Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.074
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 83: 79-98, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24606142

RESUMEN

Lipidomics aims to quantitatively define lipid classes, including their molecular species, in biological systems. Lipidomics has experienced rapid progress, mainly because of continuous technical advances in instrumentation that are now enabling quantitative lipid analyses with an unprecedented level of sensitivity and precision. The still-growing category of lipids includes a broad diversity of chemical structures with a wide range of physicochemical properties. Reflecting this diversity, different methods and strategies are being applied to the quantification of lipids. Here, I review state-of-the-art electrospray ionization tandem mass spectrometric approaches and direct infusion to quantitatively assess lipid compositions of cells and subcellular fractions. Finally, I discuss a few examples of the power of mass spectrometry-based lipidomics in addressing cell biological questions.


Asunto(s)
Lípidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Cardiolipinas/química , Química Física , Biología Computacional , Humanos , Mitocondrias/metabolismo , Orgánulos/química , Solventes/química , Fracciones Subcelulares/química
2.
Nat Methods ; 21(6): 1023-1032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38664529

RESUMEN

Addressing interfacial effects during specimen preparation in cryogenic electron microscopy remains challenging. Here we introduce ESI-cryoPrep, a specimen preparation method based on electrospray ionization in native mass spectrometry, designed to alleviate issues associated with protein denaturation or preferred orientation induced by macromolecule adsorption at interfaces. Through fine-tuning spraying parameters, we optimized protein integrity preservation and achieved the desired ice thickness for analyzing target macromolecules. With ESI-cryoPrep, we prepared high-quality cryo-specimens of five proteins and obtained three-dimensional reconstructions at near-atomic resolution. Our findings demonstrate that ESI-cryoPrep effectively confines macromolecules within the middle of the thin layer of amorphous ice, facilitating the preparation of blotting-free vitreous samples. The protective mechanism, characterized by the uneven distribution of charged biomolecules of varying sizes within charged droplets, prevents the adsorption of target biomolecules at air-water or graphene-water interfaces, thereby avoiding structural damage to the protein particles or the introduction of dominant orientation issues.


Asunto(s)
Microscopía por Crioelectrón , Manejo de Especímenes , Espectrometría de Masa por Ionización de Electrospray , Microscopía por Crioelectrón/métodos , Manejo de Especímenes/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Proteínas/química , Humanos , Sustancias Macromoleculares/química
3.
PLoS Biol ; 20(2): e3001555, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180210

RESUMEN

Bacterial membrane lipids are critical for membrane bilayer formation, cell division, protein localization, stress responses, and pathogenesis. Despite their critical roles, membrane lipids have not been fully elucidated for many pathogens. Here, we report the discovery of a novel cationic glycolipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), which is synthesized in high abundance by the bacterium Streptococcus agalactiae (Group B Streptococcus, GBS). To our knowledge, Lys-Glc-DAG is more positively charged than any other known lipids. Lys-Glc-DAG carries 2 positive net charges per molecule, distinct from the widely described lysylated phospholipid lysyl-phosphatidylglycerol (Lys-PG) that carries one positive net charge due to the presence of a negatively charged phosphate moiety. We use normal phase liquid chromatography (NPLC) coupled with electrospray ionization (ESI) high-resolution tandem mass spectrometry (HRMS/MS) and genetic approaches to determine that Lys-Glc-DAG is synthesized by the enzyme MprF in GBS, which covalently modifies the neutral glycolipid Glc-DAG with the cationic amino acid lysine. GBS is a leading cause of neonatal meningitis, which requires traversal of the endothelial blood-brain barrier (BBB). We demonstrate that GBS strains lacking mprF exhibit a significant decrease in the ability to invade BBB endothelial cells. Further, mice challenged with a GBSΔmprF mutant developed bacteremia comparably to wild-type (WT) infected mice yet had less recovered bacteria from brain tissue and a lower incidence of meningitis. Thus, our data suggest that Lys-Glc-DAG may contribute to bacterial uptake into host cells and disease progression. Importantly, our discovery provides a platform for further study of cationic lipids at the host-pathogen interface.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Glucolípidos/metabolismo , Meningitis/metabolismo , Streptococcus agalactiae/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/genética , Cationes/química , Cromatografía Liquida/métodos , Glucolípidos/química , Humanos , Masculino , Ratones , Mutación , Espectrometría de Masa por Ionización de Electrospray/métodos , Streptococcus agalactiae/genética , Espectrometría de Masas en Tándem/métodos
4.
Cell ; 141(5): 897-907, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20510933

RESUMEN

N-linked glycosylation is a biologically important protein modification, but only a small fraction of modification sites have been mapped. We developed a "filter aided sample preparation" (FASP)-based method in which glycopeptides are enriched by binding to lectins on the top of a filter and mapped 6367 N-glycosylation sites on 2352 proteins in four mouse tissues and blood plasma using high-accuracy mass spectrometry. We found 74% of known mouse N-glycosites and discovered an additional 5753 sites on a diverse range of proteins. Sites almost always have the N-!P-[S|T]-!P (where !P is not proline) and rarely the N-X-C motif or nonconsensus sequences. Combining the FASP approach with analysis of subcellular glycosite localization reveals that the sites always orient toward the extracellular space or toward the lumen of ER, Golgi, lysosome, or peroxisome. The N-glycoproteome contains a plethora of modification sites on factors important in development, organ-specific functions, and disease.


Asunto(s)
Glicómica/métodos , Proteómica/métodos , Animales , Glicosilación , Ratones , Especificidad de Órganos , Espectrometría de Masa por Ionización de Electrospray/métodos
5.
Proteomics ; 24(3-4): e2300082, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37043727

RESUMEN

In recent years, top-down mass spectrometry has become a widely used approach to study proteoforms; however, improving sequence coverage remains an important goal. Here, two different proteins, α-synuclein and bovine carbonic anhydrase, were subjected to top-down collision-induced dissociation (CID) after electrospray ionisation. Two high-boiling solvents, DMSO and propylene carbonate, were added to the protein solution in low concentration (2%) and the effects on the top-down fragmentation patterns of the proteins were systematically investigated. Each sample was measured in triplicate, which revealed highly reproducible differences in the top-down CID fragmentation patterns in the presence of a solution additive, even if the same precursor charge state was isolated in the quadrupole of the instrument. Further investigation supports the solution condition-dependent selective formation of different protonation site isomers as the underlying cause of these differences. Higher sequence coverage was often observed in the presence of additives, and the benefits of this approach became even more evident when datasets from different solution conditions were combined, as increases up to 35% in cleavage coverage were obtained. Overall, this approach therefore represents a promising opportunity to increase top-down fragmentation efficiency.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Animales , Bovinos , Espectrometría de Masa por Ionización de Electrospray/métodos
6.
Anal Chem ; 96(14): 5478-5488, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38529642

RESUMEN

PubChem serves as a comprehensive repository, housing over 100 million unique chemical structures representing the breadth of our chemical knowledge across numerous fields including metabolism, pharmaceuticals, toxicology, cosmetics, agriculture, and many more. Rapid identification of these small molecules increasingly relies on electrospray ionization (ESI) paired with tandem mass spectrometry (MS/MS), particularly by comparison to genuine standard MS/MS data sets. Despite its widespread application, achieving consistency in MS/MS data across various analytical platforms remains an unaddressed concern. This study evaluated MS/MS data derived from one hundred molecular standards utilizing instruments from five manufacturers, inclusive of quadrupole time-of-flight (QTOF) and quadrupole orbitrap "exactive" (QE) mass spectrometers by Agilent (QTOF), Bruker (QTOF), SCIEX (QTOF), Waters (QTOF), and Thermo QE. We assessed fragment ion variations at multiple collisional energies (0, 10, 20, and 40 eV) using the cosine scoring algorithm for comparisons and the number of fragments observed. A parallel visual analysis of the MS/MS spectra across instruments was conducted, consistent with a standard procedure that is used to circumvent the still prevalent issue of mischaracterizations as shown for dimethyl sphingosine and C20 sphingosine. Our analysis revealed a notable consistency in MS/MS data and identifications, with fragment ions' m/z values exhibiting the highest concordance between instrument platforms at 20 eV, the other collisional energies (0, 10, and 40 eV) were significantly lower. While moving toward a standardized ESI MS/MS protocol is required for dependable molecular characterization, our results also underscore the continued importance of corroborating MS/MS data against standards to ensure accurate identifications. Our findings suggest that ESI MS/MS manufacturers, akin to the established norms for gas chromatography mass spectrometry instruments, should standardize the collision energy at 20 eV across different instrument platforms.


Asunto(s)
Esfingosina , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía de Gases y Espectrometría de Masas , Iones
7.
Anal Chem ; 96(27): 10935-10942, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38917347

RESUMEN

The annotation of metabolites detected in LC-MS-based untargeted metabolomics studies routinely applies accurate m/z of the intact metabolite (MS1) as well as chromatographic retention time and MS/MS data. Electrospray ionization and transfer of ions through the mass spectrometer can result in the generation of multiple "features" derived from the same metabolite with different m/z values but the same retention time. The complexity of the different charged and neutral adducts, in-source fragments, and charge states has not been previously and deeply characterized. In this paper, we report the first large-scale characterization using publicly available data sets derived from different research groups, instrument manufacturers, LC assays, sample types, and ion modes. 271 m/z differences relating to different metabolite feature pairs were reported, and 209 were annotated. The results show a wide range of different features being observed with only a core 32 m/z differences reported in >50% of the data sets investigated. There were no patterns reporting specific m/z differences that were observed in relation to ion mode, instrument manufacturer, LC assay type, and mammalian sample type, although some m/z differences were related to study group (mammal, microbe, plant) and mobile phase composition. The results provide the metabolomics community with recommendations of adducts, in-source fragments, and charge states to apply in metabolite annotation workflows.


Asunto(s)
Metabolómica , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Metabolómica/métodos , Animales , Cromatografía Liquida , Humanos
8.
Anal Chem ; 96(14): 5589-5597, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38556723

RESUMEN

Sebum lipids are composed of nonpolar lipids, and they pose challenges for mass spectrometry-based analysis due to low ionization efficiency and the existence of numerous isomers and isobars. To address these challenges, we have developed ethyl 2-oxo-2-(pyridine-3-yacetate as a charge-tagging Paternò-Büchi reagent and Michler's ketone as a highly efficient photocatalyst, achieving ∼90% conversion for C═C derivatization under 440 nm LED irradiation. This derivatization, when coupled with electrospray ionization-tandem mass spectrometry, boosts the detection of sebum lipids and pinpoints C═C location in a chain-specific fashion. Identification and quantitation of isomers are readily achieved for wax esters, a class of underexplored sebum lipids, which have C═C bonds distributed in fatty alcohol and fatty acyl chains. A shotgun analysis workflow has been developed by pairing the offline PB derivatization with cyclic ion mobility spectrometry-mass spectrometry. Besides the dominant n-10 C═C location in unsaturated wax esters, profiling of low abundance isomers, including the rarely reported n-7 and n-13 locations, is greatly enhanced due to separations of C═C diagnostic ions by ion mobility. Over 900 distinct lipid structures from human sebum lipid extract have been profiled at the chain-specific C═C level, including wax esters (500), glycerolipids (393), and cholesterol esters (22), far more exceeding previous reports. Overall, we have developed a fast and comprehensive lipidomic profiling tool for sebum samples, a type of noninvasive biofluids holding potential for the discovery of disease markers in distal organs.


Asunto(s)
Lípidos , Sebo , Humanos , Lípidos/análisis , Sebo/química , Espectrometría de Movilidad Iónica , Lipidómica , Espectrometría de Masa por Ionización de Electrospray/métodos , Iones
9.
Anal Chem ; 96(15): 5746-5751, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38556995

RESUMEN

Microflow porous graphitized carbon liquid chromatography (PGC-LC) combined with negative mode ionization mass spectrometry (MS) provides high resolution separation and identification of reduced native N-glycan structural isomers. However, insufficient spray quality and low ionization efficiency of N-glycans present challenges for negative mode electrospray. Here, we evaluated the performance of a recently developed multinozzle electrospray source (MnESI) and accompanying M3 emitter for microflow PGC-LC-MS analysis of N-glycans in negative mode. In comparison to a standard electrospray ionization source, the MnESI with an M3 emitter improves signal intensity, identification, quantification, and resolution of structural isomers to accommodate low-input samples.


Asunto(s)
Carbono , Cromatografía Líquida con Espectrometría de Masas , Carbono/química , Espectrometría de Masas en Tándem/métodos , Porosidad , Polisacáridos/química , Espectrometría de Masa por Ionización de Electrospray/métodos
10.
Anal Chem ; 96(10): 4146-4153, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38427846

RESUMEN

Unraveling the mechanism by which native proteins are charged through electrospray ionization (ESI) has been the focus of considerable research because observable charge states can be correlated to biophysical characteristics, such as protein folding and, thus, solution conformation. Difficulties in characterizing electrosprayed droplets have catalyzed the use of molecular dynamics (MD) to provide insights into the mechanisms by which proteins are charged and transferred to the gas phase. However, prior MD studies have utilized metal ions, primarily Na+, as charge carriers, even though proteins are primarily detected as protonated ions in the mass spectra. Here, we propose a modified MD protocol for simulating discrete Grotthuss diffuse H3O+ that is capable of dynamically altering amino-acid protonation states to model electrospray charging and gaseous ion formation of model proteins, ubiquitin, and myoglobin. Application of the protocol to the evaporation of acidic droplets enables a molecular perspective of H3O+ coordination and proton transfer to/from proteins, which is unfeasible with the metal charge carriers used in previous MD studies of ESI. Our protocol recreates experimentally observed charge-state distributions and supports the charge residue model (CRM) as the dominant mechanism of native protein ionization during ESI. Additionally, our results suggest that protonation is highly specific to individual residues and is correlated to the formation of localized hydrated regions on the protein surface as droplets desolvate. Considering the use of discrete H3O+ instead of Na+, the developed protocol is a necessary step toward developing a more comprehensive model of protein ionization during ESI.


Asunto(s)
Simulación de Dinámica Molecular , Protones , Espectrometría de Masa por Ionización de Electrospray/métodos , Mioglobina/química , Iones/química , Gases/química
11.
Anal Chem ; 96(10): 4259-4265, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38418962

RESUMEN

Mass spectrometry (MS) imaging of lipids in tissues with high structure specificity is challenging in the effective fragmentation of position-selective structures and the sensitive detection of multiple lipid isomers. Herein, we develop an MS3 imaging method for the simultaneous analysis of phospholipid C═C and sn-position isomers by on-tissue photochemical derivatization, nanospray desorption electrospray ionization (nano-DESI), and a dual-linear ion trap MS system. A novel laser-based sensing probe is developed for the real-time adjustment of the probe-to-surface distance for nano-DESI. This method is validated in mouse brain and kidney sections, showing its capability of sensitive resolving and imaging of the fatty acyl chain composition, the sn-position, and the C═C location of phospholipids in an MS3 scan. MS3 imaging of phospholipids has shown the capability of differentiation of cancerous, fibrosis, and adjacent normal regions in liver cancer tissues.


Asunto(s)
Fosfolípidos , Espectrometría de Masa por Ionización de Electrospray , Ratones , Animales , Fosfolípidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Isomerismo , Cromatografía de Gases y Espectrometría de Masas , Diagnóstico por Imagen
12.
Anal Chem ; 96(17): 6534-6539, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38647218

RESUMEN

With current trends in proteomics, especially regarding clinical and low input (to single cell) samples, it is increasingly important to both maximize the throughput of the analysis and maintain as much sensitivity as possible. The new generation of mass spectrometers (MS) are taking a huge leap in sensitivity, allowing analysis of samples with shorter liquid chromatography (LC) methods while digging as deep in the proteome. However, the throughput can be doubled by implementing a dual column nano-LC-MS configuration. For this purpose, we used a dual-column setup with a two-outlet electrospray source and compared it to a classic dual-column setup with a single-outlet source.


Asunto(s)
Nanotecnología , Proteómica , Espectrometría de Masa por Ionización de Electrospray , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Humanos , Cromatografía Liquida/métodos , Ensayos Analíticos de Alto Rendimiento/métodos
13.
Anal Chem ; 96(2): 624-629, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38157203

RESUMEN

Tumor metastasis and cancer recurrence are often a result of cell heterogeneity, where specific subpopulations of tumor cells may be resistant to radio- or chemotherapy. To investigate this physiological and phenotypic diversity, single-cell metabolomics provides a powerful approach at the chemical level, where distinct lipid profiles can be found in different tumor cells. Here, we established a highly sensitive platform using nanoflow liquid chromatography (nLC) combined with multinozzle emitter electrospray ionization mass spectrometry for more in-depth metabolomics profiling. Our platform identified 15 and 17 lipids from individual osteosarcoma (U2OS) and glioblastoma (GBM) cells when analyzing single-cell samples. Additionally, we used the functional single-cell selection (fSCS) pipeline to analyze the subpopulations of cells with a DNA damage response (DDR) in U2OS cells and fast migration in GBM cells. Specifically, we observed a down-regulation of polyunsaturated fatty acids (PUFAs) in U2OS cells undergoing DDR, such as fatty acids FA 20:3; O2 and FA 17:4; O3. Furthermore, ceramides (Cer 38:0; O3) and triglycerides (TG 36:0) were found to be down-regulated in fast-migrating GBM cells compared to the slow-migrating subpopulation. These findings suggest the potential roles of these metabolites and/or lipids in the cellular behavior of the subpopulations.


Asunto(s)
Glioblastoma , Espectrometría de Masa por Ionización de Electrospray , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Metabolómica/métodos , Ácidos Grasos Insaturados/metabolismo , Triglicéridos
14.
Anal Chem ; 96(23): 9629-9635, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38743697

RESUMEN

Direct coupling of sample preparation with mass spectrometry (MS) can speed up analysis, enabling faster decision-making. In such combinations, where the analysis time is mainly defined by the extraction procedure, magnetic dispersive solid-phase extraction emerges as a relevant technique because of its rapid workflow. The dispersion and retrieval of the magnetic sorbent are typically uncoupled stages, thus reducing the potential simplicity. Stir bar sorptive dispersive microextraction (SBSDME) is a novel technique that integrates both stages into a single device. Its miniaturization (mSBSDME) makes it more portable and compatible with low-availability samples. This article reports the direct combination of mSBSDME and MS using a needle-based electrospray ionization (NESI) emitter as the interface. This combination is applied to determine tetrahydrocannabinol in saliva samples, a relevant societal problem if the global consumption rates of cannabis are considered. The coupling requires only the transference of the magnet (containing the sorbent and the isolated analyte) from the mSBSDME to the hub of a hypodermic needle, where the online elution occurs. The application of 5 kV on the needle forms an electrospray on its tip, transferring the ionized analyte to the MS inlet. The excellent performance of mSBSDME-NESI-MS/MS relies on the sensitivity (limits of detection as low as 2.25 ng mL-1), the precision (relative standard deviation lower than 15%), and the accuracy (relative recoveries ranged from 87 to 127%) obtained. According to the results, the mSBSDME-NESI-MS/MS technique promises faster and more efficient chemical analysis in MS-based applications.


Asunto(s)
Dronabinol , Agujas , Saliva , Espectrometría de Masa por Ionización de Electrospray , Humanos , Saliva/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Dronabinol/análisis , Microextracción en Fase Sólida/métodos , Miniaturización , Límite de Detección
15.
Anal Chem ; 96(21): 8763-8771, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38722793

RESUMEN

Proteomics analysis of mass-limited samples has become increasingly important for understanding biological systems in physiologically relevant contexts such as patient samples, multicellular organoids, spheroids, and single cells. However, relatively low sensitivity in top-down proteomics methods makes their application to mass-limited samples challenging. Capillary electrophoresis (CE) has emerged as an ideal separation method for mass-limited samples due to its high separation resolution, ultralow detection limit, and minimal sample volume requirements. Recently, we developed "spray-capillary", an electrospray ionization (ESI)-assisted device, that is capable of quantitative ultralow-volume sampling (e.g., pL-nL level). Here, we developed a spray-capillary-CE-MS platform for ultrasensitive top-down proteomics analysis of intact proteins in mass-limited complex biological samples. Specifically, to improve the sensitivity of the spray-capillary platform, we incorporated a polyethylenimine (PEI)-coated capillary and optimized the spray-capillary inner diameter. Under optimized conditions, we successfully detected over 200 proteoforms from 50 pg of E. coli lysate. To our knowledge, the spray-capillary CE-MS platform developed here represents one of the most sensitive detection methods for top-down proteomics. Furthermore, in a proof-of-principle experiment, we detected 261 ± 65 and 174 ± 45 intact proteoforms from fewer than 50 HeLa and OVCAR-8 cells, respectively, by coupling nanodroplet-based sample preparation with our optimized CE-MS platform. Overall, our results demonstrate the capability of the modified spray-capillary CE-MS platform to perform top-down proteomics analysis on picogram amounts of samples. This advancement presents the possibility of meaningful top-down proteomics analysis of mass-limited samples down to the level of single mammalian cells.


Asunto(s)
Electroforesis Capilar , Proteómica , Electroforesis Capilar/métodos , Proteómica/métodos , Humanos , Escherichia coli/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas/métodos
16.
Anal Chem ; 96(1): 28-32, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38155587

RESUMEN

We report a technique for the noninvasive detection of skin cancer by imprint desorption electrospray ionization mass spectrometry imaging (DESI-MSI) using a transfer agent that is pressed against the tissue of interest. By noninvasively pressing a tape strip against human skin, metabolites, fatty acids, and lipids on the skin surface are transferred to the tape with little spatial distortion. Running DESI-MSI on the tape strip provides chemical images of the molecules on the skin surface, which are valuable for distinguishing cancer from healthy skin. Chemical components of the tissue imprint on the tape strip and the original basal cell carcinoma (BCC) section from the mass spectra show high consistency. By comparing MS images (about 150-µm resolution) of same molecules from the tape strip and from the BCC section, we confirm that chemical patterns are successfully transferred to the tape stripe. We also used the technique to distinguish cherry angiomas from normal human skin by comparing the molecular patterns from a tape strip. These results demonstrate the potential of the imprint DESI-MSI technique for the noninvasive detection of skin cancers as well as other skin diseases before and during clinical surgery.


Asunto(s)
Carcinoma Basocelular , Neoplasias Cutáneas , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos , Neoplasias Cutáneas/diagnóstico por imagen , Carcinoma Basocelular/diagnóstico , Ácidos Grasos
17.
Anal Chem ; 96(27): 10871-10876, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38937865

RESUMEN

Breath analysis with secondary electrospray ionization (SESI) coupled to mass spectrometry (MS) is a sensitive method for breath metabolomics. To enable quantitative assessments using SESI-MS, a system was developed to introduce controlled amounts of gases into breath samples and carry out standard addition experiments. The system combines gas standard generation through controlled evaporation, humidification, breath dilution, and standard injection with the help of mass-flow controllers. The system can also dilute breath, which affects the signal of the detected components. This response can be used to filter out contaminating compounds in an untargeted metabolomics workflow. The system's quantitative capabilities have been shown through standard addition of pyridine and butyric acid into breath in real time. This system can improve the quality and robustness of breath data.


Asunto(s)
Pruebas Respiratorias , Piridinas , Espectrometría de Masa por Ionización de Electrospray , Pruebas Respiratorias/métodos , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos , Piridinas/análisis , Metabolómica/métodos , Ácido Butírico/análisis , Gases/análisis , Estándares de Referencia
18.
Anal Chem ; 96(16): 6106-6111, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38594830

RESUMEN

This study explores the innovative field of pulsed direct current arc-induced nanoelectrospray ionization mass spectrometry (DCAI-nano-ESI-MS), which utilizes a low-temperature direct current (DC) arc to induce ESI during MS analyses. By employing a 15 kV output voltage, the DCAI-nano-ESI source effectively identifies various biological molecules, including angiotensin II, bradykinin, cytochrome C, and soybean lecithin, showcasing impressive analyte signals and facilitating multicharge MS in positive- and negative-ion modes. Notably, results show that the oxidation of fatty acids using a DC arc produces [M + O - H]- ions, which aid in identifying the location of C═C bonds in unsaturated fatty acids and distinguishing between isomers based on diagnostic ions observed during collision-induced dissociation tandem MS. This study presents an approach for identifying the sn-1 and sn-2 positions in phosphatidylcholine using phosphatidylcholine and nitrate adduct ions, accurately determining phosphatidylcholine molecular configurations via the Paternò-Büchi reaction. With all the advantages above, DCAI-nano-ESI holds significant promise for future analytical and bioanalytical applications.


Asunto(s)
Nanotecnología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Citocromos c/química , Citocromos c/análisis , Bradiquinina/química , Bradiquinina/análisis , Angiotensina II/química , Angiotensina II/análisis , Fosfatidilcolinas/química , Fosfatidilcolinas/análisis , Glycine max/química
19.
Nat Methods ; 18(3): 303-308, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33589837

RESUMEN

Current proteomic approaches disassemble and digest nucleosome particles, blurring readouts of the 'histone code'. To preserve nucleosome-level information, we developed Nuc-MS, which displays the landscape of histone variants and their post-translational modifications (PTMs) in a single mass spectrum. Combined with immunoprecipitation, Nuc-MS quantified nucleosome co-occupancy of histone H3.3 with variant H2A.Z (sixfold over bulk) and the co-occurrence of oncogenic H3.3K27M with euchromatic marks (for example, a >15-fold enrichment of dimethylated H3K79me2). Nuc-MS is highly concordant with chromatin immunoprecipitation-sequencing (ChIP-seq) and offers a new readout of nucleosome-level biology.


Asunto(s)
Histonas/metabolismo , Nucleosomas/metabolismo , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Línea Celular , Inmunoprecipitación de Cromatina/métodos , Células HEK293 , Código de Histonas , Humanos , Metilación
20.
Nat Methods ; 18(7): 788-798, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34127857

RESUMEN

Lysosomes are critical for cellular metabolism and are heterogeneously involved in various cellular processes. The ability to measure lysosomal metabolic heterogeneity is essential for understanding their physiological roles. We therefore built a single-lysosome mass spectrometry (SLMS) platform integrating lysosomal patch-clamp recording and induced nano-electrospray ionization (nanoESI)/mass spectrometry (MS) that enables concurrent metabolic and electrophysiological profiling of individual enlarged lysosomes. The accuracy and reliability of this technique were validated by supporting previous findings, such as the transportability of lysosomal cationic amino acids transporters such as PQLC2 and the lysosomal trapping of lysosomotropic, hydrophobic weak base drugs such as lidocaine. We derived metabolites from single lysosomes in various cell types and classified lysosomes into five major subpopulations based on their chemical and biological divergence. Senescence and carcinoma altered metabolic profiles of lysosomes in a type-specific manner. Thus, SLMS can open more avenues for investigating heterogeneous lysosomal metabolic changes during physiological and pathological processes.


Asunto(s)
Lisosomas/metabolismo , Metabolómica/métodos , Técnicas de Placa-Clamp , Espectrometría de Masa por Ionización de Electrospray/métodos , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Senescencia Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lidocaína/química , Lidocaína/metabolismo , Reproducibilidad de los Resultados , Relación Señal-Ruido , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA