Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.997
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Microbiol ; 76: 305-323, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075094

RESUMEN

Spore killers are specific genetic elements in fungi that kill sexual spores that do not contain them. A range of studies in the last few years have provided the long-awaited first insights into the molecular mechanistic aspects of spore killing in different fungal models, including both yeast-forming and filamentous Ascomycota. Here we describe these recent advances, focusing on the wtf system in the fission yeast Schizosaccharomyces pombe; the Sk spore killers of Neurospora species; and two spore-killer systems in Podospora anserina, Spok and [Het-s]. The spore killers appear thus far mechanistically unrelated. They can involve large genomic rearrangements but most often rely on the action of just a single gene. Data gathered so far show that the protein domains involved in the killing and resistance processes differ among the systems and are not homologous. The emerging picture sketched by these studies is thus one of great mechanistic and evolutionary diversity of elements that cheat during meiosis and are thereby preferentially inherited over sexual generations.


Asunto(s)
Neurospora , Schizosaccharomyces , Genes Fúngicos , Meiosis , Neurospora/genética , Schizosaccharomyces/genética , Esporas Fúngicas/genética
2.
RNA ; 29(7): 1033-1050, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37019633

RESUMEN

The RNA interference (RNAi) pathway has evolved numerous functionalities in eukaryotes, with many on display in Kingdom Fungi. RNAi can regulate gene expression, facilitate drug resistance, or even be altogether lost to improve growth potential in some fungal pathogens. In the WHO fungal priority pathogen, Aspergillus fumigatus, the RNAi system is known to be intact and functional. To extend our limited understanding of A. fumigatus RNAi, we first investigated the genetic variation in RNAi-associated genes in a collection of 217 environmental and 83 clinical genomes, where we found that RNAi components are conserved even in clinical strains. Using endogenously expressed inverted-repeat transgenes complementary to a conditionally essential gene (pabA) or a nonessential gene (pksP), we determined that a subset of the RNAi componentry is active in inverted-repeat transgene silencing in conidia and mycelium. Analysis of mRNA-seq data from RNAi double-knockout strains linked the A. fumigatus dicer-like enzymes (DclA/B) and RNA-dependent RNA polymerases (RrpA/B) to regulation of conidial ribosome biogenesis genes; however, surprisingly few endogenous small RNAs were identified in conidia that could explain this broad change. Although RNAi was not clearly linked to growth or stress response defects in the RNAi knockouts, serial passaging of RNAi knockout strains for six generations resulted in lineages with diminished spore production over time, indicating that loss of RNAi can exert a fitness cost on the fungus. Cumulatively, A. fumigatus RNAi appears to play an active role in defense against double-stranded RNA species alongside a previously unappreciated housekeeping function in regulation of conidial ribosomal biogenesis genes.


Asunto(s)
Aspergillus fumigatus , Transcriptoma , Aspergillus fumigatus/genética , Interferencia de ARN , Esporas Fúngicas/genética , ARN Bicatenario
3.
PLoS Pathog ; 19(5): e1011397, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216409

RESUMEN

Mycoviruses are widely present in all major groups of fungi but those in entomopathogenic Metarhizium spp. remain understudied. In this investigation, a novel double-stranded (ds) RNA virus is isolated from Metarhizium majus and named Metarhizium majus partitivirus 1 (MmPV1). The complete genome sequence of MmPV1 comprises two monocistronic dsRNA segments (dsRNA 1 and dsRNA 2), which encode an RNA-dependent RNA polymerase (RdRp) and a capsid protein (CP), respectively. MmPV1 is classified as a new member of the genus Gammapartitivirus in the family Partitiviridae based on phylogenetic analysis. As compared to an MmPV1-free strain, two isogenic MmPV1-infected single-spore isolates were compromised in terms of conidiation, and tolerance to heat shock and UV-B irradiation, while these phenotypes were accompanied by transcriptional suppression of multiple genes involved in conidiation, heat shock response and DNA damage repair. MmPV1 attenuated fungal virulence since infection resulted in reduced conidiation, hydrophobicity, adhesion, and cuticular penetration. Additionally, secondary metabolites were significantly altered by MmPV1 infection, including reduced production of triterpenoids, and metarhizins A and B, and increased production of nitrogen and phosphorus compounds. However, expression of individual MmPV1 proteins in M. majus had no impact on the host phenotype, suggesting insubstantive links between defective phenotypes and a single viral protein. These findings indicate that MmPV1 infection decreases M. majus fitness to its environment and its insect-pathogenic lifestyle and environment through the orchestration of the host conidiation, stress tolerance, pathogenicity, and secondary metabolism.


Asunto(s)
Metarhizium , Virus ARN , Virulencia , Metarhizium/genética , Metabolismo Secundario , Filogenia , Virus ARN/genética , Esporas Fúngicas/genética
4.
PLoS Genet ; 18(12): e1009847, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477651

RESUMEN

Meiotic drivers bias gametogenesis to ensure their transmission into more than half the offspring of a heterozygote. In Schizosaccharomyces pombe, wtf meiotic drivers destroy the meiotic products (spores) that do not inherit the driver from a heterozygote, thereby reducing fertility. wtf drivers encode both a Wtfpoison protein and a Wtfantidote protein using alternative transcriptional start sites. Here, we analyze how the expression and localization of the Wtf proteins are regulated to achieve drive. We show that transcriptional timing and selective protein exclusion from developing spores ensure that all spores are exposed to Wtf4poison, but only the spores that inherit wtf4 receive a dose of Wtf4antidote sufficient for survival. In addition, we show that the Mei4 transcription factor, a master regulator of meiosis, controls the expression of the wtf4poison transcript. This transcriptional regulation, which includes the use of a critical meiotic transcription factor, likely complicates the universal suppression of wtf genes without concomitantly disrupting spore viability. We propose that these features contribute to the evolutionary success of the wtf drivers.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Esporas Fúngicas/genética , Proteínas de Schizosaccharomyces pombe/genética , Meiosis , Factores de Transcripción/genética
5.
PLoS Genet ; 18(10): e1010462, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36301993

RESUMEN

Numerous genes required for sexual reproduction remain to be identified even in simple model species like Schizosaccharomyces pombe. To address this, we developed an assay in S. pombe that couples transposon mutagenesis with high-throughput sequencing (TN-seq) to quantitatively measure the fitness contribution of nonessential genes across the genome to sexual reproduction. This approach identified 532 genes that contribute to sex, including more than 200 that were not previously annotated to be involved in the process, of which more than 150 have orthologs in vertebrates. Among our verified hits was an uncharacterized gene, ifs1 (important for sex), that is required for spore viability. In two other hits, plb1 and alg9, we observed a novel mutant phenotype of poor spore health wherein viable spores are produced, but the spores exhibit low fitness and are rapidly outcompeted by wild type. Finally, we fortuitously discovered that a gene previously thought to be essential, sdg1 (social distancing gene), is instead required for growth at low cell densities and can be rescued by conditioned medium. Our assay will be valuable in further studies of sexual reproduction in S. pombe and identifies multiple candidate genes that could contribute to sexual reproduction in other eukaryotes, including humans.


Asunto(s)
Genes Fúngicos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Secuenciación de Nucleótidos de Alto Rendimiento , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Esporas Fúngicas/genética
6.
Mol Microbiol ; 120(6): 830-844, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37800624

RESUMEN

The exopolysaccharide galactosaminogalactan (GAG) contributes to biofilm formation and virulence in the pathogenic fungus Aspergillus fumigatus. Increasing evidence indicates that GAG production is inversely linked with asexual development. However, the mechanisms underlying this regulatory relationship are unclear. In this study, we found that the dysfunction of CreA, a conserved transcription factor involved in carbon catabolite repression in many fungal species, causes abnormal asexual development (conidiation) under liquid-submerged culture conditions specifically in the presence of glucose. The loss of creA decreased GAG production independent of carbon sources. Furthermore, CreA contributed to asexual development and GAG production via distinct pathways. CreA promoted A. fumigatus GAG production by positively regulating GAG biosynthetic genes (uge3 and agd3). CreA suppressed asexual development in glucose liquid-submerged culture conditions via central conidiation genes (brlA, abaA, and wetA) and their upstream activators (flbC and flbD). Restoration of brlA expression to the wild-type level by flbC or flbD deletion abolished the abnormal submerged conidiation in the creA null mutant but did not restore GAG production. The C-terminal region of CreA was crucial for the suppression of asexual development, and the repressive domain contributed to GAG production. Overall, CreA is involved in GAG production and asexual development in an inverse manner.


Asunto(s)
Aspergillus fumigatus , Factores de Transcripción , Aspergillus fumigatus/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Biopelículas , Glucosa
7.
Microbiology (Reading) ; 170(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39073411

RESUMEN

Mucormycosis is an emerging and deadly invasive fungal infection caused by fungi belonging to the Mucorales order. We investigated the myosin superfamily, which encompasses diverse actin-based motor proteins with various cellular functions. Specifically, the role of the Myo5B (ID 179665) protein from the myosin class V family in Mucor lusitanicus was explored by generating silencing phenotypes and null mutants corresponding to the myo5B gene. Silencing fungal transformants exhibited a markedly reduced growth rate and a nearly complete absence of sporulation compared to the wild-type strain. The myo5BΔ null mutant strain displayed atypical characteristics, including abnormally short septa and inflated hyphae. Notably, there were a majority of small yeast-like cells instead of filamentous hyphae in the mutant. These yeast-like cells cannot germinate normally, resulting in a loss of polarity. In vivo virulence assays conducted in the Galleria mellonella invertebrate model revealed that the myo5BΔ mutant strain was avirulent. These findings shed light on the crucial contributions of the Myo5B protein to the dimorphism and pathogenicity of M. lusitanicus. Therefore, the myosin V family is a potential target for future therapeutic interventions aimed at treating mucormycosis.


Asunto(s)
Proteínas Fúngicas , Hifa , Mucor , Hifa/crecimiento & desarrollo , Hifa/genética , Mucor/genética , Mucor/patogenicidad , Mucor/crecimiento & desarrollo , Virulencia , Animales , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Mucormicosis/microbiología , Mariposas Nocturnas/microbiología , Humanos , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética
8.
J Clin Microbiol ; 62(7): e0036924, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38819167

RESUMEN

Azole resistance screening in Aspergillus fumigatus sensu stricto can be routinely carried out by using azole-containing agar plates (E.Def 10.2 procedure); however, conidial suspension filtering and inoculum adjustment before inoculum preparation are time-consuming. We evaluated whether skipping the filtration and inoculum adjustment steps negatively influenced the performance of the E.Def 10.2 procedure. A. fumigatus sensu stricto isolates (n = 98), previously classified as azole susceptible or azole resistant (E.Def 9.4 method), were studied. Azole-resistant isolates had either the wild-type cyp51A gene sequence (n = 1) or the following cyp51A gene substitutions: TR34-L98H (n = 41), G54R (n = 5), TR46-Y121F-T289A (n = 1), or G448S (n = 1). In-house azole-containing agar plates were prepared according to the EUCAST E.Def 10.2 procedure. Conidial suspensions obtained by adding distilled water (Tween 20 0.1%) were either filtered and the inocula adjusted to 0.5 McFarland or left unfiltered and unadjusted. Agreements between the agar screening methods using inocula prepared by each procedure were high for itraconazole (99%), voriconazole (100%), and posaconazole (94.9%). Sensitivity and specificity (considering the susceptibility category as per the microdilution E.Def 9.4 method as the gold standard) of E.Def 10.2 were 100% to rule in or rule out resistance when unfiltered and unadjusted suspensions were used; the resistance phenotype of isolates harboring the TR34-L98H, G54R, or TR46-Y121F-T289A substitutions was correctly detected. Unfiltered and unadjusted conidial suspensions do not negatively influence the performance of the E.Def 10.2 method when screening for azole resistance in A. fumigatus sensu stricto. IMPORTANCE: Azole resistance screening in Aspergillus fumigatus sensu stricto can be routinely carried out by using azole-containing plates (E.Def 10.2 procedure); however, conidial suspension filtering and inoculum adjustment before inoculation of plates are time-consuming. We, here, showed that unfiltered and unadjusted conidial suspensions do not negatively influence the performance of the E.Def 10.2 method when screening for azole resistance in A. fumigatus sensu stricto.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana , Esporas Fúngicas , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Azoles/farmacología , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Humanos , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Medios de Cultivo/química , Proteínas Fúngicas/genética , Agar , Sistema Enzimático del Citocromo P-450/genética
9.
Fungal Genet Biol ; 171: 103877, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38447800

RESUMEN

Airborne fungal spores are a major cause of fungal diseases in humans, animals, and plants as well as contamination of foods. Previous studies found a variety of regulators including VosA, VelB, WetA, and SscA for sporogenesis and the long-term viability in Aspergillus nidulans. To gain a mechanistic understanding of the complex regulatory mechanisms in asexual spores, here, we focused on the relationship between VosA and SscA using comparative transcriptomic analysis and phenotypic studies. The ΔsscA ΔvosA double-mutant conidia have lower spore viability and stress tolerance compared to the ΔsscA or ΔvosA single mutant conidia. Deletion of sscA or vosA affects chitin levels and mRNA levels of chitin biosynthetic genes in conidia. In addition, SscA and VosA are required for the dormant state of conidia and conidial germination by modulating the mRNA levels of the cytoskeleton and development-associated genes. Overall, these results suggest that SscA and VosA play interdependent roles in governing spore maturation, dormancy, and germination in A. nidulans.


Asunto(s)
Aspergillus nidulans , Animales , Humanos , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , ARN Mensajero , Quitina/genética
10.
Fungal Genet Biol ; 172: 103890, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503389

RESUMEN

A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom Pleurotus ostreatus has been shown to be impaired by single-gene mutations in only two meiosis-related genes, mer3 and msh4. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify P. ostreatus genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of Coprinopsis cinerea, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five P. ostreatus genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic pcl1 disruptants and two cro6c disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.


Asunto(s)
Cuerpos Fructíferos de los Hongos , Meiosis , Pleurotus , Esporas Fúngicas , Pleurotus/genética , Pleurotus/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Meiosis/genética , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Genes Esenciales/genética , Transcriptoma/genética
11.
Fungal Genet Biol ; 172: 103894, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657897

RESUMEN

Inactivation of flbA in Aspergillus niger results in thinner cell walls, increased cell lysis, abolished sporulation, and an increased secretome complexity. A total of 36 transcription factor (TF) genes are differentially expressed in ΔflbA. Here, seven of these genes (abaA, aslA, aslB, azf1, htfA, nosA, and srbA) were inactivated. Inactivation of each of these genes affected sporulation and, with the exception of abaA, cell wall integrity and protein secretion. The impact on secretion was strongest in the case of ΔaslA and ΔaslB that showed increased pepsin, cellulase, and amylase activity. Biomass was reduced of agar cultures of ΔabaA, ΔaslA, ΔnosA, and ΔsrbA, while biomass was higher in liquid shaken cultures of ΔaslA and ΔaslB. The ΔaslA and ΔhtfA strains showed increased resistance to H2O2, while ΔaslB was more sensitive to this reactive oxygen species. Together, inactivation of the seven TF genes impacted biomass formation, sporulation, protein secretion, and stress resistance, and thereby these genes explain at least part of the pleiotropic phenotype of ΔflbA of A. niger.


Asunto(s)
Aspergillus niger , Pared Celular , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Fenotipo , Esporas Fúngicas , Factores de Transcripción , Aspergillus niger/genética , Aspergillus niger/metabolismo , Aspergillus niger/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Pared Celular/metabolismo , Pared Celular/genética , Peróxido de Hidrógeno/farmacología , Pleiotropía Genética
12.
Fungal Genet Biol ; 173: 103911, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960372

RESUMEN

Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.


Asunto(s)
Basidiomycota , Cuerpos Fructíferos de los Hongos , Proteínas Fúngicas , Filogenia , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/enzimología , Basidiomycota/genética , Basidiomycota/enzimología , Basidiomycota/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Agaricales/genética , Agaricales/enzimología , Agaricales/crecimiento & desarrollo , Agaricales/metabolismo , Regulación Fúngica de la Expresión Génica , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/enzimología
13.
Yeast ; 41(7): 448-457, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38874213

RESUMEN

Smk1 is a MAPK homolog in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore wall assembly. During this program, haploid cells are surrounded by a layer of mannan and then a layer of glucan. These inner layers of the spore wall resemble the vegetative cell wall. Next, the outer layers consisting of chitin/chitosan and then dityrosine are assembled. The outer layers are spore-specific and provide protection against environmental stressors. Smk1 is required for the proper assembly of spore walls. However, the protective properties of the outer layers have limited our understanding of how Smk1 controls this morphogenetic program. Mutants lacking the chitin deacetylases, Cda1 and Cda2, form spores that lack the outer layers of the spore wall. In this study, cda1,2∆ cells were used to demonstrate that Smk1 promotes deposition of the glucan layer of the spore wall through the partially redundant glucan synthases Gsc2 and Fks3. Although Gsc2 is localized to sites of spore wall assembly in the wild type, it is mislocalized in the mother cell cytoplasm in the smk1∆ mutant. These findings suggest that Smk1 controls assembly of the spore wall by regulating the localization of Gsc2 during sporogenesis.


Asunto(s)
Pared Celular , Glucanos , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Esporas Fúngicas , Pared Celular/metabolismo , Pared Celular/genética , Glucanos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas de la Membrana , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo
14.
PLoS Pathog ; 18(4): e1009832, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35385558

RESUMEN

Coccidioides spp. are mammalian fungal pathogens endemic to the Southwestern US and other desert regions of Mexico, Central and South America, with the bulk of US infections occurring in California and Arizona. In the soil, Coccidioides grows in a hyphal form that differentiates into 3-5 micron asexual spores (arthroconidia). When arthroconidia are inhaled by mammals they undergo a unique developmental transition from polar hyphal growth to isotropic expansion with multiple rounds of nuclear division, prior to segmentation, forming large spherules filled with endospores. Very little is understood about the molecular basis of spherule formation. Here we characterize the role of the conserved transcription factor Ryp1 in Coccidioides development. We show that Coccidioides Δryp1 mutants have altered colony morphology under hypha-promoting conditions and are unable to form mature spherules under spherule-promoting conditions. We analyze the transcriptional profile of wild-type and Δryp1 mutant cells under hypha- and spherule-promoting conditions, thereby defining a set of hypha- or spherule-enriched transcripts ("morphology-regulated" genes) that are dependent on Ryp1 for their expression. Forty percent of morphology-regulated expression is Ryp1-dependent, indicating that Ryp1 plays a dual role in both hyphal and spherule development. Ryp1-dependent transcripts include key virulence factors such as SOWgp, which encodes the spherule outer wall glycoprotein. Concordant with its role in spherule development, we find that the Δryp1 mutant is completely avirulent in the mouse model of coccidioidomycosis, indicating that Ryp1-dependent pathways are essential for the ability of Coccidioides to cause disease. Vaccination of C57BL/6 mice with live Δryp1 spores does not provide any protection from lethal C. posadasii intranasal infection, consistent with our findings that the Δryp1 mutant fails to make mature spherules and likely does not express key antigens required for effective vaccination. Taken together, this work identifies the first transcription factor that drives mature spherulation and virulence in Coccidioides.


Asunto(s)
Coccidioides , Factores de Transcripción , Animales , Coccidioides/genética , Proteínas Fúngicas , Expresión Génica , Mamíferos , Ratones , Ratones Endogámicos C57BL , Esporas Fúngicas/genética , Factores de Transcripción/genética , Virulencia
15.
Appl Environ Microbiol ; 90(4): e0126023, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38501925

RESUMEN

The hydrophobic layer of Aspergillus conidia, composed of RodA, plays a crucial role in conidia transfer and immune evasion. It self-assembles into hydrophobic rodlets through intramolecular disulfide bonds. However, the secretory process of RodA and its regulatory elements remain unknown. Since protein disulfide isomerase (PDI) is essential for the secretion of many disulfide-bonded proteins, we investigated whether PDI is also involved in RodA secretion and assembly. By gene knockout and phenotypic analysis, we found that Pdi1, one of the four PDI-related proteins of Aspergillus fumigatus, determines the hydrophobicity and integrity of the rodlet layer of the conidia. Preservation of the thioredoxin-active domain of Pdi1 was sufficient to maintain conidial hydrophobicity, suggesting that Pdi1 mediates RodA assembly through its disulfide isomerase activity. In the absence of Pdi1, the disulfide mismatch of RodA in conidia may prevent its delivery from the inner to the outer layer of the cell wall for rodlet assembly. This was demonstrated using a strain expressing a key cysteine-mutated RodA. The dormant conidia of the Pdi1-deficient strain (Δpdi) elicited an immune response, suggesting that the defective conidia surface in the absence of Pdi1 exposes internal immunogenic sources. In conclusion, Pdi1 ensures the correct folding of RodA in the inner layer of conidia, facilitating its secretion into the outer layer of the cell wall and allowing self-assembly of the hydrophobic layer. This study has identified a regulatory element for conidia rodlet assembly.IMPORTANCEAspergillus fumigatus is the major cause of invasive aspergillosis, which is mainly transmitted by the inhalation of conidia. The spread of conidia is largely dependent on their hydrophobicity, which is primarily attributed to the self-assembly of the hydrophobic protein RodA on the cell wall. However, the mechanisms underlying RodA secretion and transport to the outermost layer of the cell wall are still unclear. Our study identified a critical role for Pdi1, a fungal protein disulfide isomerase found in regulating RodA secretion and assembly. Inhibition of Pdi1 prevents the formation of correct S-S bonds in the inner RodA, creating a barrier to RodA delivery and resulting in a defective hydrophobic layer. Our findings provided insight into the formation of the conidial hydrophobic layer and suggested potential drug targets to inhibit A. fumigatus infections by limiting conidial dispersal and altering their immune inertia.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Aspergillus fumigatus/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Proteínas Fúngicas/metabolismo , Esporas Fúngicas/genética , Aspergilosis/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Disulfuros/metabolismo
16.
Appl Environ Microbiol ; 90(7): e0027124, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38842339

RESUMEN

Airborne triazole-resistant spores of the human fungal pathogen Aspergillus fumigatus are a significant human health problem as the agricultural use of triazoles has been selecting for cross-resistance to life-saving clinical triazoles. However, how to quantify exposure to airborne triazole-resistant spores remains unclear. Here, we describe a method for cost-effective wide-scale outdoor air sampling to measure both spore abundance as well as antifungal resistance fractions. We show that prolonged outdoor exposure of sticky seals placed in delta traps, when combined with a two-layered cultivation approach, can regionally yield sufficient colony-forming units (CFUs) for the quantitative assessment of aerial resistance levels at a spatial scale that was up to now unfeasible. When testing our method in a European pilot sampling 12 regions, we demonstrate that there are significant regional differences in airborne CFU numbers, and the triazole-resistant fraction of airborne spores is widespread and varies between 0 and 0.1 for itraconazole (∼4 mg/L) and voriconazole (∼2 mg/L). Our efficient and accessible air sampling protocol opens up extensive options for fine-scale spatial sampling and surveillance studies of airborne A. fumigatus.IMPORTANCEAspergillus fumigatus is an opportunistic fungal pathogen that humans and other animals are primarily exposed to through inhalation. Due to the limited availability of antifungals, resistance to the first choice class of antifungals, the triazoles, in A. fumigatus can make infections by this fungus untreatable and uncurable. Here, we describe and validate a method that allows for the quantification of airborne resistance fractions and quick genotyping of A. fumigatus TR-types. Our pilot study provides proof of concept of the suitability of the method for use by citizen-scientists for large-scale spatial air sampling. Spatial air sampling can open up extensive options for surveillance, health-risk assessment, and the study of landscape-level ecology of A. fumigatus, as well as investigating the environmental drivers of triazole resistance.


Asunto(s)
Microbiología del Aire , Antifúngicos , Aspergillus fumigatus , Farmacorresistencia Fúngica , Triazoles , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Triazoles/farmacología , Antifúngicos/farmacología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Monitoreo del Ambiente/métodos
17.
BMC Microbiol ; 24(1): 299, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127645

RESUMEN

The fungus Parastagonospora nodorum causes septoria nodorum blotch on wheat. The role of the fungal Velvet-family transcription factor VeA in P. nodorum development and virulence was investigated here. Deletion of the P. nodorum VeA ortholog, PnVeA, resulted in growth abnormalities including pigmentation, abolished asexual sporulation and highly reduced virulence on wheat. Comparative RNA-Seq and RT-PCR analyses revealed that the deletion of PnVeA also decoupled the expression of major necrotrophic effector genes. In addition, the deletion of PnVeA resulted in an up-regulation of four predicted secondary metabolite (SM) gene clusters. Using liquid-chromatography mass-spectrometry, it was observed that one of the SM gene clusters led to an accumulation of the mycotoxin alternariol. PnVeA is essential for asexual sporulation, full virulence, secondary metabolism and necrotrophic effector regulation.


Asunto(s)
Ascomicetos , Proteínas Fúngicas , Enfermedades de las Plantas , Metabolismo Secundario , Factores de Transcripción , Triticum , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Lactonas , Familia de Multigenes , Micotoxinas/metabolismo , Micotoxinas/genética , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/microbiología , Virulencia/genética
18.
Microb Pathog ; 193: 106756, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901752

RESUMEN

Eucalyptus spp. are undoubtedly one of the most favored plantation trees globally. Accurately identifying Eucalyptus pathogens is therefore crucial for timely disease prevention and control. Recently, symptoms of a leaf blight disease were observed on Eucalyptus trees in plantations at Jhajjar and Karnal in the state of Haryana, northern India. Asexual morphs resembling the features of the Botryosphaeriaceae were consistently isolated from the symptomatic leaves. Morphological features coupled with DNA sequence analysis confirmed a novel species, which is described and illustrated here as Botryosphaeria eucalypti sp. nov. Conidia of the new taxon are longer and wider than those of its phylogenetic neighbors. A distinct phylogenetic position for the new taxon was established through combined analysis of the internal transcribed spacer (ITS), partial translation elongation factor-1α (tef1) and partial ß-tubulin (tub2) regions. Recombination analysis provided additional support for the new species hypothesis. The pathogenicity of the novel species was proved on Eucalyptus leaves, and Koch's postulates were fulfilled. The discovery of new Botryosphaeria species is important because it will help in understanding the species diversity, host range, possible threats and disease control in the long run.


Asunto(s)
Ascomicetos , ADN de Hongos , Eucalyptus , Filogenia , Enfermedades de las Plantas , Hojas de la Planta , Análisis de Secuencia de ADN , Tubulina (Proteína) , Eucalyptus/microbiología , Enfermedades de las Plantas/microbiología , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Ascomicetos/clasificación , Hojas de la Planta/microbiología , India , ADN de Hongos/genética , Tubulina (Proteína)/genética , Factor 1 de Elongación Peptídica/genética , Esporas Fúngicas/genética , ADN Espaciador Ribosómico/genética
19.
Arch Microbiol ; 206(5): 225, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642078

RESUMEN

Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.


Asunto(s)
Cordyceps , Cordyceps/genética , Genes del Tipo Sexual de los Hongos , Fitomejoramiento , Adenosina , Esporas Fúngicas/genética
20.
Int Microbiol ; 27(1): 91-100, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37195349

RESUMEN

The serine-arginine protein kinase-like protein, SrpkF, was identified as a regulator for the cellulose-responsive induction of cellulase genes in Aspergillus aculeatus. To analyze various aspects of SrpkF function, we examined the growth of the control strain (MR12); C-terminus deletion mutant, which produced SrpkF1-327 (ΔCsrpkF); whole gene-deletion mutant of srpkF (ΔsrpkF), srpkF overexpressing strain (OEsprkF); and the complemented strain (srpkF+) under various stress conditions. All test strains grew normally on minimal medium under control, high salt (1.5 M KCl), and high osmolality (2.0 M sorbitol and 1.0 M sucrose). However, only ΔCsrpkF showed reduced conidiation on 1.0 M NaCl media. Conidiation of ΔCsrpkF on 1.0 M NaCl media was reduced to 12% compared with that of srpkF+. Further, when OEsprkF and ΔCsrpkF were pre-cultured under salt stress conditions, germination under salt stress conditions was enhanced in both strains. By contrast, deletion of srpkF did not affect hyphal growth and conidiation under the same conditions. We then quantified the transcripts of the regulators involved in the central asexual conidiation pathway in A. aculeatus. The findings revealed that the expression of brlA, abaA, wetA, and vosA was reduced in ΔCsrpkF under salt stress. These data suggest that in A. aculeatus, SrpkF regulates conidiophore development. The C-terminus of SrpkF seems to be important for regulating SrpkF function in response to culture conditions such as salt stress.


Asunto(s)
Arginina Quinasa , Aspergillus , Proteínas Fúngicas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Arginina Quinasa/genética , Arginina Quinasa/metabolismo , Cloruro de Sodio/metabolismo , Estrés Salino , Esporas Fúngicas/genética , Regulación Fúngica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA