Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.455
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(1-2): 73-84.e15, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30612742

RESUMEN

Local translation meets protein turnover and plasticity demands at synapses, however, the location of its energy supply is unknown. We found that local translation in neurons is powered by mitochondria and not by glycolysis. Super-resolution microscopy revealed that dendritic mitochondria exist as stable compartments of single or multiple filaments. To test if these mitochondrial compartments can serve as local energy supply for synaptic translation, we stimulated individual synapses to induce morphological plasticity and visualized newly synthesized proteins. Depletion of local mitochondrial compartments abolished both the plasticity and the stimulus-induced synaptic translation. These mitochondrial compartments serve as spatially confined energy reserves, as local depletion of a mitochondrial compartment did not affect synaptic translation at remote spines. The length and stability of dendritic mitochondrial compartments and the spatial functional domain were altered by cytoskeletal disruption. These results indicate that cytoskeletally tethered local energy compartments exist in dendrites to fuel local translation during synaptic plasticity.


Asunto(s)
Mitocondrias/metabolismo , Neuronas/metabolismo , Biosíntesis de Proteínas/fisiología , Animales , Citoesqueleto/metabolismo , Dendritas/metabolismo , Espinas Dendríticas/metabolismo , Femenino , Masculino , Mitocondrias/fisiología , Plasticidad Neuronal/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo
2.
Cell ; 176(5): 1143-1157.e13, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30794775

RESUMEN

We tested a newly described molecular memory system, CCR5 signaling, for its role in recovery after stroke and traumatic brain injury (TBI). CCR5 is uniquely expressed in cortical neurons after stroke. Post-stroke neuronal knockdown of CCR5 in pre-motor cortex leads to early recovery of motor control. Recovery is associated with preservation of dendritic spines, new patterns of cortical projections to contralateral pre-motor cortex, and upregulation of CREB and DLK signaling. Administration of a clinically utilized FDA-approved CCR5 antagonist, devised for HIV treatment, produces similar effects on motor recovery post stroke and cognitive decline post TBI. Finally, in a large clinical cohort of stroke patients, carriers for a naturally occurring loss-of-function mutation in CCR5 (CCR5-Δ32) exhibited greater recovery of neurological impairments and cognitive function. In summary, CCR5 is a translational target for neural repair in stroke and TBI and the first reported gene associated with enhanced recovery in human stroke.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Receptores CCR5/metabolismo , Accidente Cerebrovascular/terapia , Anciano , Anciano de 80 o más Años , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Corteza Motora/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores CCR5/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos
3.
Cell ; 162(4): 795-807, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26255772

RESUMEN

Deletion of UBE3A causes the neurodevelopmental disorder Angelman syndrome (AS), while duplication or triplication of UBE3A is linked to autism. These genetic findings suggest that the ubiquitin ligase activity of UBE3A must be tightly maintained to promote normal brain development. Here, we found that protein kinase A (PKA) phosphorylates UBE3A in a region outside of the catalytic domain at residue T485 and inhibits UBE3A activity toward itself and other substrates. A de novo autism-linked missense mutation disrupts this phosphorylation site, causing enhanced UBE3A activity in vitro, enhanced substrate turnover in patient-derived cells, and excessive dendritic spine development in the brain. Our study identifies PKA as an upstream regulator of UBE3A activity and shows that an autism-linked mutation disrupts this phosphorylation control. Moreover, our findings implicate excessive UBE3A activity and the resulting synaptic dysfunction to autism pathogenesis.


Asunto(s)
Síndrome de Angelman/genética , Trastorno Autístico/genética , Mutación Missense , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/metabolismo , Animales , Trastorno Autístico/metabolismo , Encéfalo/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espinas Dendríticas/patología , Embrión de Mamíferos/metabolismo , Estabilidad de Enzimas , Femenino , Humanos , Ratones Endogámicos C57BL , Mutagénesis , Fosforilación , Ubiquitina-Proteína Ligasas/metabolismo
4.
Cell ; 162(4): 808-22, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26255771

RESUMEN

Dendritic spines are postsynaptic compartments of excitatory synapses that undergo dynamic changes during development, including rapid spinogenesis in early postnatal life and significant pruning during adolescence. Spine pruning defects have been implicated in developmental neurological disorders such as autism, yet much remains to be uncovered regarding its molecular mechanism. Here, we show that spine pruning and maturation in the mouse somatosensory cortex are coordinated via the cadherin/catenin cell adhesion complex and bidrectionally regulated by sensory experience. We further demonstrate that locally enhancing cadherin/catenin-dependent adhesion or photo-stimulating a contacting channelrhodopsin-expressing axon stabilized the manipulated spine and eliminated its neighbors, an effect requiring cadherin/catenin-dependent adhesion. Importantly, we show that differential cadherin/catenin-dependent adhesion between neighboring spines biased spine fate in vivo. These results suggest that activity-induced inter-spine competition for ß-catenin provides specificity for concurrent spine maturation and elimination and thus is critical for the molecular control of spine pruning during neural circuit refinement.


Asunto(s)
Cadherinas/metabolismo , Cateninas/metabolismo , Espinas Dendríticas/metabolismo , Corteza Somatosensorial/citología , Animales , Trastorno del Espectro Autista/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cadherinas/genética , Cateninas/genética , Ratones , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Corteza Somatosensorial/metabolismo , Vibrisas/lesiones
5.
Nature ; 622(7981): 112-119, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704727

RESUMEN

The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.


Asunto(s)
Proteómica , Sinapsis , Adolescente , Animales , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Ratones , Adulto Joven , Cognición/fisiología , Espinas Dendríticas , Edad Gestacional , Macaca , Neuronas/metabolismo , Densidad Postsináptica/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Especificidad de la Especie , Sinapsis/metabolismo , Sinapsis/fisiología
6.
Nat Methods ; 21(7): 1298-1305, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898094

RESUMEN

Volumetric imaging of synaptic transmission in vivo requires high spatial and high temporal resolution. Shaping the wavefront of two-photon fluorescence excitation light, we developed Bessel-droplet foci for high-contrast and high-resolution volumetric imaging of synapses. Applying our method to imaging glutamate release, we demonstrated high-throughput mapping of excitatory inputs at >1,000 synapses per volume and >500 dendritic spines per neuron in vivo and unveiled previously unseen features of functional synaptic organization in the mouse primary visual cortex.


Asunto(s)
Sinapsis , Transmisión Sináptica , Animales , Transmisión Sináptica/fisiología , Ratones , Sinapsis/fisiología , Ácido Glutámico/metabolismo , Corteza Visual/fisiología , Corteza Visual/citología , Espinas Dendríticas/fisiología , Neuronas/fisiología , Corteza Visual Primaria/fisiología , Corteza Visual Primaria/diagnóstico por imagen , Ratones Endogámicos C57BL , Microscopía de Fluorescencia por Excitación Multifotónica/métodos
7.
Cell ; 149(4): 923-35, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22559944

RESUMEN

Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Proteínas Activadoras de GTPasa/genética , Duplicación de Gen , Neuronas/citología , Duplicaciones Segmentarias en el Genoma , Animales , Movimiento Celular , Espinas Dendríticas/metabolismo , Evolución Molecular , Humanos , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Estructura Terciaria de Proteína , Especificidad de la Especie
8.
Cell ; 151(4): 709-723, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23141534

RESUMEN

Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development.


Asunto(s)
Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Espinas Dendríticas/metabolismo , Sinapsis/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Haploinsuficiencia , Hipocampo/embriología , Hipocampo/metabolismo , Humanos , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/metabolismo
9.
Cell ; 149(4): 886-98, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579289

RESUMEN

The Arc/Arg3.1 gene product is rapidly upregulated by strong synaptic activity and critically contributes to weakening synapses by promoting AMPA-R endocytosis. However, how activity-induced Arc is redistributed and determines the synapses to be weakened remains unclear. Here, we show targeting of Arc to inactive synapses via a high-affinity interaction with CaMKIIß that is not bound to calmodulin. Synaptic Arc accumulates in inactive synapses that previously experienced strong activation and correlates with removal of surface GluA1 from individual synapses. A lack of CaMKIIß either in vitro or in vivo resulted in loss of Arc upregulation in the silenced synapses. The discovery of Arc's role in "inverse" synaptic tagging that is specific for weaker synapses and prevents undesired enhancement of weak synapses in potentiated neurons reconciles essential roles of Arc both for the late phase of long-term plasticity and for reduction of surface AMPA-Rs in stimulated neurons.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley
10.
EMBO J ; 41(4): e106523, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34935159

RESUMEN

Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+ ) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Espinas Dendríticas/metabolismo , Retículo Endoplásmico/metabolismo , Miosina Tipo V/metabolismo , Actinas/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Calmodulina/metabolismo , Retículo Endoplásmico Liso/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Espectrometría de Masas , Ratones Noqueados , Miosina Tipo V/genética , Dominios y Motivos de Interacción de Proteínas , Ratas Wistar
11.
Nat Rev Neurosci ; 22(7): 407-422, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34050339

RESUMEN

In the brain, most synapses are formed on minute protrusions known as dendritic spines. Unlike their artificial intelligence counterparts, spines are not merely tuneable memory elements: they also embody algorithms that implement the brain's ability to learn from experience and cope with new challenges. Importantly, they exhibit structural dynamics that depend on activity, excitatory input and inhibitory input (synaptic plasticity or 'extrinsic' dynamics) and dynamics independent of activity ('intrinsic' dynamics), both of which are subject to neuromodulatory influences and reinforcers such as dopamine. Here we succinctly review extrinsic and intrinsic dynamics, compare these with parallels in machine learning where they exist, describe the importance of intrinsic dynamics for memory management and adaptation, and speculate on how disruption of extrinsic and intrinsic dynamics may give rise to mental disorders. Throughout, we also highlight algorithmic features of spine dynamics that may be relevant to future artificial intelligence developments.


Asunto(s)
Encéfalo/fisiología , Espinas Dendríticas/fisiología , Trastornos Mentales/fisiopatología , Modelos Neurológicos , Redes Neurales de la Computación , Algoritmos , Animales , Inteligencia Artificial , Encéfalo/citología , Espinas Dendríticas/ultraestructura , Dopamina/fisiología , Humanos , Aprendizaje Automático , Memoria a Corto Plazo/fisiología , Procesos Mentales/fisiología , Plasticidad Neuronal , Neurotransmisores/fisiología , Optogenética , Receptores Dopaminérgicos/fisiología , Recompensa , Especificidad de la Especie , Sinapsis/fisiología
12.
Immunity ; 47(1): 12-14, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28723545

RESUMEN

Sickness in mammals can lead to cognition deficits, although the underlying mechanisms remain elusive. In a recent Nature Medicine article, Garré et al. (2017) report that sickness-induced cortical dendritic spine loss and impaired memory formation is mediated by CX3CR1+ monocyte-derived TNF-α.


Asunto(s)
Espinas Dendríticas/fisiología , Trastornos Mentales/inmunología , Monocitos/fisiología , Neuronas Motoras/fisiología , Red Nerviosa , Plasticidad Neuronal , Virosis/inmunología , Animales , Receptor 1 de Quimiocinas CX3C , Humanos , Memoria , Trastornos Mentales/etiología , Trastornos Mentales/psicología , Ratones , Monocitos/virología , Neuronas Motoras/virología , Poli I-C/inmunología , Receptores de Quimiocina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Virosis/complicaciones , Virosis/psicología
13.
PLoS Biol ; 21(8): e3002274, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37651441

RESUMEN

Dendritic spines, the tiny and actin-rich protrusions emerging from dendrites, are the subcellular locations of excitatory synapses in the mammalian brain that control synaptic activity and plasticity. Dendritic spines contain a specialized form of endoplasmic reticulum (ER), i.e., the spine apparatus, required for local calcium signaling and that is involved in regulating dendritic spine enlargement and synaptic plasticity. Many autism-linked genes have been shown to play critical roles in synaptic formation and plasticity. Among them, KLHL17 is known to control dendritic spine enlargement during development. As a brain-specific disease-associated gene, KLHL17 is expected to play a critical role in the brain, but it has not yet been well characterized. In this study, we report that KLHL17 expression in mice is strongly regulated by neuronal activity and KLHL17 modulates the synaptic distribution of synaptopodin (SYNPO), a marker of the spine apparatus. Both KLHL17 and SYNPO are F-actin-binding proteins linked to autism. SYNPO is known to maintain the structure of the spine apparatus in mature spines and contributes to synaptic plasticity. Our super-resolution imaging using expansion microscopy demonstrates that SYNPO is indeed embedded into the ER network of dendritic spines and that KLHL17 is closely adjacent to the ER/SYNPO complex. Using mouse genetic models, we further show that Klhl17 haploinsufficiency and knockout result in fewer dendritic spines containing ER clusters and an alteration of calcium events at dendritic spines. Accordingly, activity-dependent dendritic spine enlargement and neuronal activation (reflected by extracellular signal-regulated kinase (ERK) phosphorylation and C-FOS expression) are impaired. In addition, we show that the effect of disrupting the KLHL17 and SYNPO association is similar to the results of Klhl17 haploinsufficiency and knockout, further strengthening the evidence that KLHL17 and SYNPO act together to regulate synaptic plasticity. In conclusion, our findings unravel a role for KLHL17 in controlling synaptic plasticity via its regulation of SYNPO and synaptic ER clustering and imply that impaired synaptic plasticity contributes to the etiology of KLHL17-related disorders.


Asunto(s)
Trastorno Autístico , Proteínas de Microfilamentos , Animales , Ratones , Actinas , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Encéfalo , Espinas Dendríticas , Genes fos , Hipertrofia , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo
14.
EMBO Rep ; 25(5): 2348-2374, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589666

RESUMEN

Microglia sculpt developing neural circuits by eliminating excess synapses in a process called synaptic pruning, by removing apoptotic neurons, and by promoting neuronal survival. To elucidate the role of microglia during embryonic and postnatal brain development, we used a mouse model deficient in microglia throughout life by deletion of the fms-intronic regulatory element (FIRE) in the Csf1r locus. Surprisingly, young adult Csf1rΔFIRE/ΔFIRE mice display no changes in excitatory and inhibitory synapse number and spine density of CA1 hippocampal neurons compared with Csf1r+/+ littermates. However, CA1 neurons are less excitable, receive less CA3 excitatory input and show altered synaptic properties, but this does not affect novel object recognition. Cytokine profiling indicates an anti-inflammatory state along with increases in ApoE levels and reactive astrocytes containing synaptic markers in Csf1rΔFIRE/ΔFIRE mice. Notably, these changes in Csf1rΔFIRE/ΔFIRE mice closely resemble the effects of acute microglial depletion in adult mice after normal development. Our findings suggest that microglia are not mandatory for synaptic pruning, and that in their absence pruning can be achieved by other mechanisms.


Asunto(s)
Hipocampo , Microglía , Sinapsis , Animales , Microglía/metabolismo , Sinapsis/metabolismo , Ratones , Hipocampo/metabolismo , Hipocampo/citología , Espinas Dendríticas/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Plasticidad Neuronal , Neuronas/metabolismo , Ácido Glutámico/metabolismo
15.
Nature ; 579(7800): 555-560, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214250

RESUMEN

Dopamine D2 receptors (D2Rs) are densely expressed in the striatum and have been linked to neuropsychiatric disorders such as schizophrenia1,2. High-affinity binding of dopamine suggests that D2Rs detect transient reductions in dopamine concentration (the dopamine dip) during punishment learning3-5. However, the nature and cellular basis of D2R-dependent behaviour are unclear. Here we show that tone reward conditioning induces marked stimulus generalization in a manner that depends on dopamine D1 receptors (D1Rs) in the nucleus accumbens (NAc) of mice, and that discrimination learning refines the conditioning using a dopamine dip. In NAc slices, a narrow dopamine dip (as short as 0.4 s) was detected by D2Rs to disinhibit adenosine A2A receptor (A2AR)-mediated enlargement of dendritic spines in D2R-expressing spiny projection neurons (D2-SPNs). Plasticity-related signalling by Ca2+/calmodulin-dependent protein kinase II and A2ARs in the NAc was required for discrimination learning. By contrast, extinction learning did not involve dopamine dips or D2-SPNs. Treatment with methamphetamine, which dysregulates dopamine signalling, impaired discrimination learning and spine enlargement, and these impairments were reversed by a D2R antagonist. Our data show that D2Rs refine the generalized reward learning mediated by D1Rs.


Asunto(s)
Espinas Dendríticas/fisiología , Aprendizaje Discriminativo/fisiología , Receptores de Dopamina D2/metabolismo , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Condicionamiento Clásico/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Aprendizaje Discriminativo/efectos de los fármacos , Dopamina/metabolismo , Antagonistas de los Receptores de Dopamina D2/farmacología , Extinción Psicológica/efectos de los fármacos , Masculino , Metanfetamina/antagonistas & inhibidores , Metanfetamina/farmacología , Ratones , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Optogenética , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D1/metabolismo , Recompensa , Transducción de Señal/efectos de los fármacos , Sinapsis/metabolismo
16.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38050081

RESUMEN

The outgrowth and stabilization of nascent dendritic spines are crucial processes underlying learning and memory. Most new spines retract shortly after growth; only a small subset is stabilized and integrated into the new circuit connections that support learning. New spine stabilization has been shown to rely upon activity-dependent molecular mechanisms that also contribute to long-term potentiation (LTP) of synaptic strength. Indeed, disruption of the activity-dependent targeting of the kinase CaMKIIα to the GluN2B subunit of the NMDA-type glutamate receptor disrupts both LTP and activity-dependent stabilization of new spines. Yet it is not known which of CaMKIIα's many enzymatic and structural functions are important for new spine stabilization. Here, we used two-photon imaging and photolysis of caged glutamate to monitor the activity-dependent stabilization of new dendritic spines on hippocampal CA1 neurons from mice of both sexes in conditions where CaMKIIα functional and structural interactions were altered. Surprisingly, we found that inhibiting CaMKIIα kinase activity either genetically or pharmacologically did not impair activity-dependent new spine stabilization. In contrast, shRNA knockdown of CaMKIIα abolished activity-dependent new spine stabilization, which was rescued by co-expressing shRNA-resistant full-length CaMKIIα, but not by a truncated monomeric CaMKIIα. Notably, overexpression of phospho-mimetic CaMKIIα-T286D, which exhibits activity-independent targeting to GluN2B, enhanced basal new spine survivorship in the absence of additional glutamatergic stimulation, even when kinase activity was disrupted. Together, our results support a model in which nascent dendritic spine stabilization requires structural and scaffolding interactions mediated by dodecameric CaMKIIα that are independent of its enzymatic activities.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Espinas Dendríticas , Femenino , Masculino , Ratones , Animales , Espinas Dendríticas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Potenciación a Largo Plazo/fisiología , Hipocampo/fisiología , ARN Interferente Pequeño
17.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858079

RESUMEN

Tau pathologies are detected in the brains of some of the most common neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), chronic traumatic encephalopathy (CTE), and frontotemporal dementia (FTD). Tau proteins are expressed in six isoforms with either three or four microtubule-binding repeats (3R tau or 4R tau) due to alternative RNA splicing. AD, LBD, and CTE brains contain pathological deposits of both 3R and 4R tau. FTD patients can exhibit either 4R tau pathologies in most cases or 3R tau pathologies less commonly in Pick's disease, which is a subfamily of FTD. Here, we report the isoform-specific roles of tau in FTD. The P301L mutation, linked to familial 4R tau FTD, induces mislocalization of 4R tau to dendritic spines in primary hippocampal cultures that were prepared from neonatal rat pups of both sexes. Contrastingly, the G272V mutation, linked to familial Pick's disease, induces phosphorylation-dependent mislocalization of 3R tau but not 4R tau proteins to dendritic spines. The overexpression of G272V 3R tau but not 4R tau proteins leads to the reduction of dendritic spine density and suppression of mEPSCs in 5-week-old primary rat hippocampal cultures. The decrease in mEPSC amplitude caused by G272V 3R tau is dynamin-dependent whereas that caused by P301L 4R tau is dynamin-independent, indicating that the two tau isoforms activate different signaling pathways responsible for excitatory synaptic dysfunction. Our 3R and 4R tau studies here will shed new light on diverse mechanisms underlying FTD, AD, LBD, and CTE.


Asunto(s)
Espinas Dendríticas , Demencia Frontotemporal , Mutación , Isoformas de Proteínas , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/genética , Animales , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Ratas , Masculino , Humanos , Femenino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Ratas Sprague-Dawley , Hipocampo/metabolismo , Hipocampo/patología , Células Cultivadas
18.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38830758

RESUMEN

Shank3 is a synaptic scaffolding protein that assists in tethering and organizing structural proteins and glutamatergic receptors in the postsynaptic density of excitatory synapses. The localization of Shank3 at excitatory synapses and the formation of stable Shank3 complexes is regulated by the binding of zinc to the C-terminal sterile-alpha-motif (SAM) domain of Shank3. Mutations in the SAM domain of Shank3 result in altered synaptic function and morphology, and disruption of zinc in synapses that express Shank3 leads to a reduction of postsynaptic proteins important for synaptic structure and function. This suggests that zinc supports the localization of postsynaptic proteins via Shank3. Many regions of the brain are highly enriched with free zinc inside glutamatergic vesicles at presynaptic terminals. At these synapses, zinc transporter 3 (ZnT3) moves zinc into vesicles where it is co-released with glutamate. Alterations in ZnT3 are implicated in multiple neurodevelopmental disorders, and ZnT3 knock-out (KO) mice-which lack synaptic zinc-show behavioral deficits associated with autism spectrum disorder and schizophrenia. Here we show that male and female ZnT3 KO mice have smaller dendritic spines and miniature excitatory postsynaptic current amplitudes than wildtype (WT) mice in the auditory cortex. Additionally, spine size deficits in ZnT3 KO mice are restricted to synapses that express Shank3. In WT mice, synapses that express both Shank3 and ZnT3 have larger spines compared to synapses that express Shank3 but not ZnT3. Together these findings suggest a mechanism whereby presynaptic ZnT3-dependent zinc supports postsynaptic structure and function via Shank3 in a synapse-specific manner.


Asunto(s)
Corteza Auditiva , Proteínas de Transporte de Catión , Espinas Dendríticas , Proteínas del Tejido Nervioso , Sinapsis , Animales , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Sinapsis/metabolismo , Espinas Dendríticas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Corteza Auditiva/metabolismo , Femenino , Masculino , Ratones Noqueados , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Potenciales Postsinápticos Excitadores/fisiología
19.
J Neurosci ; 44(29)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886056

RESUMEN

The small G-protein Ras-related C3 botulinum toxin substrate 1 (Rac1) promotes the formation of filamentous actin (F-actin). Actin is a major component of dendritic spines, and we previously found that alcohol alters actin composition and dendritic spine structure in the nucleus accumbens (NAc) and the dorsomedial striatum (DMS). To examine if Rac1 contributes to these alcohol-mediated adaptations, we measured the level of GTP-bound active Rac1 in the striatum of mice following 7 weeks of intermittent access to 20% alcohol. We found that chronic alcohol intake activates Rac1 in the DMS of male mice. In contrast, Rac1 is not activated by alcohol in the NAc and DLS of male mice or in the DMS of female mice. Similarly, closely related small G-proteins are not activated by alcohol in the DMS, and Rac1 activity is not increased in the DMS by moderate alcohol or natural reward. To determine the consequences of alcohol-dependent Rac1 activation in the DMS of male mice, we inhibited endogenous Rac1 by infecting the DMS of mice with an adeno-associated virus (AAV) expressing a dominant negative form of the small G-protein (Rac1-DN). We found that overexpression of AAV-Rac1-DN in the DMS inhibits alcohol-mediated Rac1 signaling and attenuates alcohol-mediated F-actin polymerization, which corresponded with a decrease in dendritic arborization and spine maturation. Finally, we provide evidence to suggest that Rac1 in the DMS plays a role in alcohol-associated goal-directed learning. Together, our data suggest that Rac1 in the DMS plays an important role in alcohol-dependent structural plasticity and aberrant learning.


Asunto(s)
Cuerpo Estriado , Ratones Endogámicos C57BL , Plasticidad Neuronal , Proteína de Unión al GTP rac1 , Animales , Masculino , Ratones , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Femenino , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Etanol/farmacología , Aprendizaje/fisiología , Aprendizaje/efectos de los fármacos , Neuropéptidos/metabolismo , Neuropéptidos/genética , Espinas Dendríticas/metabolismo , Espinas Dendríticas/efectos de los fármacos
20.
Semin Cell Dev Biol ; 140: 82-89, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35659473

RESUMEN

Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.


Asunto(s)
Espinas Dendríticas , Transmisión Sináptica , Espinas Dendríticas/fisiología , Transmisión Sináptica/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo , Plasticidad Neuronal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA