significant decrease in volume across all ipsilateral hippocampal subfields (false discovery rate-corrected p [pFDR] < .01) as well as in some ipsilateral (pFDR < .05) and contralateral (pFDR < .01) thalamic nuclei. In left temporal lobe epilepsy (L-TLE) we saw ipsilateral hippocampal and some bilateral thalamic atrophy (pFDR < .05), whereas in right temporal lobe epilepsy (R-TLE) extensive bilateral hippocampal and thalamic atrophy was observed (pFDR < .05). Atrophy factors demonstrated that our MTS cohort had two atrophy phenotypes: one that affected the ipsilateral hippocampus and one that affected the ipsilateral hippocampus and bilateral anterior thalamus. Atrophy factors demonstrated posterior thalamic atrophy in R-TLE, whereas an anterior thalamic atrophy pattern was more common in L-TLE. Finally, hierarchical clustering of atrophy patterns recapitulated clusters with homogeneous clinical properties. SIGNIFICANCE: Leveraging 7-T MRI, we demonstrate widespread hippocampal and thalamic atrophy in epilepsy. Through unsupervised machine learning, we demonstrate patterns of volumetric atrophy that vary depending on disease subtype. Incorporating these atrophy patterns into clinical practice could help better stratify patients to surgical treatments and specific device implantation strategies.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Imagen por Resonancia Magnética/métodos , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Lóbulo Temporal/patología , Atrofia/patología , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/patología , Esclerosis/patología
9.
Epilepsia ; 65(6): 1709-1719, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38546705

RESUMEN

OBJECTIVES: Amygdala enlargement is detected on magnetic resonance imaging (MRI) in some patients with drug-resistant temporal lobe epilepsy (TLE), but its clinical significance remains uncertain We aimed to assess if the presence of amygdala enlargement (1) predicted seizure outcome following anterior temporal lobectomy with amygdalohippocampectomy (ATL-AH) and (2) was associated with specific histopathological changes. METHODS: This was a case-control study. We included patients with drug-resistant TLE who underwent ATL-AH with and without amygdala enlargement detected on pre-operative MRI. Amygdala volumetry was done using FreeSurfer for patients who had high-resolution T1-weighted images. Mann-Whitney U test was used to compare pre-operative clinical characteristics between the two groups. The amygdala volume on the epileptogenic side was compared to the amygdala volume on the contralateral side among cases and controls. Then, we used a two-sample, independent t test to compare the means of amygdala volume differences between cases and controls. The chi-square test was used to assess the correlation of amygdala enlargement with (1) post-surgical seizure outcomes and (2) histopathological changes. RESULTS: Nineteen patients with and 19 patients without amygdala enlargement were studied. Their median age at surgery was 38 years for cases and 39 years for controls, and 52.6% were male. There were no statistically significant differences between the two groups in their pre-operative clinical characteristics. There were significant differences in the means of volume difference between cases and controls (Diff = 457.2 mm3, 95% confidence interval [CI] 289.6-624.8; p < .001) and in the means of percentage difference (p < .001). However, there was no significant association between amygdala enlargement and surgical outcome (p = .72) or histopathological changes (p = .63). SIGNIFICANCE: The presence of amygdala enlargement on the pre-operative brain MRI in patients with TLE does not affect the surgical outcome following ATL-AH, and it does not necessarily suggest abnormal histopathology. These findings suggest that amygdala enlargement might reflect a secondary reactive process to seizures in the epileptogenic temporal lobe.


Asunto(s)
Amígdala del Cerebelo , Epilepsia del Lóbulo Temporal , Imagen por Resonancia Magnética , Humanos , Amígdala del Cerebelo/cirugía , Amígdala del Cerebelo/patología , Amígdala del Cerebelo/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Masculino , Femenino , Adulto , Estudios de Casos y Controles , Resultado del Tratamiento , Adulto Joven , Persona de Mediana Edad , Lobectomía Temporal Anterior/métodos , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/patología , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Hipocampo/cirugía , Adolescente
10.
Epilepsia ; 65(8): 2368-2385, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837385

RESUMEN

OBJECTIVE: Amygdala enlargement can occur in temporal lobe epilepsy, and increased amygdala volume is also reported in sudden unexpected death in epilepsy (SUDEP). Apnea can be induced by amygdala stimulation, and postconvulsive central apnea (PCCA) and generalized seizures are both known SUDEP risk factors. Neurite orientation dispersion and density imaging (NODDI) has recently provided additional information on altered amygdala microstructure in SUDEP. In a series of 24 surgical temporal lobe epilepsy cases, our aim was to quantify amygdala cellular pathology parameters that could predict enlargement, NODDI changes, and ictal respiratory dysfunction. METHODS: Using whole slide scanning automated quantitative image analysis methods, parallel evaluation of myelin, axons, dendrites, oligodendroglia, microglia, astroglia, neurons, serotonergic networks, mTOR-pathway activation (pS6) and phosphorylated tau (pTau; AT8, AT100, PHF) in amygdala, periamygdala cortex, and white matter regions of interest were compared with preoperative magnetic resonance imaging data on amygdala size, and in 13 cases with NODDI and evidence of ictal-associated apnea. RESULTS: We observed significantly higher glial labeling (Iba1, glial fibrillary acidic protein, Olig2) in amygdala regions compared to cortex and a strong positive correlation between Olig2 and Iba1 in the amygdala. Larger amygdala volumes correlated with lower microtubule-associated protein (MAP2), whereas higher NODDI orientation dispersion index correlated with lower Olig2 cell densities. In the three cases with recorded PCCA, higher MAP2 and pS6-235 expression was noted than in those without. pTau did not correlate with SUDEP risk factors, including seizure frequency. SIGNIFICANCE: Histological quantitation of amygdala microstructure can shed light on enlargement and diffusion imaging alterations in epilepsy to explore possible mechanisms of amygdala dysfunction, including mTOR pathway activation, that in turn may increase the risk for SUDEP.


Asunto(s)
Amígdala del Cerebelo , Epilepsia del Lóbulo Temporal , Imagen por Resonancia Magnética , Muerte Súbita e Inesperada en la Epilepsia , Humanos , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Amígdala del Cerebelo/patología , Amígdala del Cerebelo/diagnóstico por imagen , Masculino , Femenino , Adulto , Muerte Súbita e Inesperada en la Epilepsia/patología , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas tau/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Adolescente
11.
Epilepsia ; 65(6): 1568-1580, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606600

RESUMEN

OBJECTIVE: This study was undertaken to determine whether hippocampal T2 hyperintensity predicts sequelae of febrile status epilepticus, including hippocampal atrophy, sclerosis, and mesial temporal lobe epilepsy. METHODS: Acute magnetic resonance imaging (MRI) was obtained within a mean of 4.4 (SD = 5.5, median = 2.0) days after febrile status on >200 infants with follow-up MRI at approximately 1, 5, and 10 years. Hippocampal size, morphology, and T2 signal intensity were scored visually by neuroradiologists blinded to clinical details. Hippocampal volumetry provided quantitative measurement. Upon the occurrence of two or more unprovoked seizures, subjects were reassessed for epilepsy. Hippocampal volumes were normalized using total brain volumes. RESULTS: Fourteen of 22 subjects with acute hippocampal T2 hyperintensity returned for follow-up MRI, and 10 developed definite hippocampal sclerosis, which persisted through the 10-year follow-up. Hippocampi appearing normal initially remained normal on visual inspection. However, in subjects with normal-appearing hippocampi, volumetrics indicated that male, but not female, hippocampi were smaller than controls, but increasing hippocampal asymmetry was not seen following febrile status. Forty-four subjects developed epilepsy; six developed mesial temporal lobe epilepsy and, of the six, two had definite, two had equivocal, and two had no hippocampal sclerosis. Only one subject developed mesial temporal epilepsy without initial hyperintensity, and that subject had hippocampal malrotation. Ten-year cumulative incidence of all types of epilepsy, including mesial temporal epilepsy, was highest in subjects with initial T2 hyperintensity and lowest in those with normal signal and no other brain abnormalities. SIGNIFICANCE: Hippocampal T2 hyperintensity following febrile status epilepticus predicted hippocampal sclerosis and significant likelihood of mesial temporal lobe epilepsy. Normal hippocampal appearance in the acute postictal MRI was followed by maintained normal appearance, symmetric growth, and lower risk of epilepsy. Volumetric measurement detected mildly decreased hippocampal volume in males with febrile status.


Asunto(s)
Epilepsia del Lóbulo Temporal , Hipocampo , Imagen por Resonancia Magnética , Esclerosis , Convulsiones Febriles , Estado Epiléptico , Humanos , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Masculino , Femenino , Esclerosis/patología , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/patología , Estado Epiléptico/etiología , Convulsiones Febriles/patología , Convulsiones Febriles/diagnóstico por imagen , Lactante , Preescolar , Niño , Estudios de Seguimiento , Atrofia/patología , Esclerosis del Hipocampo
12.
Epilepsia ; 65(6): 1756-1767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38517477

RESUMEN

OBJECTIVE: Focal to bilateral tonic-clonic seizures (FBTCS) represent a challenging subtype of focal temporal lobe epilepsy (TLE) in terms of both severity and treatment response. Most studies have focused on regional brain analysis that is agnostic to the distribution of white matter (WM) pathways associated with a node. We implemented a more selective, edge-wise approach that allowed for identification of the individual connections unique to FBTCS. METHODS: T1-weighted and diffusion-weighted images were obtained from 22 patients with solely focal seizures (FS), 43 FBTCS patients, and 65 age/sex-matched healthy participants (HPs), yielding streamline (STR) connectome matrices. We used diffusion tensor-derived STRs in an edge-wise approach to determine specific structural connectivity changes associated with seizure generalization in FBTCS compared to matched FS and HPs. Graph theory metrics were computed on both node- and edge-based connectivity matrices. RESULTS: Edge-wise analyses demonstrated that all significantly abnormal cross-hemispheric connections belonged to the FBTCS group. Abnormal connections associated with FBTCS were mostly housed in the contralateral hemisphere, with graph metric values generally decreased compared to HPs. In FBTCS, the contralateral amygdala showed selective decreases in the structural connection pathways to the contralateral frontal lobe. Abnormal connections in TLE involved the amygdala, with the ipsilateral side showing increases and the contralateral decreases. All the FS findings indicated higher graph metrics for connections involving the ipsilateral amygdala. Data also showed that some FBTCS connectivity effects are moderated by aging, recent seizure frequency, and longer illness duration. SIGNIFICANCE: Data showed that not all STR pathways are equally affected by the seizure propagation of FBTCS. We demonstrated two key biases, one indicating a large role for the amygdala in the propagation of seizures, the other pointing to the prominent role of cross-hemispheric and contralateral hemisphere connections in FBTCS. We demonstrated topographic reorganization in FBTCS, pointing to the specific WM tracts involved.


Asunto(s)
Convulsiones , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Femenino , Masculino , Adulto , Convulsiones/diagnóstico por imagen , Convulsiones/patología , Convulsiones/fisiopatología , Persona de Mediana Edad , Conectoma/métodos , Imagen de Difusión Tensora/métodos , Adulto Joven , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Imagen por Resonancia Magnética/métodos
13.
Brain ; 146(9): 3923-3937, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37082950

RESUMEN

Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/patología , Calidad de Vida , Encéfalo/patología , Imagen por Resonancia Magnética , Mapeo Encefálico
14.
Brain ; 146(2): 549-560, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35978480

RESUMEN

Drug-resistant mesial-temporal lobe epilepsy is a devastating disease with seizure onset in the hippocampal formation. A fraction of hippocampi samples from epilepsy-surgical procedures reveals a peculiar histological pattern referred to as 'gliosis only' with unresolved pathogenesis and enigmatic sequelae. Here, we hypothesize that 'gliosis only' represents a particular syndrome defined by distinct clinical and molecular characteristics. We curated an in-depth multiparameter integration of systematic clinical, neuropsychological as well as neuropathological analysis from a consecutive cohort of 627 patients, who underwent hippocampectomy for drug-resistant temporal lobe epilepsy. All patients underwent either classic anterior temporal lobectomy or selective amygdalohippocampectomy. On the basis of their neuropathological exam, patients with hippocampus sclerosis and 'gliosis only' were characterized and compared within the whole cohort and within a subset of matched pairs. Integrated transcriptional analysis was performed to address molecular differences between both groups. 'Gliosis only' revealed demographics, clinical and neuropsychological outcome fundamentally different from hippocampus sclerosis. 'Gliosis only' patients had a significantly later seizure onset (16.3 versus 12.2 years, P = 0.005) and worse neuropsychological outcome after surgery compared to patients with hippocampus sclerosis. Epilepsy was less amendable by surgery in 'gliosis only' patients, resulting in a significantly worse rate of seizure freedom after surgery in this subgroup (43% versus 68%, P = 0.0001, odds ratio = 2.8, confidence interval 1.7-4.7). This finding remained significant after multivariate and matched-pairs analysis. The 'gliosis only' group demonstrated pronounced astrogliosis and lack of significant neuronal degeneration in contrast to characteristic segmental neuron loss and fibrillary astrogliosis in hippocampus sclerosis. RNA-sequencing of gliosis only patients deciphered a distinct transcriptional programme that resembles an innate inflammatory response of reactive astrocytes. Our data indicate a new temporal lobe epilepsy syndrome for which we suggest the term 'Innate inflammatory gliosis only'. 'Innate inflammatory gliosis only' is characterized by a diffuse gliosis pattern lacking restricted hippocampal focality and is poorly controllable by surgery. Thus, 'innate inflammatory gliosis only' patients need to be clearly identified by presurgical examination paradigms of pharmacoresistant temporal lobe epilepsy patients; surgical treatment of this subgroup should be considered with great precaution. 'Innate inflammatory gliosis only' requires innovative pharmacotreatment strategies.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Esclerosis del Hipocampo , Humanos , Epilepsia del Lóbulo Temporal/patología , Gliosis/patología , Esclerosis/patología , Hipocampo/patología , Lóbulo Temporal/patología , Epilepsia Refractaria/complicaciones , Resultado del Tratamiento
15.
Brain ; 146(9): 3913-3922, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37018067

RESUMEN

Epilepsy surgery consists of surgical resection of the epileptic focus and is recommended for patients with drug-resistant focal epilepsy. However, focal brain lesions can lead to effects in distant brain regions. Similarly, the focal resection in temporal lobe epilepsy surgery has been shown to lead to functional changes distant from the resection. Here we hypothesize that there are changes in brain function caused by temporal lobe epilepsy surgery in regions distant from the resection that are due to their structural disconnection from the resected epileptic focus. Therefore, the goal of this study was to localize changes in brain function caused by temporal lobe epilepsy surgery and relate them to the disconnection from the resected epileptic focus. This study takes advantage of the unique opportunity that epilepsy surgery provides to investigate the effects of focal disconnections on brain function in humans, which has implications in epilepsy and broader neuroscience. Changes in brain function from pre- to post-epilepsy surgery were quantified in a group of temporal lobe epilepsy patients (n = 36) using a measure of resting state functional MRI activity fluctuations. We identified regions with significant functional MRI changes that had high structural connectivity to the resected region in healthy controls (n = 96) and patients based on diffusion MRI. The structural disconnection from the resected epileptic focus was then estimated using presurgical diffusion MRI and related to the functional MRI changes from pre- to post-surgery in these regions. Functional MRI activity fluctuations increased from pre- to post-surgery in temporal lobe epilepsy in the two regions most highly structurally connected to the resected epileptic focus in healthy controls and patients-the thalamus and the fusiform gyrus ipsilateral to the side of surgery (PFWE < 0.05). Broader surgeries led to larger functional MRI changes in the thalamus than more selective surgeries (P < 0.05), but no other clinical variables were related to functional MRI changes in either the thalamus or fusiform. The magnitude of the functional MRI changes in both the thalamus and fusiform increased with a higher estimated structural disconnection from the resected epileptic focus when controlling for the type of surgery (P < 0.05). These results suggest that the structural disconnection from the resected epileptic focus may contribute to the functional changes seen after epilepsy surgery. Broadly, this study provides a novel link between focal disconnections in the structural brain network and downstream effects on function in distant brain regions.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/patología , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Encéfalo/patología , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética , Lóbulo Temporal/patología , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/patología
16.
Epilepsy Behav ; 157: 109751, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38820678

RESUMEN

BACKGROUND: Hippocampal sclerosis (HS) is a prevalent cause of temporal lobe epilepsy (TLE). However, up to 30% of individuals with TLE present negative magnetic resonance imaging (MRI) findings. A comprehensive grasp of the similarities and differences in brain activity among distinct TLE subtypes holds significant clinical and scientific importance. OBJECTIVE: To comprehensively examine the similarities and differences between TLE with HS (TLE-HS) and MRI-negative TLE (TLE-N) regarding static and dynamic abnormalities in spontaneous brain activity (SBA). Furthermore, we aimed to determine whether these alterations correlate with epilepsy duration and cognition, and to determine a potential differential diagnostic index for clinical utility. METHODS: We measured 12 SBA metrics in 38 patients with TLE-HS, 51 with TLE-N, and 53 healthy volunteers. Voxel-wise analysis of variance (ANOVA) and post-hoc comparisons were employed to compare these metrics. The six static metrics included amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC), degree centrality (DC), and global signal correlation (GSCorr). Additionally, six corresponding dynamic metrics were assessed: dynamic ALFF (dALFF), dynamic fALFF (dfALFF), dynamic ReHo (dReHo), dynamic DC (dDC), dynamic VMHC (dVMHC), and dynamic GSCorr (dGSCorr). Receiver operating characteristic (ROC) curve analysis of abnormal indices was employed. Spearman correlation analyses were also conducted to examine the relationship between the abnormal indices, epilepsy duration and cognition scores. RESULTS: Both TLE-HS and TLE-N presented as extensive neural network disorders, sharing similar patterns of SBA alterations. The regions with increased fALFF, dALFF, and dfALFF levels were predominantly observed in the mesial temporal lobe, thalamus, basal ganglia, pons, and cerebellum, forming a previously proposed mesial temporal epilepsy network. Conversely, decreased SBA metrics (fALFF, ReHo, dReHo, DC, GSCorr, and VMHC) consistently appeared in the lateral temporal lobe ipsilateral to the epileptic foci. Notably, SBA alterations were more obvious in patients with TLE-HS than in those with TLE-N. Additionally, patients with TLE-HS exhibited reduced VMHC in both mesial and lateral temporal lobes compared with patients with TLE-N, with the hippocampus displaying moderate discriminatory power (AUC = 0.759). Correlation analysis suggested that alterations in SBA indicators may be associated with epilepsy duration and cognitive scores. CONCLUSIONS: The simultaneous use of static and dynamic SBA metrics provides evidence supporting the characterisation of both TLE-HS and TLE-N as complex network diseases, facilitating the exploration of mechanisms underlying epileptic activity and cognitive impairment. Overall, SBA abnormality patterns were generally similar between the TLE-HS and TLE-N groups, encompassing networks related to TLE and auditory and occipital visual functions. These changes were more pronounced in the TLE-HS group, particularly within the mesial and lateral temporal lobes.


Asunto(s)
Epilepsia del Lóbulo Temporal , Hipocampo , Imagen por Resonancia Magnética , Esclerosis , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/patología , Femenino , Masculino , Adulto , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Persona de Mediana Edad , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Mapeo Encefálico , Pruebas Neuropsicológicas , Esclerosis del Hipocampo
17.
Nanomedicine ; 59: 102752, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740358

RESUMEN

Fisetin has displayed potential as an anticonvulsant in preclinical studies yet lacks clinical validation. Challenges like low solubility and rapid metabolism may limit its efficacy. This study explores fisetin-loaded chitosan nanoparticles (NP) to address these issues. Using a murine model of pilocarpine-induced temporal lobe epilepsy, we evaluated the anticonvulsant and neuroprotective effects of fisetin NP. Pilocarpine-induced seizures and associated neurobehavioral deficits were assessed after administering subtherapeutic doses of free fisetin and fisetin NP. Changes in ROS, inflammatory cytokines, and NLRP3/IL-18 expression in different brain regions were estimated. The results demonstrate that the fisetin NP exerts protection against seizures and associated depression-like behavior and memory impairment. Furthermore, biochemical, and histological examinations supported behavioral findings suggesting attenuation of ROS/TNF-α-NLRP3 inflammasome pathway as a neuroprotective mechanism of fisetin NP. These findings highlight the improved pharmacodynamics of fisetin using fisetin NP against epilepsy, suggesting a promising therapeutic approach against epilepsy and associated behavioral deficits.


Asunto(s)
Quitosano , Epilepsia del Lóbulo Temporal , Flavonoles , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Nanopartículas , Pilocarpina , Especies Reactivas de Oxígeno , Factor de Necrosis Tumoral alfa , Animales , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/metabolismo , Quitosano/química , Quitosano/farmacología , Flavonoles/farmacología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Nanopartículas/química , Masculino , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Flavonoides/farmacología , Flavonoides/administración & dosificación , Conducta Animal/efectos de los fármacos , Anticonvulsivantes/farmacología , Fármacos Neuroprotectores/farmacología
18.
BMC Biol ; 21(1): 96, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101159

RESUMEN

BACKGROUND: Mossy cells comprise a large fraction of excitatory neurons in the hippocampal dentate gyrus, and their loss is one of the major hallmarks of temporal lobe epilepsy (TLE). The vulnerability of mossy cells in TLE is well known in animal models as well as in patients; however, the mechanisms leading to cellular death is unclear. RESULTS: Transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated non-selective cation channel regulating diverse physiological functions of excitable cells. Here, we identified that TRPM4 is present in hilar mossy cells and regulates their intrinsic electrophysiological properties including spontaneous activity and action potential dynamics. Furthermore, we showed that TRPM4 contributes to mossy cells death following status epilepticus and therefore modulates seizure susceptibility and epilepsy-related memory deficits. CONCLUSIONS: Our results provide evidence for the role of TRPM4 in MC excitability both in physiological and pathological conditions.


Asunto(s)
Epilepsia del Lóbulo Temporal , Animales , Potenciales de Acción , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/patología , Fibras Musgosas del Hipocampo/metabolismo , Fibras Musgosas del Hipocampo/patología , Canales Catiónicos TRPM/metabolismo
19.
Glia ; 71(2): 168-186, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373840

RESUMEN

Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Ratones , Animales , Humanos , Epilepsia del Lóbulo Temporal/patología , Astrocitos/patología , Factor de Necrosis Tumoral alfa , Microglía/patología , Hipocampo/patología , Convulsiones/patología , Estado Epiléptico/patología , Ácido Kaínico/toxicidad , Modelos Animales de Enfermedad , Ratones Noqueados
20.
Hippocampus ; 33(6): 712-729, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37204159

RESUMEN

CA2 is probably the most enigmatic of the hippocampal fields. It is small in size (in humans about 500 µm across the mediolateral axis), and yet, it is involved in important functions, such as in social memory and anxiety. This study offers a glimpse of several significant aspects of the anatomical organization of CA2. We present an overview of the anatomical structure of CA2, imbued in the general organization of the human hippocampal formation. The location and distinctiveness of CA2 is presented in relation with CA3 and CA1, based in a total of 23 human control cases serially sectioned throughout the whole longitudinal axis of the hippocampus, examined every 500 µm in Nissl-stained sections. The longitudinal extent of CA2 is close to 30 mm, starting in the hippocampal head, 2.5 mm caudal to the DG and 3.5 mm caudal to the start of CA3, approximately 10 mm from the hippocampus rostral end. The connectional information of human CA2 is very scarce, thereby we relied on nonhuman primate tract tracing studies of the hippocampal formation, given its resemblance to the human brain. Human CA2 is subject of neuropathological studies, and we chose to present Alzheimer's disease, schizophrenia, and Mesial Temporal Lobe Epilepsy with hippocampal sclerosis in those aspects that impinge directly into CA2.


Asunto(s)
Epilepsia del Lóbulo Temporal , Hipocampo , Animales , Humanos , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Epilepsia del Lóbulo Temporal/patología , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA