Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 70(1): 95-105.e4, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625042

RESUMEN

RelA/SpoT homologs (RSHs) are ubiquitous bacterial enzymes that synthesize and hydrolyze (p)ppGpp in response to environmental challenges. Bacteria cannot survive in hosts and produce infection without activating the (p)ppGpp-mediated stringent response, but it is not yet understood how the enzymatic activities of RSHs are controlled. Using UV crosslinking and deep sequencing, we show that Escherichia coli RelA ((p)ppGpp synthetase I) interacts with uncharged tRNA without being activated. Amino acid starvation leads to loading of cognate tRNA⋅RelA complexes at vacant ribosomal A-sites. In turn, RelA is activated and synthesizes (p)ppGpp. Mutation of a single, conserved residue in RelA simultaneously prevents tRNA binding, ribosome binding, and activation of RelA, showing that all three processes are interdependent. Our results support a model in which (p)ppGpp synthesis occurs by ribosome-bound RelA interacting with the Sarcin-Ricin loop of 23S rRNA.


Asunto(s)
Escherichia coli K12/enzimología , Guanosina Tetrafosfato/biosíntesis , Ligasas/metabolismo , ARN Bacteriano/metabolismo , ARN Ribosómico 23S/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/enzimología , Aminoácidos/deficiencia , Sitios de Unión , Escherichia coli K12/genética , Ligasas/genética , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , ARN Bacteriano/genética , ARN Ribosómico 23S/genética , ARN de Transferencia/genética , Ribosomas/genética
2.
Nucleic Acids Res ; 49(19): e113, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34417598

RESUMEN

DNA methylation is widespread amongst eukaryotes and prokaryotes to modulate gene expression and confer viral resistance. 5-Methylcytosine (m5C) methylation has been described in genomes of a large fraction of bacterial species as part of restriction-modification systems, each composed of a methyltransferase and cognate restriction enzyme. Methylases are site-specific and target sequences vary across organisms. High-throughput methods, such as bisulfite-sequencing can identify m5C at base resolution but require specialized library preparations and single molecule, real-time (SMRT) sequencing usually misses m5C. Here, we present a new method called RIMS-seq (rapid identification of methylase specificity) to simultaneously sequence bacterial genomes and determine m5C methylase specificities using a simple experimental protocol that closely resembles the DNA-seq protocol for Illumina. Importantly, the resulting sequencing quality is identical to DNA-seq, enabling RIMS-seq to substitute standard sequencing of bacterial genomes. Applied to bacteria and synthetic mixed communities, RIMS-seq reveals new methylase specificities, supporting routine study of m5C methylation while sequencing new genomes.


Asunto(s)
5-Metilcitosina/metabolismo , Metilasas de Modificación del ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Escherichia coli K12/genética , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Acinetobacter calcoaceticus/enzimología , Acinetobacter calcoaceticus/genética , Aeromonas hydrophila/enzimología , Aeromonas hydrophila/genética , Bacillus amyloliquefaciens/enzimología , Bacillus amyloliquefaciens/genética , Secuencia de Bases , Clostridium acetobutylicum/enzimología , Clostridium acetobutylicum/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas de Restricción del ADN/genética , Escherichia coli K12/enzimología , Regulación Bacteriana de la Expresión Génica , Haemophilus/enzimología , Haemophilus/genética , Haemophilus influenzae/enzimología , Haemophilus influenzae/genética , Humanos , Microbiota/genética , Análisis de Secuencia de ADN , Piel/microbiología
3.
Proc Natl Acad Sci U S A ; 115(12): 2964-2969, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507236

RESUMEN

Microbial production of value-added chemicals from biomass is a sustainable alternative to chemical synthesis. To improve product titer, yield, and selectivity, the pathways engineered into microbes must be optimized. One strategy for optimization is dynamic pathway regulation, which modulates expression of pathway-relevant enzymes over the course of fermentation. Metabolic engineers have used dynamic regulation to redirect endogenous flux toward product formation, balance the production and consumption rates of key intermediates, and suppress production of toxic intermediates until later in the fermentation. Most cases, however, have utilized a single strategy for dynamically regulating pathway fluxes. Here we layer two orthogonal, autonomous, and tunable dynamic regulation strategies to independently modulate expression of two different enzymes to improve production of D-glucaric acid from a heterologous pathway. The first strategy uses a previously described pathway-independent quorum sensing system to dynamically knock down glycolytic flux and redirect carbon into production of glucaric acid, thereby switching cells from "growth" to "production" mode. The second strategy, developed in this work, uses a biosensor for myo-inositol (MI), an intermediate in the glucaric acid production pathway, to induce expression of a downstream enzyme upon sufficient buildup of MI. The latter, pathway-dependent strategy leads to a 2.5-fold increase in titer when used in isolation and a fourfold increase when added to a strain employing the former, pathway-independent regulatory system. The dual-regulation strain produces nearly 2 g/L glucaric acid, representing the highest glucaric acid titer reported to date in Escherichia coli K-12 strains.


Asunto(s)
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Glucárico/metabolismo , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/fisiología , Técnicas Biosensibles , Escherichia coli K12/enzimología , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Inositol/metabolismo , Redes y Vías Metabólicas/genética
4.
Appl Environ Microbiol ; 86(4)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31811039

RESUMEN

Escherichia coli K-12 and some other strains have been reported to be capable of utilizing 3-(3-hydroxyphenyl)propionate (3HPP), one of the phenylpropanoids from lignin. Although other enzymes involved in 3HPP catabolism and their corresponding genes from its degraders have been identified, 3HPP 2-hydroxylase, catalyzing the first step of its catabolism, has yet to be functionally identified at biochemical and genetic levels. In this study, we investigated the function and characteristics of MhpA from E. coli strain K-12 (MhpAK-12). Gene deletion and complementation showed that mhpA was vital for its growth on 3HPP, but the mhpA deletion strain was still able to grow on 3-(2,3-dihydroxyphenyl)propionate (DHPP), the hydroxylation product transformed from 3HPP by MhpAK-12 MhpAK-12 was overexpressed and purified, and it was likely a polymer and tightly bound with an approximately equal number of moles of FAD. Using NADH or NADPH as a cofactor, purified MhpAK-12 catalyzed the conversion of 3HPP to DHPP at a similar efficiency. The conversion from 3HPP to DHPP by purified MhpAK-12 was confirmed using high-performance liquid chromatography and liquid chromatography-mass spectrometry. Bioinformatics analysis indicated that MhpAK-12 and its putative homologues belonged to taxa that were phylogenetically distant from functionally identified FAD-containing monooxygenases (hydroxylases). Interestingly, MhpAK-12 has approximately an extra 150 residues at its C terminus in comparison to its close homologues, but its truncated versions MhpAK-12400 and MhpAK-12480 (with 154 and 74 residues deleted from the C terminus, respectively) both lost their activities. Thus, MhpAK-12 has been confirmed to be a 3HPP 2-hydroxylase catalyzing the conversion of 3HPP to DHPP, the initial reaction of 3HPP degradation.IMPORTANCE Phenylpropionate and its hydroxylated derivatives resulted from lignin degradation ubiquitously exist on the Earth. A number of bacterial strains have the ability to grow on 3HPP, one of the above derivatives. The hydroxylation was thought to be the initial and vital step for its aerobic catabolism via the meta pathway. The significance of our research is the functional identification and characterization of the purified 3HPP 2-hydroxylase MhpA from Escherichia coli K-12 at biochemical and genetic levels, since this enzyme has not previously been expressed from its encoding gene, purified, and characterized in any bacteria. It will not only fill a gap in our understanding of 3HPP 2-hydroxylase and its corresponding gene for the critical step in microbial 3HPP catabolism but also provide another example of the diversity of microbial degradation of plant-derived phenylpropionate and its hydroxylated derivatives.


Asunto(s)
Ácidos Cumáricos/metabolismo , Escherichia coli K12/genética , Oxigenasas de Función Mixta/metabolismo , Catálisis , Escherichia coli K12/enzimología
5.
Mol Syst Biol ; 15(4): e8462, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962359

RESUMEN

Evidence suggests that novel enzyme functions evolved from low-level promiscuous activities in ancestral enzymes. Yet, the evolutionary dynamics and physiological mechanisms of how such side activities contribute to systems-level adaptations are not well characterized. Furthermore, it remains untested whether knowledge of an organism's promiscuous reaction set, or underground metabolism, can aid in forecasting the genetic basis of metabolic adaptations. Here, we employ a computational model of underground metabolism and laboratory evolution experiments to examine the role of enzyme promiscuity in the acquisition and optimization of growth on predicted non-native substrates in Escherichia coli K-12 MG1655. After as few as approximately 20 generations, evolved populations repeatedly acquired the capacity to grow on five predicted non-native substrates-D-lyxose, D-2-deoxyribose, D-arabinose, m-tartrate, and monomethyl succinate. Altered promiscuous activities were shown to be directly involved in establishing high-efficiency pathways. Structural mutations shifted enzyme substrate turnover rates toward the new substrate while retaining a preference for the primary substrate. Finally, genes underlying the phenotypic innovations were accurately predicted by genome-scale model simulations of metabolism with enzyme promiscuity.


Asunto(s)
Enzimas/química , Enzimas/metabolismo , Escherichia coli K12/crecimiento & desarrollo , Mutación , Adaptación Fisiológica , Arabinosa/metabolismo , Simulación por Computador , Desoxirribosa/metabolismo , Enzimas/genética , Escherichia coli K12/enzimología , Escherichia coli K12/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolución Molecular , Especificidad por Sustrato , Succinatos/metabolismo , Tartratos/metabolismo
6.
Bioorg Chem ; 99: 103759, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32220665

RESUMEN

There is a continuous need to develop new antibacterial agents with non-traditional mechanisms to combat the nonstop emerging resistance to most of the antibiotics used in clinical settings. We identified novel pyrazolidinone derivatives as antibacterial hits in an in-house library screening and synthesized several derivatives in order to improve the potency and increase the polarity of the discovered hit compounds. The oxime derivative 24 exhibited promising antibacterial activity against E. coli TolC, B. subtilis and S. aureus with MIC values of 4, 10 and 20 µg/mL, respectively. The new lead compound 24 was found to exhibit a weak dual inhibitory activity against both the E. coli MurA and MurB enzymes with IC50 values of 88.1 and 79.5 µM, respectively, which could partially explain its antibacterial effect. A comparison with the previously reported, structurally related pyrazolidinediones suggested that the oxime functionality at position 4 enhanced the activity against MurA and recovered the activity against the MurB enzyme. Compound 24 can serve as a lead for further development of novel and safe antibiotics with potential broad spectrum activity.


Asunto(s)
Antibacterianos/farmacología , Deshidrogenasas de Carbohidratos/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Escherichia coli K12/efectos de los fármacos , Pirazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli K12/enzimología , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
7.
Nature ; 507(7490): 114-7, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24463506

RESUMEN

Sulphoquinovose (SQ, 6-deoxy-6-sulphoglucose) has been known for 50 years as the polar headgroup of the plant sulpholipid in the photosynthetic membranes of all higher plants, mosses, ferns, algae and most photosynthetic bacteria. It is also found in some non-photosynthetic bacteria, and SQ is part of the surface layer of some Archaea. The estimated annual production of SQ is 10,000,000,000 tonnes (10 petagrams), thus it comprises a major portion of the organo-sulphur in nature, where SQ is degraded by bacteria. However, despite evidence for at least three different degradative pathways in bacteria, no enzymic reaction or gene in any pathway has been defined, although a sulphoglycolytic pathway has been proposed. Here we show that Escherichia coli K-12, the most widely studied prokaryotic model organism, performs sulphoglycolysis, in addition to standard glycolysis. SQ is catabolised through four newly discovered reactions that we established using purified, heterologously expressed enzymes: SQ isomerase, 6-deoxy-6-sulphofructose (SF) kinase, 6-deoxy-6-sulphofructose-1-phosphate (SFP) aldolase, and 3-sulpholactaldehyde (SLA) reductase. The enzymes are encoded in a ten-gene cluster, which probably also encodes regulation, transport and degradation of the whole sulpholipid; the gene cluster is present in almost all (>91%) available E. coli genomes, and is widespread in Enterobacteriaceae. The pathway yields dihydroxyacetone phosphate (DHAP), which powers energy conservation and growth of E. coli, and the sulphonate product 2,3-dihydroxypropane-1-sulphonate (DHPS), which is excreted. DHPS is mineralized by other bacteria, thus closing the sulphur cycle within a bacterial community.


Asunto(s)
Escherichia coli K12/metabolismo , Glucólisis , Azufre/metabolismo , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Alcanosulfonatos/metabolismo , Transporte Biológico , Dihidroxiacetona Fosfato/metabolismo , Enterobacteriaceae/enzimología , Enterobacteriaceae/genética , Escherichia coli K12/enzimología , Escherichia coli K12/genética , Escherichia coli K12/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos/genética , Glucólisis/genética , Isomerasas/genética , Isomerasas/metabolismo , Metilglucósidos/metabolismo , Familia de Multigenes/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo
8.
Biochem J ; 476(13): 1975-1994, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31235482

RESUMEN

The trifunctional enzyme (TFE) catalyzes the last three steps of the fatty acid ß-oxidation cycle. Two TFEs are present in Escherichia coli, EcTFE and anEcTFE. EcTFE is expressed only under aerobic conditions, whereas anEcTFE is expressed also under anaerobic conditions, with nitrate or fumarate as the ultimate electron acceptor. The anEcTFE subunits have higher sequence identity with the human mitochondrial TFE (HsTFE) than with the soluble EcTFE. Like HsTFE, here it is found that anEcTFE is a membrane-bound complex. Systematic enzyme kinetic studies show that anEcTFE has a preference for medium- and long-chain enoyl-CoAs, similar to HsTFE, whereas EcTFE prefers short chain enoyl-CoA substrates. The biophysical characterization of anEcTFE and EcTFE shows that EcTFE is heterotetrameric, whereas anEcTFE is purified as a complex of two heterotetrameric units, like HsTFE. The tetrameric assembly of anEcTFE resembles the HsTFE tetramer, although the arrangement of the two anEcTFE tetramers in the octamer is different from the HsTFE octamer. These studies demonstrate that EcTFE and anEcTFE have complementary substrate specificities, allowing for complete degradation of long-chain enoyl-CoAs under aerobic conditions. The new data agree with the notion that anEcTFE and HsTFE are evolutionary closely related, whereas EcTFE belongs to a separate subfamily.


Asunto(s)
Enoil-CoA Hidratasa/metabolismo , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/metabolismo , Aerobiosis , Anaerobiosis , Catálisis , Enoil-CoA Hidratasa/química , Enoil-CoA Hidratasa/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Oxidación-Reducción , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
9.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348713

RESUMEN

Phosphofructokinase (PFK) plays a pivotal role in glycolysis. By deletion of the genes pfkA, pfkB (encoding the two PFK isoenzymes), and zwf (glucose 6-phosphate dehydrogenase) in Escherichia coli K-12, a mutant strain (GL3) with a complete block in glucose catabolism was created. Introduction of plasmid-borne copies of the fsaA wild type gene (encoding E. coli fructose 6-phosphate aldolase, FSAA) did not allow a bypass by splitting fructose 6-phosphate (F6P) into dihydroxyacetone (DHA) and glyceraldehyde 3-phosphate (G3P). Although FSAA enzyme activity was detected, growth on glucose was not reestablished. A mutant allele encoding for FSAA with an amino acid exchange (Ala129Ser) which showed increased catalytic efficiency for F6P, allowed growth on glucose with a µ of about 0.12 h-1. A GL3 derivative with a chromosomally integrated copy of fsaAA129S (GL4) grew with 0.05 h-1 on glucose. A mutant strain from GL4 where dhaKLM genes were deleted (GL5) excreted DHA. By deletion of the gene glpK (glycerol kinase) and overexpression of gldA (of glycerol dehydrogenase), a strain (GL7) was created which showed glycerol formation (21.8 mM; yield approximately 70% of the theoretically maximal value) as main end product when grown on glucose. A new-to-nature pathway from glucose to glycerol was created.


Asunto(s)
Aldehído-Liasas/genética , Vías Biosintéticas/genética , Dihidroxiacetona/biosíntesis , Escherichia coli K12/enzimología , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Expresión Génica , Genes Bacterianos , Glicerol/metabolismo , Alelos , Fructosafosfatos/metabolismo , Eliminación de Gen , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glicerol Quinasa/genética , Isoenzimas/genética , Vía de Pentosa Fosfato/genética , Fosfofructoquinasas/química , Fosfofructoquinasas/genética , Deshidrogenasas del Alcohol de Azúcar/genética
10.
Biochemistry ; 58(31): 3340-3353, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31322866

RESUMEN

The ydj gene cluster is found in 80% of sequenced Escherichia coli genomes and other closely related species in the human microbiome. On the basis of the annotations of the enzymes located in this cluster, it is expected that together they catalyze the catabolism of an unknown carbohydrate. The focus of this investigation is on YdjI, which is in the ydj gene cluster of E. coli K-12. It is predicted to be a class II aldolase of unknown function. Here we describe a structural and functional characterization of this enzyme. YdjI catalyzes the hydrogen/deuterium exchange of the pro-S hydrogen at C3 of dihydroxyacetone phosphate (DHAP). In the presence of DHAP, YdjI catalyzes an aldol condensation with a variety of aldo sugars. YdjI shows a strong preference for higher-order (seven-, eight-, and nine-carbon) monosaccharides with specific hydroxyl stereochemistries and a negatively charged terminus (carboxylate or phosphate). The best substrate is l-arabinuronic acid with an apparent kcat of 3.0 s-1. The product, l-glycero-l-galacto-octuluronate-1-phosphate, has a kcat/Km value of 2.1 × 103 M-1 s-1 in the retro-aldol reaction with YdjI. This is the first recorded synthesis of l-glycero-l-galacto-octuluronate-1-phosphate and six similar carbohydrates. The crystal structure of YdjI, determined to a nominal resolution of 1.75 Å (Protein Data Bank entry 6OFU ), reveals unusual positions for two arginine residues located near the active site. Computational docking was utilized to distinguish preferable binding orientations for l-glycero-l-galacto-octuluronate-1-phosphate. These results indicate a possible alternative binding orientation for l-glycero-l-galacto-octuluronate-1-phosphate compared to that observed in other class II aldolases, which utilize shorter carbohydrate molecules.


Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Biocatálisis , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
11.
Biochemistry ; 58(31): 3354-3364, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31314509

RESUMEN

The ydj gene cluster is annotated to catalyze the catabolism of an unknown carbohydrate. Previously, YdjI, a class II aldolase, was shown to catalyze the retro-aldol cleavage of l-glycero-l-galacto-octuluronate-1-phosphate into DHAP and l-arabinuronate. In this report, the functional characterization of YdjH is presented. YdjH catalyzes the phosphorylation of 2-keto-monosaccharides at the C1 hydroxyl group with a substrate profile significantly more stringent than that of YdjI. Similar to YdjI, YdjH shows a strong preference for higher-order monosaccharides (seven to nine carbons) with a carboxylate terminus. The best substrate was determined to be l-glycero-l-galacto-octuluronate, yielding l-glycero-l-galacto-octuluronate-1-phosphate with a kcat of 16 s-1 and a kcat/Km of 2.1 × 104 M-1 s-1. This is apparently the first reported example of kinase activity with eight-carbon monosaccharides. Two crystal structures of YdjH were previously determined to 2.15 and 1.8 Å resolution (Protein Data Bank entries 3H49 and 3IN1 ). We present an analysis of the active site layout and use computational docking to identify potential key residues in the binding of l-glycero-l-galacto-octuluronate.


Asunto(s)
Escherichia coli K12/enzimología , Proteínas de Escherichia coli/metabolismo , Proteínas Quinasas/metabolismo , Azúcares/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico , Biología Computacional , Escherichia coli K12/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Simulación del Acoplamiento Molecular , Familia de Multigenes , Proteínas Quinasas/química , Proteínas Quinasas/genética , Especificidad por Sustrato
12.
J Biol Chem ; 293(8): 2815-2828, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29321208

RESUMEN

Conformational changes in proteins due to ligand binding are ubiquitous in biological processes and are integral to many biological systems. However, it is often challenging to link ligand-induced conformational changes to a resulting biological function because it is difficult to distinguish between the energetic components associated with ligand binding and those due to structural rearrangements. Here, we used a unique approach exploiting conformation-specific and regio-specific synthetic antibodies (sABs) to probe the energetic contributions of ligand binding to conformation changes. Using maltose-binding protein (MBP) as a model system, customized phage-display selections were performed to generate sABs that stabilize MBP in different conformational states, modulating ligand-binding affinity in competitive, allosteric, or peristeric manners. We determined that the binding of a closed conformation-specific sAB (sAB-11M) to MBP in the absence of maltose is entropically driven, providing new insight into designing antibody-stabilized protein interactions. Crystal structures of sABs bound to MBP, together with biophysical data, delineate the basis of free energy differences between different conformational states and confirm the use of the sABs as energy probes for dissecting enthalpic and entropic contributions to conformational transitions. Our work provides a foundation for investigating the energetic contributions of distinct conformational dynamics to specific biological outputs. We anticipate that our approach also may be valuable for analyzing the energy landscapes of regulatory proteins controlling biological responses to environmental changes.


Asunto(s)
Anticuerpos Bloqueadores/metabolismo , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión a Maltosa/metabolismo , Maltosa/metabolismo , Modelos Moleculares , Sondas Moleculares/metabolismo , Sustitución de Aminoácidos , Anticuerpos Bloqueadores/química , Anticuerpos Bloqueadores/genética , Afinidad de Anticuerpos , Apoproteínas/química , Apoproteínas/metabolismo , Biotinilación , Cristalografía por Rayos X , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ligandos , Maltosa/química , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Sondas Moleculares/química , Sondas Moleculares/genética , Mutación , Biblioteca de Péptidos , Conformación Proteica , Ingeniería de Proteínas , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinámica
13.
Proteins ; 87(4): 337-347, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30615212

RESUMEN

Adenylate kinase is a monomeric phosphotransferase with important biological function in regulating concentration of adenosine triphosphate (ATP) in cells, by transferring the terminal phosphate group from ATP to adenosine monophosphate (AMP) and forming two adenosine diphosphate (ADP) molecules. During this reaction, the kinase may undergo a large conformational transition, forming different states with its substrates. Although many structures of the protein are available, atomic details of the whole process remain unclear. In this article, we use both conventional molecular dynamics (MD) simulation and an enhanced sampling technique called parallel cascade selection MD simulation to explore different conformational states of the Escherichia coli adenylate kinase. Based on the simulation results, we propose a possible entrance/release order of substrates during the catalytic cycle. The substrate-free protein prefers an open conformation, but changes to a closed state once ATP·Mg enters into its binding pocket first and then AMP does. After the reaction of ATP transferring the terminal phosphate group to AMP, ADP·Mg and ADP are released sequentially, and finally the whole catalyze cycle is completed. Detailed contact and distance analysis reveals that the entrance/release order of substrates may be largely controlled by electrostatic interactions between the protein and the substrates.


Asunto(s)
Adenilato Quinasa/metabolismo , Escherichia coli K12/enzimología , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/química , Dominio Catalítico , Escherichia coli K12/química , Escherichia coli K12/metabolismo , Magnesio/metabolismo , Simulación de Dinámica Molecular , Electricidad Estática , Especificidad por Sustrato
14.
Org Biomol Chem ; 17(8): 2223-2231, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30720838

RESUMEN

N-Methylation of DNA/RNA bases can be regulatory or damaging and is linked to diseases including cancer and genetic disorders. Bacterial AlkB and human FTO are DNA/RNA demethylases belonging to the Fe(ii) and 2-oxoglutarate oxygenase superfamily. Modelling studies reveal conformational dynamics influence structure-function relationships of AlkB and FTO, e.g. why 1-methyladenine is a better substrate for AlkB than 6-methyladenine. Simulations show that the flexibility of the double stranded DNA substrate in AlkB influences correlated motions, including between the core jelly-roll fold and an active site loop involved in substrate binding. The FTO N- and C-terminal domains move in respect to one another in a manner likely important for substrate binding. Substitutions, including clinically observed ones, influencing catalysis contribute to the network of correlated motions in AlkB and FTO. Overall, the calculations highlight the importance of the overall protein environment and its flexibility to the geometry of the reactant complexes.


Asunto(s)
Enzimas AlkB/química , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/química , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Adenina/análogos & derivados , Adenina/metabolismo , Enzimas AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Metilación de ADN , ADN de Cadena Simple/metabolismo , Escherichia coli K12/química , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
15.
Biochem J ; 475(12): 2107-2125, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29871875

RESUMEN

Structural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes. In the present study, we show that trimethoprim (TMP)-resistant alleles of dihydrofolate reductase from Escherichia coli (EcDHFR) harboring the Trp30Gly, Trp30Arg or Trp30Cys mutations are significantly less stable than the wild-type, making them prone to aggregation and proteolysis. This destabilization is associated with a lower expression level, resulting in a fitness cost and negative epistasis with other TMP-resistant mutations in EcDHFR. Using structure-based mutational analysis, we show that perturbation of critical stabilizing hydrophobic interactions in wild-type EcDHFR enzyme explains the phenotypes of Trp30 mutants. Surprisingly, though crucial for the stability of EcDHFR, significant sequence variation is found at this site among bacterial dihydrofolate reductases (DHFRs). Mutational and computational analyses in EcDHFR and in DHFR enzymes from Staphylococcus aureus and Mycobacterium tuberculosis demonstrate that natural variation at this site and its interacting hydrophobic residues modulates TMP resistance in other bacterial DHFRs as well, and may explain the different susceptibilities of bacterial pathogens to TMP. Our study demonstrates that trade-offs between structural stability and function can influence innate drug resistance as well as the potential for mutationally acquired drug resistance of an enzyme.


Asunto(s)
Escherichia coli K12/enzimología , Proteínas de Escherichia coli/metabolismo , Mycobacterium tuberculosis/enzimología , Staphylococcus aureus/enzimología , Tetrahidrofolato Deshidrogenasa/metabolismo , Resistencia al Trimetoprim , Sustitución de Aminoácidos , Escherichia coli K12/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutación Missense , Mycobacterium tuberculosis/genética , Staphylococcus aureus/genética , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética
16.
Biochemistry ; 57(42): 6090-6098, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30256085

RESUMEN

Lytic transglycosylases (LTs) are bacterial enzymes that catalyze the cleavage of the glycan strands of the bacterial cell wall. The mechanism of this cleavage is a remarkable intramolecular transacetalization reaction, accomplished by an ensemble of active-site residues. Because the LT reaction occurs in parallel with the cell wall bond-forming reactions catalyzed by the penicillin-binding proteins, simultaneous inhibition of both enzymes can be particularly bactericidal to Gram-negative bacteria. The MltE lytic transglycosylase is the smallest of the eight LTs encoded by the Escherichia coli genome. Prior crystallographic and computational studies identified four active-site residues-E64, S73, S75, and Y192-as playing roles in catalysis. Each of these four residues was individually altered by mutation to give four variant enzymes (E64Q, S73A, S75A, and Y192F). All four variants showed reduced catalytic activity [soluble wild type (100%) > soluble Y192F and S75A (both 40%) > S73A (4%) > E64Q (≤1%)]. The crystal structure of each variant protein was determined at the resolution of 2.12 Å for E64Q, 2.33 Å for Y192F, 1.38 Å for S73A, and 1.35 Å for S75A. These variants show alteration of the hydrogen-bond interactions of the active site. Within the framework of a prior computational study of the LT mechanism, we suggest the mechanistic role of these four active-site residues in MltE catalysis.


Asunto(s)
Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Glicosiltransferasas/química , Sustitución de Aminoácidos , Catálisis , Dominio Catalítico , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Glicosiltransferasas/genética , Mutación Missense
17.
Biochemistry ; 57(19): 2857-2867, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29684280

RESUMEN

The substrate profiles for three uncharacterized enzymes (YcjM, YcjT, and YcjU) that are expressed from a cluster of 12 genes ( ycjM-W and ompG) of unknown function in Escherichia coli K-12 were determined. Through a comprehensive bioinformatic and steady-state kinetic analysis, the catalytic function of YcjT was determined to be kojibiose phosphorylase. In the presence of saturating phosphate and kojibiose (α-(1,2)-d-glucose-d-glucose), this enzyme catalyzes the formation of d-glucose and ß-d-glucose-1-phosphate ( kcat = 1.1 s-1, Km = 1.05 mM, and kcat/ Km = 1.12 × 103 M-1 s-1). Additionally, it was also shown that in the presence of ß-d-glucose-1-phosphate, YcjT can catalyze the formation of other disaccharides using 1,5-anhydro-d-glucitol, l-sorbose, d-sorbitol, or l-iditol as a substitute for d-glucose. Kojibiose is a component of cell wall lipoteichoic acids in Gram-positive bacteria and is of interest as a potential low-calorie sweetener and prebiotic. YcjU was determined to be a ß-phosphoglucomutase that catalyzes the isomerization of ß-d-glucose-1-phosphate ( kcat = 21 s-1, Km = 18 µM, and kcat/ Km = 1.1 × 106 M-1 s-1) to d-glucose-6-phosphate. YcjU was also shown to exhibit catalytic activity with ß-d-allose-1-phosphate, ß-d-mannose-1-phosphate, and ß-d-galactose-1-phosphate. YcjM catalyzes the phosphorolysis of α-(1,2)-d-glucose-d-glycerate with a kcat = 2.1 s-1, Km = 69 µM, and kcat/ Km = 3.1 × 104 M-1 s-1.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Glucosiltransferasas/química , Glucosiltransferasas/genética , Porinas/química , Proteínas de la Membrana Bacteriana Externa/genética , Catálisis , Disacáridos/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Glucosa/química , Glucosiltransferasas/clasificación , Cinética , Lipopolisacáridos/química , Manosafosfatos/química , Porinas/genética , Especificidad por Sustrato , Ácidos Teicoicos/química
18.
Biochemistry ; 57(1): 56-60, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29039649

RESUMEN

Recent advances in proteomics and genomics have enabled discovery of thousands of previously nonannotated small open reading frames (smORFs) in genomes across evolutionary space. Furthermore, quantitative mass spectrometry has recently been applied to analysis of regulated smORF expression. However, bottom-up proteomics has remained relatively insensitive to membrane proteins, suggesting they may have been underdetected in previous studies. In this report, we add biochemical membrane protein enrichment to our previously developed label-free quantitative proteomics protocol, revealing a never-before-identified heat shock protein in Escherichia coli K12. This putative smORF-encoded heat shock protein, GndA, is likely to be ∼36-55 amino acids in length and contains a predicted transmembrane helix. We validate heat shock-regulated expression of the gndA smORF and demonstrate that a GndA-GFP fusion protein cofractionates with the cell membrane. Quantitative membrane proteomics therefore has the ability to reveal nonannotated small proteins that may play roles in bacterial stress responses.


Asunto(s)
Escherichia coli K12/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Sistemas de Lectura Abierta , Cromatografía Líquida de Alta Presión , Escherichia coli/enzimología , Escherichia coli/fisiología , Escherichia coli K12/enzimología , Escherichia coli K12/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico Pequeñas/química , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Anotación de Secuencia Molecular , Fosfogluconato Deshidrogenasa/química , Fosfogluconato Deshidrogenasa/genética , Fosfogluconato Deshidrogenasa/metabolismo , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteogenómica/métodos , Proteómica/métodos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Masas en Tándem
19.
J Biol Chem ; 292(29): 12351-12365, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28592485

RESUMEN

The free energy of water-to-interface amino acid partitioning is a major contributing factor in membrane protein folding and stability. The interface residues at the C terminus of transmembrane ß-barrels form the ß-signal motif required for assisted ß-barrel assembly in vivo but are believed to be less important for ß-barrel assembly in vitro Here, we experimentally measured the thermodynamic contribution of all 20 amino acids at the ß-signal motif to the unassisted folding of the model ß-barrel protein PagP. We obtained the partitioning free energy for all 20 amino acids at the lipid-facing interface (ΔΔG0w,i(φ)) and the protein-facing interface (ΔΔG0w,i(π)) residues and found that hydrophobic amino acids are most favorably transferred to the lipid-facing interface, whereas charged and polar groups display the highest partitioning energy. Furthermore, the change in non-polar surface area correlated directly with the partitioning free energy for the lipid-facing residue and inversely with the protein-facing residue. We also demonstrate that the interface residues of the ß-signal motif are vital for in vitro barrel assembly, because they exhibit a side chain-specific energetic contribution determined by the change in nonpolar accessible surface. We further establish that folding cooperativity and hydrophobic collapse are balanced at the membrane interface for optimal stability of the PagP ß-barrel scaffold. We conclude that the PagP C-terminal ß-signal motif influences the folding cooperativity and stability of the folded ß-barrel and that the thermodynamic contributions of the lipid- and protein-facing residues in the transmembrane protein ß-signal motif depend on the nature of the amino acid side chain.


Asunto(s)
Aciltransferasas/química , Aminoácidos/química , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Membrana Dobles de Lípidos/química , Modelos Moleculares , Aciltransferasas/metabolismo , Secuencias de Aminoácidos , Transferencia de Energía , Estabilidad de Enzimas , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Propiedades de Superficie , Termodinámica
20.
Anal Chem ; 90(1): 944-951, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29188988

RESUMEN

Octocrylene (OC) is an emerging UV filter, which is used in the majority of sunscreens as well as other personal care products (PCP) and consumer products. Its presence in various environmental matrices has been reported. However, information on the internal OC exposure in humans is not available, due to the lack of appropriate biomarkers of exposure and analytical methods. Here, we describe a rugged, precise, and accurate analytical method for the determination of three OC metabolites (ester hydrolysis and alkyl chain oxidation products) in human urine by stable isotope dilution analysis. Urine samples are incubated with ß-glucuronidase (E. coli K12) and then analyzed by liquid chromatography-electrospray ionization-triple quadrupole-tandem mass spectrometry with online turbulent flow chromatography for sample cleanup and analyte enrichment (online-SPE-LC-MS/MS). Syntheses of analytical standards, including deuterium-labeled internal standards, are also described. In a pilot study, we investigated the applicability of the metabolites as biomarkers of exposure in urine samples from the general population (n = 35). OC metabolites were detected in 91% of the samples, with the highest concentrations for three individuals having used sunscreen within 5 days prior to sample collection. We will apply the method in future human biomonitoring studies for OC exposure and risk assessment.


Asunto(s)
Acrilatos/orina , Cromatografía Liquida/métodos , Nitrilos/orina , Espectrometría de Masas en Tándem/métodos , Acrilatos/síntesis química , Acrilatos/metabolismo , Biomarcadores/orina , Escherichia coli K12/enzimología , Glucuronidasa/química , Glucurónidos/química , Humanos , Nitrilos/síntesis química , Proyectos Piloto , Protectores Solares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA