Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.181
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nano Lett ; 24(37): 11690-11696, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39225657

RESUMEN

Precise monitoring of biomolecular radiation damage is crucial for understanding X-ray-induced cell injury and improving the accuracy of clinical radiotherapy. We present the design and performance of lanthanide-DNA-origami nanodosimeters for directly visualizing radiation damage at the single-particle level. Lanthanide ions (Tb3+ or Eu3+) coordinated with DNA origami nanosensors enhance the sensitivity of X-ray irradiation. Atomic force microscopy (AFM) revealed morphological changes in Eu3+-sensitized DNA origami upon X-ray irradiation, indicating damage caused by ionization-generated electrons and free radicals. We further demonstrated the practical applicability of Eu3+-DNA-origami integrated chips in precisely monitoring radiation-mediated cancer radiotherapy. Quantitative results showed consistent trends with flow cytometry and histological examination under comparable X-ray irradiation doses, providing an affordable and user-friendly visualization tool for preclinical applications. These findings provide new insights into the impact of heavy metals on radiation-induced biomolecular damage and pave the way for future research in developing nanoscale radiation sensors for precise clinical radiography.


Asunto(s)
ADN , Elementos de la Serie de los Lantanoides , Microscopía de Fuerza Atómica , ADN/química , ADN/análisis , Humanos , Elementos de la Serie de los Lantanoides/química , Rayos X , Daño del ADN , Europio/química
2.
Anal Chem ; 96(14): 5669-5676, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38527906

RESUMEN

Europium ions (Eu3+) have been utilized as a fluorescence-sensing probe for a variety of analytes, including tetracycline (TC). When Eu3+ is chelated with TC, its fluorescence can be greatly enhanced. Moreover, Eu3+ possesses 6 unpaired electrons in its f orbital, which makes it paramagnetic. Being a hard acid, Eu3+ can chelate with hard bases, such as oxygen-containing functional groups (e.g., phosphates and carboxylates), present on the cell surface of pathogenic bacteria. Due to these properties, in this study, Eu3+ was explored as a magnetic-trapping and sensing probe against pathogenic bacteria present in complex samples. Eu3+ was used as a magnetic probe to trap bacteria such as Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Acinetobacter baumannii, Bacillus cereus, and Pseudomonas aeruginosa. The addition of TC facilitated the easy detection of magnetic Eu3+-bacterium conjugates through fluorescence spectroscopy, with a detection limit of approximately ∼104 CFU mL-1. Additionally, matrix-assisted laser desorption/ionization mass spectrometry was employed to differentiate bacteria tapped by our magnetic probes.


Asunto(s)
Europio , Tetraciclina , Europio/química , Fluorescencia , Antibacterianos , Staphylococcus aureus/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia
3.
Anal Chem ; 96(15): 6012-6020, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564412

RESUMEN

Bacterial vegetative cells turn into metabolically dormant spores in certain environmental situations. Once suitable conditions trigger the germination of spores belonging to the pathogenic bacterial category, public safety and environmental hygiene will be threatened, and lives will even be endangered when encountering fatal ones. Instant identification of pathogenic bacterial spores remains a challenging task, since most current approaches belonging to complicated biological methods unsuitable for onsite sensing or emerging alternative chemical techniques are still inseparable from professional instruments. Here we developed a polychromatic fluorescent nanoprobe for ratiometric detection and visual inspection of the pathogenic bacterial spore biomarker, dipicolinic acid (DPA), realizing rapidly accurate screening of pathogenic bacterial spores such as Bacillus anthracis spores. The nanoprobe is made of aminoclay-coated silicon nanoparticles and functionalized with europium ions, exhibiting selective and sensitive response toward DPA and Bacillus subtilis spores (simulants for Bacillus anthracis spores) with excellent linearity. The proposed sensing strategy allowing spore determination of as few as 0.3 × 105 CFU/mL within 10 s was further applied to real environmental sample detection with good accuracy and reliability. Visual quantitative determination can be achieved by analyzing the RGB values of the corresponding test solution color via a color recognition APP on a smartphone. Different test samples can be photographed at the same time, hence the efficient accomplishment of examining bulk samples within minutes. Potentially employed in various on-site sensing occasions, this strategy may develop into a powerful means for distinguishing hazardous pathogens to facilitate timely and proper actions of dealing with multifarious security issues.


Asunto(s)
Bacillus anthracis , Esporas Bacterianas , Reproducibilidad de los Resultados , Europio , Ácidos Picolínicos , Bacillus subtilis , Colorantes Fluorescentes
4.
Anal Chem ; 96(35): 14248-14256, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39167046

RESUMEN

Precise and rapid identification of pesticides is crucial to ensure a green environment, food safety, and human health. However, complex sample environments often hinder precise identification, especially for simultaneous differentiation of multiple pesticides. Herein, we first synthesize a Eu(III)-functionalized HOF-on-HOF composite (Eu@PFC-1@MA-TPA) and then utilize principal component analysis (PCA) and a machine learning (ML) algorithm to achieve simultaneous identification of the pesticides 2,6-dichloro-4-nitroaniline (DCN) and thiabendazole (TBZ) and their mixtures. Eu@PFC-1@MA-TPA displays high quantitative identification ability, which can distinguish single DCN and TBZ as low as 1 µM and their mixtures at 5 µM through PCA. In addition, the hydrogel film Eu@PFC-1@MA-TPA/AG is fabricated to monitor DCN and TBZ in drinking water, tap water, river water, and apple juice with high sensitivity. Furthermore, based on the obvious fluorescence color variance of pesticides, Eu@PFC-1@MA-TPA/AG achieves visual and in situ imaging detection of single DCN and TBZ and their mixtures. More importantly, we construct an intelligent artificial vision platform integrating Eu@PFC-1@MA-TPA/AG with a DenseNet algorithm, which can identify the concentrations and types of DCN and TBZ and their mixtures within 1 s with over 98% accuracy. This work develops a precise and rapid analysis method for simultaneous identification of multiple pesticides through combining a visualized fluorescence sensor and an ML algorithm.


Asunto(s)
Europio , Aprendizaje Automático , Plaguicidas , Plaguicidas/análisis , Europio/química , Tiabendazol/análisis , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Jugos de Frutas y Vegetales/análisis , Análisis de Componente Principal , Fluoruros/química , Fluoruros/análisis
5.
Anal Chem ; 96(24): 9961-9968, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838250

RESUMEN

In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Europio , Geles , Mediciones Luminiscentes , MicroARNs , Europio/química , MicroARNs/análisis , Técnicas Electroquímicas/métodos , Ligandos , Geles/química , Técnicas Biosensibles/métodos , Límite de Detección , Humanos
6.
Anal Chem ; 96(11): 4589-4596, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38442212

RESUMEN

Herein, novel europium metal-organic gels (Eu-MOGs) with excellent cathode electrochemiluminescence (ECL) emission are first used to construct biosensors for the ultrasensitive detection of miRNA-222. Impressively, N and O elements of organic ligand 2,2':6,2″-terpyridine 4,4',4″-tricarboxylic acid (H3-tctpy) can perfectly coordinate with Eu3+ to form Eu-MOGs, which not only reduce nonradiative transition caused by the intramolecular free rotation of phenyl rings in other MOGs to enhance the ECL signal with extraordinary ECL efficiency as high as 37.2% (vs the [Ru(bpy)3]2+/S2O82- ECL system) but also reinforce ligand-to-metal charge transfer (LMCT) by the strong affinity between Eu3+ and N and O elements to greatly improve the stability of ECL signals. Besides, an improved nucleic acid cascade amplification reaction is developed to greatly raise the conversion efficiency from target miRNA-222 to a DNAzyme-mediated dual-drive DNA walker as output DNA, which can simultaneously shear the specific recognition sites from two directions. In that way, the proposed biosensor can further enhance the detection sensitivity of miRNA-222 with a linear range of 10 aM-1 nM and a detection limit (LOD) of 8.5 aM, which can also achieve an accurate response in cancer cell lysates of MHCC-97L and HeLa. Additionally, the biosensor can be self-regenerated by the folding/unfolding of related triplets with pH changes to simplify experimental operations and reduce the cost. Hence, this work proposed novel MOGs with stable and intense ECL signals for the construction of a renewable ECL biosensor, supplying a reliable detection method in biomarker analysis and disease diagnosis.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , Humanos , Europio , Ligandos , ADN/química , Mediciones Luminiscentes/métodos , MicroARNs/análisis , Técnicas Biosensibles/métodos , Geles , Técnicas Electroquímicas/métodos , Límite de Detección
7.
Anal Chem ; 96(21): 8630-8640, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38722183

RESUMEN

Development of reliable methods for the detection of potential biomarkers is of the utmost importance for an early diagnosis of critical diseases and disorders. In this study, a novel lanthanide-functionalized carbon dot-based fluorescent probe Zn-CD@Eu is reported for the ratiometric detection of dipicolinic acid (DPA) and uric acid (UA). The Zn-CD@Eu nanoprobe was obtained from a simple room-temperature reaction of zinc-doped carbon dots (Zn-CD) and the EDTA-Eu lanthanide complex. Under optimal conditions, a good linear response was obtained for DPA in two concentration ranges of 0-55 and 55-100 µM with a limit of detection of 0.53 and 2.2 µM respectively, which is significantly below the infectious dosage of anthrax (∼55 µM). Furthermore, the Zn-CD@Eu/DPA system was employed for the detection of UA with a detection limit of 0.36 µM in the linear range of 0-100 µM. The fluorescent probe was successfully implemented for determining DPA and UA in human blood serum, sweat, and natural water bodies with considerable recovery rates. In addition, the potential of the nanoprobe for ex vivo visualization of UA was demonstrated in fruit fly (Drosophila melanogaster) as a model organism.


Asunto(s)
Colorantes Fluorescentes , Ácidos Picolínicos , Ácido Úrico , Zinc , Colorantes Fluorescentes/química , Ácidos Picolínicos/análisis , Ácidos Picolínicos/química , Ácido Úrico/análisis , Ácido Úrico/química , Humanos , Zinc/química , Zinc/análisis , Animales , Europio/química , Puntos Cuánticos/química , Cadmio/análisis , Cadmio/química , Carbono/química , Límite de Detección , Imagen Óptica , Drosophila melanogaster
8.
Small ; 20(26): e2310238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38267815

RESUMEN

Cesium lead halide (CsPbX3, X = Br, Cl, and I) nanocrystals (NCs) are widely concerned and applied in many fields due to the excellent photoelectric performance. However, the toxicity of Pb and the loss of luminescence in water limit its application in vivo. A stable perovskite nanomaterial with good bioimaging properties is developed by incorporating europium (Eu) in CsPbX3 NCs followed with the surface coating of silica (SiO2) shell (CsPbX3:Eu@SiO2). Through the surface coating of SiO2, the luminescence stability of CsPbBr3 in water is improved and the leakage of Pb2+ is significantly reduced. In particular, Eu doping inhibits the photoluminescence quantum yield reduction of CsPbBr3 caused by SiO2 coating, and further reduces the release of Pb2+. CsPbBr3:Eu@SiO2 nanoparticles (NPs) show efficient luminescence in water and good biocompatibility to achieve cell imaging. More importantly, CsPb(ClBr)3:Eu@SiO2 NPs are obtained by adjusting the halogen components, and green light and blue light are realized in zebrafish imaging, showing good imaging effect and biosafety. The work provides a strategy for advanced perovskite nanomaterials toward biological practical application.


Asunto(s)
Cesio , Europio , Plomo , Luminiscencia , Nanopartículas , Dióxido de Silicio , Agua , Pez Cebra , Animales , Dióxido de Silicio/química , Europio/química , Nanopartículas/química , Plomo/química , Cesio/química , Agua/química , Titanio/química , Óxidos , Compuestos de Calcio
9.
Chemistry ; 30(33): e202400680, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38593232

RESUMEN

Supramolecular metallogels combine the rheological properties of gels with the color, magnetism, and other properties of metal ions. Lanthanide ions such as Eu(III) can be valuable components of metallogels due to their fascinating luminescence. In this work, we combine Eu(III) and iminodiacetic acid (IDA) into luminescent hydrogels. We investigate the tailoring of the rheological properties of these gels by changes in their metal:ligand ratio. Further, we use the highly sensitive Eu(III) luminescence to obtain information about the chemical structure of the materials. In special, we take advantage of computational calculations to employ an indirect method for structural elucidation, in which the simulated luminescent properties of candidate structures are matched to the experimental data. With this strategy, we can propose molecular structures for different EuIDA gels. We also explore the usage of these gels for the loading of bioactive molecules such as OXA, observing that its aldose reductase activity remains present in the gel. We envision that the findings from this work could inspire the development of luminescent hydrogels with tunable rheology for applications such as 3D printing and imaging-guided drug delivery platforms. Finally, Eu(III) emission-based structural elucidation could be a powerful tool in the characterization of advanced materials.


Asunto(s)
Europio , Hidrogeles , Europio/química , Hidrogeles/química , Luminiscencia , Iminoácidos/química , Reología , Sustancias Luminiscentes/química , Ligandos , Geles/química
10.
Anal Biochem ; 685: 115388, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967783

RESUMEN

The retrospective detection of organophosphorus nerve agents (OPNAs) exposure has been achieved by the off-site analysis of OPNA-human serum albumin (HSA) adducts using mass spectrometry-based detection approaches. However, few specific methods are accessible for on-site detection. To address this, a novel immunofluorescence microfluidic chip (IFMC) testing system combining europium chelated microparticle (EuCM) with self-driven microfluidic chip assay has been established to unambiguously determine soman (GD) and VX exposure within 20 min, respectively. The detection system was based on the principle of indirect competitive enzyme-linked immunosorbent assay. The specific monoclonal antibodies that respectively recognized the phosphonylated tyrosine 411 of GD-HSA and VX-HSA adducts were labeled by EuCM to capture corresponding adducts in the exposed samples. The phosphonylated peptides in the test line and goat-anti-rabbit antibody in the control line were utilized to bind the EuCM-labeled antibodies for signal exhibition. The developed IFMC chip could discriminatively detect exposed HSA adducts with high specificity, demonstrating a low limit of detection at exposure concentrations of 0.5 × 10-6 mol/L VX and 1.0 × 10-6 mol/L GD. The exposed serum samples can be qualitatively detected following an additional pretreatment procedure. This is a novel rapid detection system capable of discriminating GD and VX exposure, providing an alternative method for rapidly identifying OPNA exposure.


Asunto(s)
Soman , Animales , Humanos , Conejos , Soman/metabolismo , Europio , Microfluídica , Estudios Retrospectivos , Albúmina Sérica Humana , Técnica del Anticuerpo Fluorescente
11.
Biomacromolecules ; 25(9): 5758-5770, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39145523

RESUMEN

Lanthanide-containing luminescent hydrogels have shown potential for sensing and imaging applications. Nonetheless, integrating lanthanide ions or complexes into the polymer matrix often results in the poor stability and mechanical strength of the hydrogels. This work presents an innovative approach to fabricating luminescent hydrogels with three dynamic cross-links: imine bond, boronate ester bond, and metal-ligand coordination. Europium(III) (Eu3+) ions are incorporated into a dual-cross-linked matrix composed of phenylboronic acid-polyethylenimine-modified gelatin (PPG) and alginate dialdehyde (ADA) through a combined treatment involving freeze-drying-swelling (FDS) and freeze-thawing (FT) processes. The FDS process facilitates the formation of additional europium-carboxylate cross-links within the polymeric network to enhance its luminescence and stability, while the FT process strengthens the network physically. The impact of the FDS-FT cycle number on the microstructures and properties of PPG/ADA-Eu3+ hydrogels is thoroughly investigated, and their potential for monitoring bacterial growth and detecting copper(II) ions is also demonstrated.


Asunto(s)
Alginatos , Gelatina , Hidrogeles , Alginatos/química , Hidrogeles/química , Gelatina/química , Europio/química , Reactivos de Enlaces Cruzados/química , Liofilización/métodos , Luminiscencia , Congelación , Ácido Glucurónico/química , Ácidos Hexurónicos/química
12.
Analyst ; 149(3): 815-823, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38117163

RESUMEN

The constrained enzymatic activity and aggregation challenges encountered by small-sized nanozymes pose obstacles to their practical utility, necessitating a strategy to mitigate aggregation and boost enzymatic catalytic efficiency. In this work, a negatively charged Eu MOF was utilized as the encapsulation matrix, encapsulating the small-sized nanozymes FeNCDs into the Eu MOF to synthesize an FeNCDs@Eu MOF. The dispersibility of the encapsulated FeNCDs was increased, and owing to the negative charge of the FeNCDs@Eu MOF, electrostatic pre-concentration of the positively charged target molecule tetracycline (TC) was facilitated, thereby amplifying the enzymatic catalytic efficiency of the FeNCDs. The response of the FeNCDs to TC increased by nearly 6 times upon encapsulation. The TC detection limit (LOD) of the FeNCDs@Eu MOF-based sensor is as low as 11.63 nM. The incorporation of fluorescence detection expanded the linear range of the sensor, rendering it more suitable for practical sample detection.


Asunto(s)
Colorimetría , Europio , Tetraciclina , Antibacterianos , Colorantes Fluorescentes , Espectrometría de Fluorescencia
13.
Analyst ; 149(18): 4623-4632, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39101528

RESUMEN

The "antenna effect" is one of the most important energy transfer modes in lanthanide light-emitting polymers. In this study, novel luminescent nanostructured coordination polymers (Eu-PCP) were synthesized in one step using Eu3+ as the central metal ion and 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) as the organic ligand. The unique "antenna effect" observed between Eu3+ and TCPP leads to a substantial improvement in the electrochemiluminescence (ECL) emission efficiency. Eu-PCP exhibits good cathodic ECL characteristics. Additionally, Au@SnS2 nanosheets exhibit favorable electrical conductivity, biocompatibility, and a significant specific surface area. This makes them a suitable choice as substrate materials for the modification of electrode surfaces and capturing antigens. Being well known, the development of sensitive and rapid methods to detect chloramphenicol is essential for food safety. Based on this, we report a novel competitive electrochemiluminescence immunoassay to achieve ultra-sensitive and highly specific detection of chloramphenicol. The linear range was 0.0002-500 ng mL-1 and the detection limit was 0.09 pg mL-1. Apart from that, the experimental results proved that it provided a new analytical tool for the detection of antibiotic residues in food safety.


Asunto(s)
Cloranfenicol , Técnicas Electroquímicas , Europio , Oro , Límite de Detección , Mediciones Luminiscentes , Polímeros , Porfirinas , Europio/química , Cloranfenicol/análisis , Cloranfenicol/química , Inmunoensayo/métodos , Porfirinas/química , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos , Oro/química , Polímeros/química , Contaminación de Alimentos/análisis , Antibacterianos/análisis , Antibacterianos/química , Compuestos de Estaño/química , Animales , Complejos de Coordinación/química
14.
Analyst ; 149(13): 3547-3554, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38767669

RESUMEN

A novel nanocomposite, [Eu(BTD)3(DPBT)]-BSA@MnO2, is reported to serve as an effective nanoprobe for bimodal time-gated luminescence (TGL) and magnetic resonance (MR) imaging of H2O2in vitro and in vivo. The nanoprobe was fabricated by immobilizing visible-light-excitable Eu3+ complexes in bovine serum albumin (BSA)-coated lamellar MnO2 nanosheets. The TGL of the Eu3+ complex was effectively quenched by the MnO2 nanosheets. Upon exposure to H2O2, the MnO2 nanosheets underwent reduction to Mn2+, which simultaneously triggered rapid, selective and sensitive "turn-on" responses toward H2O2 in both TGL and MR detection modes. The presence of a protective "corona" formed by BSA enables the nanoprobe to withstand high concentrations of glutathione (GSH), a strong reducing agent of MnO2 nanosheets. This capability allows the nanoprobe to be utilized for detecting H2O2 in living biosamples. The combined utilization of TGL and MR detection modes enables the nanoprobe to image H2O2 across a wide range of resolutions, from the subcellular level to the whole body, without any depth limitations. The results obtained from these modes can be cross-validated, enhancing the accuracy of the detection. The capability of the nanoprobe was validated by TGL imaging of endogenous and exogenous H2O2 in live HeLa cells, as well as bimodal TGL-MR imaging of H2O2 in tumor-bearing mice. The research achievements suggest that the integration of luminescent lanthanide complexes with protein-coated MnO2 nanosheets offers a promising bimodal TGL-MR sensing platform for H2O2in vitro and in vivo.


Asunto(s)
Europio , Peróxido de Hidrógeno , Imagen por Resonancia Magnética , Compuestos de Manganeso , Óxidos , Albúmina Sérica Bovina , Peróxido de Hidrógeno/química , Albúmina Sérica Bovina/química , Europio/química , Compuestos de Manganeso/química , Animales , Óxidos/química , Imagen por Resonancia Magnética/métodos , Humanos , Ratones , Células HeLa , Mediciones Luminiscentes/métodos , Nanoestructuras/química , Bovinos , Luminiscencia , Nanocompuestos/química , Complejos de Coordinación/química , Límite de Detección
15.
Inorg Chem ; 63(17): 7613-7618, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38632683

RESUMEN

Meloxicam (MLX) is a novel nonsteroidal anti-inflammatory drug, but on the other hand, it has become one of the common microcontaminants in surface waters and sewage. Herein, we report the preparation of a ternary-metal Zn(II)-Cd(II)-Eu(III) nanocluster 1 for the response of MLX through the enhancement of lanthanide luminescence. The luminescence sensing behavior of 1 is expressed by the equation I615nm = 3060 × [MLX] + 46,604, which can be used in the quantitative analysis of MLX concentrations in meloxicam dispersible tablets. Filter paper strips bearing 1 can be used to qualitatively detect MLX by a color change to red under a UV lamp. The luminescence response time is no more than five s, and the detection limit is as low as 2.31 × 10-2 nM.


Asunto(s)
Antiinflamatorios no Esteroideos , Europio , Meloxicam , Zinc , Meloxicam/análisis , Zinc/química , Zinc/análisis , Europio/química , Antiinflamatorios no Esteroideos/análisis , Antiinflamatorios no Esteroideos/química , Mediciones Luminiscentes , Luminiscencia , Nanoestructuras/química , Límite de Detección
16.
Inorg Chem ; 63(29): 13244-13252, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38981109

RESUMEN

As a crucial biological gasotransmitter, hydrogen sulfide (H2S) plays important roles in many pathological and physiological processes. Highly selective and sensitive detection of H2S is significant for the precise diagnosis and evaluation of diverse diseases. Nevertheless, challenges remain in view of the interference of autofluorescence in organisms and the stronger reactivity of H2S itself. Herein, we report the design and synthesis of a novel H2S-responsive ß-diketonate-europium(III) complex-based probe, [Eu(DNB-Npketo)3(terpy)], for background-free time-gated luminescence (TGL) detection and imaging of H2S in autofluorescence-rich biological samples. The probe, consisting of a 2,4-dinitrobenzenesulfonyl (DNB) group coupled to a ß-diketonate-europium(III) complex, shows almost no luminescence owing to the existence of intramolecular photoinduced electron transfer. The cleavage of the DNB group by a H2S-triggered reaction results in the recovery of the long-lived luminescence of the Eu3+ complex, allowing the detection of H2S in complicated biological samples to be performed in TGL mode. The probe showed a fast response, high specificity, and high sensitivity toward H2S, which enabled it to be successfully used for the quantitative TGL detection of H2S in tissue homogenates of mouse organs. Additionally, the low cytotoxicity of the probe allowed it to be further used for the TGL imaging of H2S in living cells and mice under different stimuli. All of the results suggested the potential of the probe for the investigation and diagnosis of H2S-related diseases.


Asunto(s)
Complejos de Coordinación , Europio , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/análisis , Animales , Ratones , Humanos , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Europio/química , Mediciones Luminiscentes , Imagen Óptica , Estructura Molecular , Luminiscencia , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Cetoácidos/química
17.
Inorg Chem ; 63(18): 8336-8341, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38651971

RESUMEN

A cube-like Zn(II)-Eu(III) nanocluster 1 (molecular sizes: 1.8 × 2.0 × 2.0 nm) was constructed by the use of a new long-chain Schiff base ligand. It shows a ratiometric fluorescence response to levofloxacin (LFX) with high sensitivity and selectivity, which can be expressed as I615 nm/I550 nm = A*[LFX]2 + B*[LFX] + C. It is used to quantitatively detect the LFX concentrations in fetal calf serum (FCS) and tablets sold in pharmacy. Filter paper strips bearing 1 can be used to qualitatively detect LFX by a color change to red under a UV lamp. 1 and its hybrid with sodium alginate (SA), 1@SA, display potential applications in the qualitative detection of LFX in FCS and the medicine. The limit of detection of 1 to LFX is as low as 2.1 × 10-2 nM.


Asunto(s)
Alginatos , Europio , Levofloxacino , Zinc , Alginatos/química , Zinc/química , Zinc/sangre , Levofloxacino/sangre , Levofloxacino/análisis , Europio/química , Espectrometría de Fluorescencia , Animales , Humanos , Bovinos , Comprimidos , Colorantes Fluorescentes/química
18.
Inorg Chem ; 63(16): 7199-7205, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38602179

RESUMEN

A nine-metal Zn(II)-Eu(III) nanoring 1 with a diameter of about 2.3 nm was constructed by the use of a long-chain Schiff base ligand. It shows a luminescence response to neopterin (Neo) through the enhancement of lanthanide emission with high selectivity and sensitivity, which can be used to quantitatively analyze the concentrations of Neo in fetal calf serum and urine. The luminescence sensing of 1 to Neo is temperature-dependent, and it displays more obvious response behavior at lower temperatures. Filter paper strips bearing 1 can be used to qualitatively detect Neo by the color change from chartreuse to red under a UV lamp. The limit of detection is as low as 3.77 × 10-2 nM.


Asunto(s)
Europio , Nanoestructuras , Neopterin , Temperatura , Zinc , Zinc/química , Zinc/análisis , Neopterin/análisis , Neopterin/orina , Neopterin/sangre , Europio/química , Nanoestructuras/química , Humanos , Luminiscencia , Mediciones Luminiscentes , Biomarcadores/análisis , Biomarcadores/sangre , Límite de Detección , Animales
19.
Inorg Chem ; 63(32): 15134-15143, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39074382

RESUMEN

Gossypol (Gsp) and antibiotics present in water bodies become organic pollutants that are harmful to human health and the ecological environment. Accurate and effective detection of these pollutants has far-reaching significance in many fields. A new three-dimensional metal-organic framework (MOF), {[Eu3(L)2(HCOO-)(H2O)3]·2H2O·2DMF}n (Eu-MOF), was synthesized from 3,5-bis(2,4-dicarboxylphenyl)nitrobenzene (H4L) ligand and Eu3+ via the solvothermal method in this paper. The Eu-MOF demonstrates strong red fluorescence and can remain stable in different pH solutions. The MOF fluorescence probe could detect organic pollutants through the "shut-off" effect, with a fast response speed and a low detection limit [Gsp, nitrofurantoin (NFT), and nitrofurazone (NFZ) for 0.43, 0.38, and 0.41 µM, respectively]. During the testing process, Eu-MOF exhibited good selectivity and recoverability. Furthermore, the mechanism of fluorescence quenching was investigated, and the recoveries were also good in real samples. This paper introduced a deep learning model to recognize the fluorescence images, a portable intelligent logic detector designed for real-time detection of Gsp by logic gate strategy, and an anticounterfeiting mark prepared based on inkjet printing. Importantly, this work provides a new way of thinking for the detection of organic pollutants in water with high sensitivity and practicality by combining the fluorescence probe with machine learning and logical judgment.


Asunto(s)
Antibacterianos , Europio , Colorantes Fluorescentes , Gosipol , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Europio/química , Antibacterianos/análisis , Antibacterianos/química , Gosipol/análisis , Gosipol/química , Contaminantes Químicos del Agua/análisis , Nitrofuranos/análisis , Espectrometría de Fluorescencia , Estructura Molecular , Límite de Detección
20.
Methods ; 214: 1-7, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075873

RESUMEN

Increasing awareness of the health and environment impacts of the antibiotics misuse or overuse, such as tetracycline (TC) in treatment or prevention of infections and diseases, has driven the development of robust methods for their detection in biological, environmental and food systems. In this work, we report the development of a new europium(III) complex functionalized silica nanoprobe (SiNPs-Eu3+) for highly sensitive and selective detection of TC residue in aqueous solution and food samples (milk and meat). The nanoprobe is developed by immobilization of Eu3+ ion onto the surface of silica nanoparticles (SiNPs) as the emitter and TC recognition unit. The ß-diketone configuration of TC can further coordinate with Eu3+ steadily on the surface of nanoprobe, facilitating the absorption of light excitation for Eu3+ emitter activation and luminescence "off-on" response. The dose-dependent luminescence enhancement of SiNPs-Eu3+ nanoprobe exhibits good linearities, allowing the quantitative detection of TC. The SiNPs-Eu3+ nanoprobe shows high sensitivity and selectivity for TC detection in buffer solution. Time resolved luminescence analysis enables the elimination of autofluorescence and light scattering for highly sensitive detection of TC in milk and pork mince with high accuracy and precision. The successful development of SiNPs-Eu3+ nanoprobe is anticipated to provide a rapid, economic, and robust approach for TC detection in real world samples.


Asunto(s)
Europio , Luminiscencia , Europio/análisis , Europio/química , Dióxido de Silicio , Tetraciclina/análisis , Tetraciclina/química , Antibacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA