Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72.936
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(10): 2767-2778.e15, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33857423

RESUMEN

Individual neurons in visual cortex provide the brain with unreliable estimates of visual features. It is not known whether the single-neuron variability is correlated across large neural populations, thus impairing the global encoding of stimuli. We recorded simultaneously from up to 50,000 neurons in mouse primary visual cortex (V1) and in higher order visual areas and measured stimulus discrimination thresholds of 0.35° and 0.37°, respectively, in an orientation decoding task. These neural thresholds were almost 100 times smaller than the behavioral discrimination thresholds reported in mice. This discrepancy could not be explained by stimulus properties or arousal states. Furthermore, behavioral variability during a sensory discrimination task could not be explained by neural variability in V1. Instead, behavior-related neural activity arose dynamically across a network of non-sensory brain areas. These results imply that perceptual discrimination in mice is limited by downstream decoders, not by neural noise in sensory representations.


Asunto(s)
Discriminación en Psicología/fisiología , Neuronas/fisiología , Corteza Visual Primaria/fisiología , Percepción Visual , Animales , Nivel de Alerta , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa , Estimulación Luminosa , Corteza Visual Primaria/citología , Umbral Sensorial
2.
Cell ; 184(14): 3748-3761.e18, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34171308

RESUMEN

Lateral intraparietal (LIP) neurons represent formation of perceptual decisions involving eye movements. In circuit models for these decisions, neural ensembles that encode actions compete to form decisions. Consequently, representation and readout of the decision variables (DVs) are implemented similarly for decisions with identical competing actions, irrespective of input and task context differences. Further, DVs are encoded as partially potentiated action plans through balance of activity of action-selective ensembles. Here, we test those core principles. We show that in a novel face-discrimination task, LIP firing rates decrease with supporting evidence, contrary to conventional motion-discrimination tasks. These opposite response patterns arise from similar mechanisms in which decisions form along curved population-response manifolds misaligned with action representations. These manifolds rotate in state space based on context, indicating distinct optimal readouts for different tasks. We show similar manifolds in lateral and medial prefrontal cortices, suggesting similar representational geometry across decision-making circuits.


Asunto(s)
Toma de Decisiones , Percepción de Movimiento/fisiología , Lóbulo Parietal/fisiología , Animales , Conducta Animal , Juicio , Macaca mulatta , Masculino , Modelos Neurológicos , Neuronas/fisiología , Estimulación Luminosa , Corteza Prefrontal/fisiología , Psicofísica , Análisis y Desempeño de Tareas , Factores de Tiempo
3.
Cell ; 183(6): 1600-1616.e25, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33248024

RESUMEN

Rapid phasic activity of midbrain dopamine neurons is thought to signal reward prediction errors (RPEs), resembling temporal difference errors used in machine learning. However, recent studies describing slowly increasing dopamine signals have instead proposed that they represent state values and arise independent from somatic spiking activity. Here we developed experimental paradigms using virtual reality that disambiguate RPEs from values. We examined dopamine circuit activity at various stages, including somatic spiking, calcium signals at somata and axons, and striatal dopamine concentrations. Our results demonstrate that ramping dopamine signals are consistent with RPEs rather than value, and this ramping is observed at all stages examined. Ramping dopamine signals can be driven by a dynamic stimulus that indicates a gradual approach to a reward. We provide a unified computational understanding of rapid phasic and slowly ramping dopamine signals: dopamine neurons perform a derivative-like computation over values on a moment-by-moment basis.


Asunto(s)
Dopamina/metabolismo , Transducción de Señal , Potenciales de Acción/fisiología , Animales , Axones/metabolismo , Calcio/metabolismo , Señalización del Calcio , Cuerpo Celular/metabolismo , Señales (Psicología) , Neuronas Dopaminérgicas/fisiología , Fluorometría , Masculino , Ratones Endogámicos C57BL , Modelos Neurológicos , Estimulación Luminosa , Recompensa , Sensación , Factores de Tiempo , Área Tegmental Ventral/metabolismo , Realidad Virtual
4.
Cell ; 178(3): 640-652.e14, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31280961

RESUMEN

Knowledge abstracted from previous experiences can be transferred to aid new learning. Here, we asked whether such abstract knowledge immediately guides the replay of new experiences. We first trained participants on a rule defining an ordering of objects and then presented a novel set of objects in a scrambled order. Across two studies, we observed that representations of these novel objects were reactivated during a subsequent rest. As in rodents, human "replay" events occurred in sequences accelerated in time, compared to actual experience, and reversed their direction after a reward. Notably, replay did not simply recapitulate visual experience, but followed instead a sequence implied by learned abstract knowledge. Furthermore, each replay contained more than sensory representations of the relevant objects. A sensory code of object representations was preceded 50 ms by a code factorized into sequence position and sequence identity. We argue that this factorized representation facilitates the generalization of a previously learned structure to new objects.


Asunto(s)
Aprendizaje , Memoria , Potenciales de Acción , Adulto , Femenino , Hipocampo/fisiología , Humanos , Magnetoencefalografía , Masculino , Estimulación Luminosa , Recompensa , Adulto Joven
5.
Cell ; 178(2): 447-457.e5, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257030

RESUMEN

Neurons in cortical circuits are often coactivated as ensembles, yet it is unclear whether ensembles play a functional role in behavior. Some ensemble neurons have pattern completion properties, triggering the entire ensemble when activated. Using two-photon holographic optogenetics in mouse primary visual cortex, we tested whether recalling ensembles by activating pattern completion neurons alters behavioral performance in a visual task. Disruption of behaviorally relevant ensembles by activation of non-selective neurons decreased performance, whereas activation of only two pattern completion neurons from behaviorally relevant ensembles improved performance, by reliably recalling the whole ensemble. Also, inappropriate behavioral choices were evoked by the mistaken activation of behaviorally relevant ensembles. Finally, in absence of visual stimuli, optogenetic activation of two pattern completion neurons could trigger behaviorally relevant ensembles and correct behavioral responses. Our results demonstrate a causal role of neuronal ensembles in a visually guided behavior and suggest that ensembles implement internal representations of perceptual states.


Asunto(s)
Conducta Animal , Corteza Visual/fisiología , Animales , Área Bajo la Curva , Calcio/metabolismo , Holografía , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Optogenética/métodos , Estimulación Luminosa , Fotones , Curva ROC
6.
Cell ; 173(1): 153-165.e22, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29502968

RESUMEN

CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury.


Asunto(s)
Cicatriz/patología , Traumatismos de la Médula Espinal/patología , Animales , Axones/fisiología , Axones/efectos de la radiación , Modelos Animales de Enfermedad , Potenciales Evocados/efectos de la radiación , Matriz Extracelular/metabolismo , Fibrosis , Luz , Ratones , Ratones Transgénicos , Pericitos/citología , Pericitos/metabolismo , Estimulación Luminosa , Tractos Piramidales/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Recuperación de la Función , Regeneración , Corteza Sensoriomotora/fisiología , Traumatismos de la Médula Espinal/fisiopatología
7.
Cell ; 169(7): 1291-1302.e14, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28602353

RESUMEN

The emergence of sensory-guided behavior depends on sensorimotor coupling during development. How sensorimotor experience shapes neural processing is unclear. Here, we show that the coupling between motor output and visual feedback is necessary for the functional development of visual processing in layer 2/3 (L2/3) of primary visual cortex (V1) of the mouse. Using a virtual reality system, we reared mice in conditions of normal or random visuomotor coupling. We recorded the activity of identified excitatory and inhibitory L2/3 neurons in response to transient visuomotor mismatches in both groups of mice. Mismatch responses in excitatory neurons were strongly experience dependent and driven by a transient release from inhibition mediated by somatostatin-positive interneurons. These data are consistent with a model in which L2/3 of V1 computes a difference between an inhibitory visual input and an excitatory locomotion-related input, where the balance between these two inputs is finely tuned by visuomotor experience.


Asunto(s)
Desempeño Psicomotor , Corteza Visual/fisiología , Animales , Retroalimentación Sensorial , Femenino , Interneuronas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Optogenética , Estimulación Luminosa , Corteza Visual/citología , Percepción Visual
8.
Annu Rev Neurosci ; 46: 17-37, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428604

RESUMEN

How neurons detect the direction of motion is a prime example of neural computation: Motion vision is found in the visual systems of virtually all sighted animals, it is important for survival, and it requires interesting computations with well-defined linear and nonlinear processing steps-yet the whole process is of moderate complexity. The genetic methods available in the fruit fly Drosophila and the charting of a connectome of its visual system have led to rapid progress and unprecedented detail in our understanding of how neurons compute the direction of motion in this organism. The picture that emerged incorporates not only the identity, morphology, and synaptic connectivity of each neuron involved but also its neurotransmitters, its receptors, and their subcellular localization. Together with the neurons' membrane potential responses to visual stimulation, this information provides the basis for a biophysically realistic model of the circuit that computes the direction of visual motion.


Asunto(s)
Percepción de Movimiento , Animales , Percepción de Movimiento/fisiología , Vías Visuales/fisiología , Drosophila/fisiología , Visión Ocular , Neuronas/fisiología , Estimulación Luminosa
9.
Nature ; 631(8020): 378-385, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961292

RESUMEN

The execution of goal-oriented behaviours requires a spatially coherent alignment between sensory and motor maps. The current model for sensorimotor transformation in the superior colliculus relies on the topographic mapping of static spatial receptive fields onto movement endpoints1-6. Here, to experimentally assess the validity of this canonical static model of alignment, we dissected the visuo-motor network in the superior colliculus and performed in vivo intracellular and extracellular recordings across layers, in restrained and unrestrained conditions, to assess both the motor and the visual tuning of individual motor and premotor neurons. We found that collicular motor units have poorly defined visual static spatial receptive fields and respond instead to kinetic visual features, revealing the existence of a direct alignment in vectorial space between sensory and movement vectors, rather than between spatial receptive fields and movement endpoints as canonically hypothesized. We show that a neural network built according to these kinetic alignment principles is ideally placed to sustain ethological behaviours such as the rapid interception of moving and static targets. These findings reveal a novel dimension of the sensorimotor alignment process. By extending the alignment from the static to the kinetic domain this work provides a novel conceptual framework for understanding the nature of sensorimotor convergence and its relevance in guiding goal-directed behaviours.


Asunto(s)
Modelos Neurológicos , Movimiento , Colículos Superiores , Percepción Visual , Animales , Femenino , Masculino , Objetivos , Cinética , Neuronas Motoras/fisiología , Movimiento/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Reproducibilidad de los Resultados , Colículos Superiores/citología , Colículos Superiores/fisiología , Percepción Visual/fisiología
10.
Nature ; 629(8013): 861-868, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38750353

RESUMEN

A central assumption of neuroscience is that long-term memories are represented by the same brain areas that encode sensory stimuli1. Neurons in inferotemporal (IT) cortex represent the sensory percept of visual objects using a distributed axis code2-4. Whether and how the same IT neural population represents the long-term memory of visual objects remains unclear. Here we examined how familiar faces are encoded in the IT anterior medial face patch (AM), perirhinal face patch (PR) and temporal pole face patch (TP). In AM and PR we observed that the encoding axis for familiar faces is rotated relative to that for unfamiliar faces at long latency; in TP this memory-related rotation was much weaker. Contrary to previous claims, the relative response magnitude to familiar versus unfamiliar faces was not a stable indicator of familiarity in any patch5-11. The mechanism underlying the memory-related axis change is likely intrinsic to IT cortex, because inactivation of PR did not affect axis change dynamics in AM. Overall, our results suggest that memories of familiar faces are represented in AM and perirhinal cortex by a distinct long-latency code, explaining how the same cell population can encode both the percept and memory of faces.


Asunto(s)
Reconocimiento Facial , Memoria a Largo Plazo , Reconocimiento en Psicología , Lóbulo Temporal , Animales , Cara , Reconocimiento Facial/fisiología , Macaca mulatta/fisiología , Memoria a Largo Plazo/fisiología , Neuronas/fisiología , Corteza Perirrinal/fisiología , Corteza Perirrinal/citología , Estimulación Luminosa , Reconocimiento en Psicología/fisiología , Lóbulo Temporal/anatomía & histología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Rotación
11.
Nature ; 626(8001): 1066-1072, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326610

RESUMEN

Animals can learn about sources of danger while minimizing their own risk by observing how others respond to threats. However, the distinct neural mechanisms by which threats are learned through social observation (known as observational fear learning1-4 (OFL)) to generate behavioural responses specific to such threats remain poorly understood. The dorsomedial prefrontal cortex (dmPFC) performs several key functions that may underlie OFL, including processing of social information and disambiguation of threat cues5-11. Here we show that dmPFC is recruited and required for OFL in mice. Using cellular-resolution microendoscopic calcium imaging, we demonstrate that dmPFC neurons code for observational fear and do so in a manner that is distinct from direct experience. We find that dmPFC neuronal activity predicts upcoming switches between freezing and moving state elicited by threat. By combining neuronal circuit mapping, calcium imaging, electrophysiological recordings and optogenetics, we show that dmPFC projections to the midbrain periaqueductal grey (PAG) constrain observer freezing, and that amygdalar and hippocampal inputs to dmPFC opposingly modulate observer freezing. Together our findings reveal that dmPFC neurons compute a distinct code for observational fear and coordinate long-range neural circuits to select behavioural responses.


Asunto(s)
Señales (Psicología) , Miedo , Vías Nerviosas , Corteza Prefrontal , Aprendizaje Social , Animales , Ratones , Amígdala del Cerebelo/fisiología , Calcio/metabolismo , Electrofisiología , Miedo/fisiología , Hipocampo/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética , Sustancia Gris Periacueductal/citología , Sustancia Gris Periacueductal/fisiología , Estimulación Luminosa , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Aprendizaje Social/fisiología , Reacción Cataléptica de Congelación/fisiología
12.
Nature ; 627(8002): 174-181, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355804

RESUMEN

Social interactions represent a ubiquitous aspect of our everyday life that we acquire by interpreting and responding to visual cues from conspecifics1. However, despite the general acceptance of this view, how visual information is used to guide the decision to cooperate is unknown. Here, we wirelessly recorded the spiking activity of populations of neurons in the visual and prefrontal cortex in conjunction with wireless recordings of oculomotor events while freely moving macaques engaged in social cooperation. As animals learned to cooperate, visual and executive areas refined the representation of social variables, such as the conspecific or reward, by distributing socially relevant information among neurons in each area. Decoding population activity showed that viewing social cues influences the decision to cooperate. Learning social events increased coordinated spiking between visual and prefrontal cortical neurons, which was associated with improved accuracy of neural populations to encode social cues and the decision to cooperate. These results indicate that the visual-frontal cortical network prioritizes relevant sensory information to facilitate learning social interactions while freely moving macaques interact in a naturalistic environment.


Asunto(s)
Macaca , Corteza Prefrontal , Aprendizaje Social , Corteza Visual , Animales , Potenciales de Acción , Conducta Cooperativa , Señales (Psicología) , Toma de Decisiones/fisiología , Función Ejecutiva/fisiología , Macaca/fisiología , Neuronas/fisiología , Estimulación Luminosa , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Recompensa , Aprendizaje Social/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Tecnología Inalámbrica
13.
Annu Rev Neurosci ; 44: 517-546, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33914591

RESUMEN

The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex.


Asunto(s)
Corteza Visual , Animales , Ratones , Neuronas , Estimulación Luminosa
14.
Nat Rev Neurosci ; 25(4): 237-252, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38374462

RESUMEN

Sub-additivity and variability are ubiquitous response motifs in the primary visual cortex (V1). Response sub-additivity enables the construction of useful interpretations of the visual environment, whereas response variability indicates the factors that limit the precision with which the brain can do this. There is increasing evidence that experimental manipulations that elicit response sub-additivity often also quench response variability. Here, we provide an overview of these phenomena and suggest that they may have common origins. We discuss empirical findings and recent model-based insights into the functional operations, computational objectives and circuit mechanisms underlying V1 activity. These different modelling approaches all predict that response sub-additivity and variability quenching often co-occur. The phenomenology of these two response motifs, as well as many of the insights obtained about them in V1, generalize to other cortical areas. Thus, the connection between response sub-additivity and variability quenching may be a canonical motif across the cortex.


Asunto(s)
Corteza Visual , Humanos , Corteza Visual/fisiología , Encéfalo , Estimulación Luminosa , Vías Visuales/fisiología
15.
Nature ; 623(7986): 381-386, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880369

RESUMEN

To maintain a stable and clear image of the world, our eyes reflexively follow the direction in which a visual scene is moving. Such gaze-stabilization mechanisms reduce image blur as we move in the environment. In non-primate mammals, this behaviour is initiated by retinal output neurons called ON-type direction-selective ganglion cells (ON-DSGCs), which detect the direction of image motion and transmit signals to brainstem nuclei that drive compensatory eye movements1. However, ON-DSGCs have not yet been identified in the retina of primates, raising the possibility that this reflex is mediated by cortical visual areas. Here we mined single-cell RNA transcriptomic data from primate retina to identify a candidate ON-DSGC. We then combined two-photon calcium imaging, molecular identification and morphological analysis to reveal a population of ON-DSGCs in the macaque retina. The morphology, molecular signature and GABA (γ-aminobutyric acid)-dependent mechanisms that underlie direction selectivity in primate ON-DSGCs are highly conserved with those in other mammals. We further identify a candidate ON-DSGC in human retina. The presence of ON-DSGCs in primates highlights the need to examine the contribution of subcortical retinal mechanisms to normal and aberrant gaze stabilization in the developing and mature visual system.


Asunto(s)
Movimientos Oculares , Macaca , Retina , Células Ganglionares de la Retina , Animales , Humanos , Movimientos Oculares/fisiología , Estimulación Luminosa , Retina/citología , Retina/fisiología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Movimiento (Física) , Análisis de Expresión Génica de una Sola Célula , Ácido gamma-Aminobutírico/metabolismo , Señalización del Calcio , Fijación Ocular/fisiología
16.
Nature ; 610(7930): 135-142, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36104560

RESUMEN

Distinguishing sensory stimuli caused by changes in the environment from those caused by an animal's own actions is a hallmark of sensory processing1. Saccades are rapid eye movements that shift the image on the retina. How visual systems differentiate motion of the image induced by saccades from actual motion in the environment is not fully understood2. Here we discovered that in mouse primary visual cortex (V1) the two types of motion evoke distinct activity patterns. This is because, during saccades, V1 combines the visual input with a strong non-visual input arriving from the thalamic pulvinar nucleus. The non-visual input triggers responses that are specific to the direction of the saccade and the visual input triggers responses that are specific to the direction of the shift of the stimulus on the retina, yet the preferred directions of these two responses are uncorrelated. Thus, the pulvinar input ensures differential V1 responses to external and self-generated motion. Integration of external sensory information with information about body movement may be a general mechanism for sensory cortices to distinguish between self-generated and external stimuli.


Asunto(s)
Movimiento , Movimientos Sacádicos , Corteza Visual , Animales , Ratones , Movimiento/fisiología , Estimulación Luminosa , Retina/fisiología , Movimientos Sacádicos/fisiología , Núcleos Talámicos/fisiología , Corteza Visual/fisiología
17.
Nature ; 608(7921): 146-152, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35831500

RESUMEN

Social affiliation emerges from individual-level behavioural rules that are driven by conspecific signals1-5. Long-distance attraction and short-distance repulsion, for example, are rules that jointly set a preferred interanimal distance in swarms6-8. However, little is known about their perceptual mechanisms and executive neural circuits3. Here we trace the neuronal response to self-like biological motion9,10, a visual trigger for affiliation in developing zebrafish2,11. Unbiased activity mapping and targeted volumetric two-photon calcium imaging revealed 21 activity hotspots distributed throughout the brain as well as clustered biological-motion-tuned neurons in a multimodal, socially activated nucleus of the dorsal thalamus. Individual dorsal thalamus neurons encode local acceleration of visual stimuli mimicking typical fish kinetics but are insensitive to global or continuous motion. Electron microscopic reconstruction of dorsal thalamus neurons revealed synaptic input from the optic tectum and projections into hypothalamic areas with conserved social function12-14. Ablation of the optic tectum or dorsal thalamus selectively disrupted social attraction without affecting short-distance repulsion. This tectothalamic pathway thus serves visual recognition of conspecifics, and dissociates neuronal control of attraction from repulsion during social affiliation, revealing a circuit underpinning collective behaviour.


Asunto(s)
Aglomeración , Neuronas , Conducta Social , Colículos Superiores , Tálamo , Vías Visuales , Pez Cebra , Animales , Mapeo Encefálico , Calcio/análisis , Hipotálamo/citología , Hipotálamo/fisiología , Locomoción , Microscopía Electrónica , Neuronas/citología , Neuronas/fisiología , Neuronas/ultraestructura , Reconocimiento Visual de Modelos , Estimulación Luminosa , Colículos Superiores/citología , Colículos Superiores/fisiología , Tálamo/citología , Tálamo/fisiología , Vías Visuales/citología , Vías Visuales/fisiología , Vías Visuales/ultraestructura , Pez Cebra/fisiología
18.
Nature ; 610(7930): 128-134, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171291

RESUMEN

To increase computational flexibility, the processing of sensory inputs changes with behavioural context. In the visual system, active behavioural states characterized by motor activity and pupil dilation1,2 enhance sensory responses, but typically leave the preferred stimuli of neurons unchanged2-9. Here we find that behavioural state also modulates stimulus selectivity in the mouse visual cortex in the context of coloured natural scenes. Using population imaging in behaving mice, pharmacology and deep neural network modelling, we identified a rapid shift in colour selectivity towards ultraviolet stimuli during an active behavioural state. This was exclusively caused by state-dependent pupil dilation, which resulted in a dynamic switch from rod to cone photoreceptors, thereby extending their role beyond night and day vision. The change in tuning facilitated the decoding of ethological stimuli, such as aerial predators against the twilight sky10. For decades, studies in neuroscience and cognitive science have used pupil dilation as an indirect measure of brain state. Our data suggest that, in addition, state-dependent pupil dilation itself tunes visual representations to behavioural demands by differentially recruiting rods and cones on fast timescales.


Asunto(s)
Color , Pupila , Reflejo Pupilar , Visión Ocular , Corteza Visual , Animales , Oscuridad , Aprendizaje Profundo , Ratones , Estimulación Luminosa , Pupila/fisiología , Pupila/efectos de la radiación , Reflejo Pupilar/fisiología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/fisiología , Factores de Tiempo , Rayos Ultravioleta , Visión Ocular/fisiología , Corteza Visual/fisiología
19.
Annu Rev Neurosci ; 42: 169-186, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857477

RESUMEN

Daylight vision begins when light activates cone photoreceptors in the retina, creating spatial patterns of neural activity. These cone signals are then combined and processed in downstream neural circuits, ultimately producing visual perception. Recent technical advances have made it possible to deliver visual stimuli to the retina that probe this processing by the visual system at its elementary resolution of individual cones. Physiological recordings from nonhuman primate retinas reveal the spatial organization of cone signals in retinal ganglion cells, including how signals from cones of different types are combined to support both spatial and color vision. Psychophysical experiments with human subjects characterize the visual sensations evoked by stimulating a single cone, including the perception of color. Future combined physiological and psychophysical experiments focusing on probing the elementary visual inputs are likely to clarify how neural processing generates our perception of the visual world.


Asunto(s)
Primates/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Visión Ocular/fisiología , Animales , Visión de Colores/fisiología , Percepción de Forma/fisiología , Técnicas de Placa-Clamp , Estimulación Luminosa , Células Ganglionares de la Retina/fisiología , Análisis de la Célula Individual , Percepción Visual/fisiología
20.
Annu Rev Neurosci ; 42: 47-65, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30699049

RESUMEN

The modern cochlear implant (CI) is the most successful neural prosthesis developed to date. CIs provide hearing to the profoundly hearing impaired and allow the acquisition of spoken language in children born deaf. Results from studies enabled by the CI have provided new insights into (a) minimal representations at the periphery for speech reception, (b) brain mechanisms for decoding speech presented in quiet and in acoustically adverse conditions, (c) the developmental neuroscience of language and hearing, and (d) the mechanisms and time courses of intramodal and cross-modal plasticity. Additionally, the results have underscored the interconnectedness of brain functions and the importance of top-down processes in perception and learning. The findings are described in this review with emphasis on the developing brain and the acquisition of hearing and spoken language.


Asunto(s)
Percepción Auditiva/fisiología , Implantes Cocleares , Período Crítico Psicológico , Desarrollo del Lenguaje , Animales , Trastornos de la Percepción Auditiva/etiología , Encéfalo/crecimiento & desarrollo , Implantación Coclear , Comprensión , Señales (Psicología) , Sordera/congénito , Sordera/fisiopatología , Sordera/psicología , Sordera/cirugía , Diseño de Equipo , Humanos , Trastornos del Desarrollo del Lenguaje/etiología , Trastornos del Desarrollo del Lenguaje/prevención & control , Aprendizaje/fisiología , Plasticidad Neuronal , Estimulación Luminosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA