Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.345
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 81(3): 459-472.e10, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33382984

RESUMEN

Hi-C has become a routine method for probing the 3D organization of genomes. However, when applied to prokaryotes and archaea, the current protocols are expensive and limited in their resolution. We develop a cost-effective Hi-C protocol to explore chromosome conformations of these two kingdoms at the gene or operon level. We first validate it on E. coli and V. cholera, generating sub-kilobase-resolution contact maps, and then apply it to the euryarchaeota H. volcanii, Hbt. salinarum, and T. kodakaraensis. With a resolution of up to 1 kb, we explore the diversity of chromosome folding in this phylum. In contrast to crenarchaeota, these euryarchaeota lack (active/inactive) compartment-like structures. Instead, their genomes are composed of self-interacting domains and chromatin loops. In H. volcanii, these structures are regulated by transcription and the archaeal structural maintenance of chromosomes (SMC) protein, further supporting the ubiquitous role of these processes in shaping the higher-order organization of genomes.


Asunto(s)
Compartimento Celular , Cromatina/genética , Cromosomas de Archaea , ADN de Archaea/genética , Euryarchaeota/genética , Genoma Arqueal , Transcripción Genética , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica Arqueal , Halobacterium salinarum/genética , Haloferax volcanii/genética , Motivos de Nucleótidos , Filogenia , Thermococcus/genética
2.
Nature ; 601(7892): 257-262, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937940

RESUMEN

The methanogenic degradation of oil hydrocarbons can proceed through syntrophic partnerships of hydrocarbon-degrading bacteria and methanogenic archaea1-3. However, recent culture-independent studies have suggested that the archaeon 'Candidatus Methanoliparum' alone can combine the degradation of long-chain alkanes with methanogenesis4,5. Here we cultured Ca. Methanoliparum from a subsurface oil reservoir. Molecular analyses revealed that Ca. Methanoliparum contains and overexpresses genes encoding alkyl-coenzyme M reductases and methyl-coenzyme M reductases, the marker genes for archaeal multicarbon alkane and methane metabolism. Incubation experiments with different substrates and mass spectrometric detection of coenzyme-M-bound intermediates confirm that Ca. Methanoliparum thrives not only on a variety of long-chain alkanes, but also on n-alkylcyclohexanes and n-alkylbenzenes with long n-alkyl (C≥13) moieties. By contrast, short-chain alkanes (such as ethane to octane) or aromatics with short alkyl chains (C≤12) were not consumed. The wide distribution of Ca. Methanoliparum4-6 in oil-rich environments indicates that this alkylotrophic methanogen may have a crucial role in the transformation of hydrocarbons into methane.


Asunto(s)
Euryarchaeota , Hidrocarburos , Metano , Alcanos/metabolismo , Biodegradación Ambiental , Euryarchaeota/enzimología , Euryarchaeota/genética , Hidrocarburos/metabolismo , Metano/metabolismo , Oxidorreductasas/metabolismo , Filogenia
3.
Nature ; 603(7901): 482-487, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264795

RESUMEN

Methane (CH4), the most abundant hydrocarbon in the atmosphere, originates largely from biogenic sources1 linked to an increasing number of organisms occurring in oxic and anoxic environments. Traditionally, biogenic CH4 has been regarded as the final product of anoxic decomposition of organic matter by methanogenic archaea. However, plants2,3, fungi4, algae5 and cyanobacteria6 can produce CH4 in the presence of oxygen. Although methanogens are known to produce CH4 enzymatically during anaerobic energy metabolism7, the requirements and pathways for CH4 production by non-methanogenic cells are poorly understood. Here, we demonstrate that CH4 formation by Bacillus subtilis and Escherichia coli is triggered by free iron and reactive oxygen species (ROS), which are generated by metabolic activity and enhanced by oxidative stress. ROS-induced methyl radicals, which are derived from organic compounds containing sulfur- or nitrogen-bonded methyl groups, are key intermediates that ultimately lead to CH4 production. We further show CH4 production by many other model organisms from the Bacteria, Archaea and Eukarya domains, including in several human cell lines. All these organisms respond to inducers of oxidative stress by enhanced CH4 formation. Our results imply that all living cells probably possess a common mechanism of CH4 formation that is based on interactions among ROS, iron and methyl donors, opening new perspectives for understanding biochemical CH4 formation and cycling.


Asunto(s)
Archaea , Euryarchaeota , Metano , Archaea/metabolismo , Línea Celular , Fenómenos Fisiológicos Celulares , Humanos , Hierro/metabolismo , Metano/química , Metano/metabolismo , Nitrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Azufre/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(10): e2311321121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408251

RESUMEN

Since their discovery, extracellular vesicles (EVs) have changed our view on how organisms interact with their extracellular world. EVs are able to traffic a diverse array of molecules across different species and even domains, facilitating numerous functions. In this study, we investigate EV production in Euryarchaeota, using the model organism Haloferax volcanii. We uncover that EVs enclose RNA, with specific transcripts preferentially enriched, including those with regulatory potential, and conclude that EVs can act as an RNA communication system between haloarchaea. We demonstrate the key role of an EV-associated small GTPase for EV formation in H. volcanii that is also present across other diverse evolutionary branches of Archaea. We propose the name, ArvA, for the identified family of archaeal vesiculating GTPases. Additionally, we show that two genes in the same operon with arvA (arvB and arvC) are also involved in EV formation. Both, arvB and arvC, are closely associated with arvA in the majority of other archaea encoding ArvA. Our work demonstrates that small GTPases involved in membrane deformation and vesiculation, ubiquitous in Eukaryotes, are also present in Archaea and are widely distributed across diverse archaeal phyla.


Asunto(s)
Euryarchaeota , Vesículas Extracelulares , Haloferax volcanii , Proteínas de Unión al GTP Monoméricas , Euryarchaeota/genética , Archaea/genética , ARN , Haloferax volcanii/genética , Vesículas Extracelulares/genética
5.
Proc Natl Acad Sci U S A ; 120(39): e2303179120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729205

RESUMEN

Anaerobic marine environments are the third largest producer of the greenhouse gas methane. The release to the atmosphere is prevented by anaerobic 'methanotrophic archaea (ANME) dependent on a symbiotic association with sulfate-reducing bacteria or direct reduction of metal oxides. Metagenomic analyses of ANME are consistent with a reverse methanogenesis pathway, although no wild-type isolates have been available for validation and biochemical investigation. Herein is reported the characterization of methanotrophic growth for the diverse marine methanogens Methanosarcina acetivorans C2A and Methanococcoides orientis sp. nov. Growth was dependent on reduction of either ferrihydrite or humic acids revealing a respiratory mode of energy conservation. Acetate and/or formate were end products. Reversal of the well-characterized methanogenic pathways is remarkably like the consensus pathways for uncultured ANME based on extensive metagenomic analyses.


Asunto(s)
Euryarchaeota , Respiración , Archaea/genética , Atmósfera , Consenso
6.
Nat Chem Biol ; 19(6): 695-702, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36658338

RESUMEN

Methanogenic archaea are main actors in the carbon cycle but are sensitive to reactive sulfite. Some methanogens use a sulfite detoxification system that combines an F420H2-oxidase with a sulfite reductase, both of which are proposed precursors of modern enzymes. Here, we present snapshots of this coupled system, named coenzyme F420-dependent sulfite reductase (Group I Fsr), obtained from two marine methanogens. Fsr organizes as a homotetramer, harboring an intertwined six-[4Fe-4S] cluster relay characterized by spectroscopy. The wire, spanning 5.4 nm, electronically connects the flavin to the siroheme center. Despite a structural architecture similar to dissimilatory sulfite reductases, Fsr shows a siroheme coordination and a reaction mechanism identical to assimilatory sulfite reductases. Accordingly, the reaction of Fsr is unidirectional, reducing sulfite or nitrite with F420H2. Our results provide structural insights into this unique fusion, in which a primitive sulfite reductase turns a poison into an elementary block of life.


Asunto(s)
Euryarchaeota , Methanococcales , Methanococcales/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Riboflavina/química , Riboflavina/metabolismo , Sulfitos , Oxidación-Reducción
7.
Proc Natl Acad Sci U S A ; 119(23): e2118638119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35639688

RESUMEN

The conversion of CO2 to value-added products allows both capture and recycling of greenhouse gas emissions. While plants and other photosynthetic organisms play a key role in closing the global carbon cycle, their dependence on light to drive carbon fixation can be limiting for industrial chemical synthesis. Methanogenic archaea provide an alternative platform as an autotrophic microbial species capable of non-photosynthetic CO2 fixation, providing a potential route to engineered microbial fermentation to synthesize chemicals from CO2 without the need for light irradiation. One major challenge in this goal is to connect upstream carbon-fixation pathways with downstream biosynthetic pathways, given the distinct differences in metabolism between archaea and typical heterotrophs. We engineered the model methanogen, Methanococcus maripaludis, to divert acetyl-coenzyme A toward biosynthesis of value-added chemicals, including the bioplastic polyhydroxybutyrate (PHB). A number of studies implicated limitations in the redox pool, with NAD(P)(H) pools in M. maripaludis measured to be <15% of that of Escherichia coli, likely since methanogenic archaea utilize F420 and ferredoxins instead. Multiple engineering strategies were used to precisely target and increase the cofactor pool, including heterologous expression of a synthetic nicotinamide salvage pathway as well as an NAD+-dependent formate dehydrogenase from Candida boidinii. Engineered strains of M. maripaludis with improved NADH pools produced up to 171 ± 4 mg/L PHB and 24.0 ± 1.9% of dry cell weight. The metabolic engineering strategies presented in this study broaden the utility of M. maripaludis for sustainable chemical synthesis using CO2 and may be transferable to related archaeal species.


Asunto(s)
Archaea , Euryarchaeota , Archaea/metabolismo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Crecimiento Quimioautotrófico , Euryarchaeota/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35165204

RESUMEN

Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 ⋅ m-2 ⋅ d-1 Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.


Asunto(s)
Alismatales/metabolismo , Euryarchaeota/metabolismo , Metano/metabolismo , Aerobiosis , Anaerobiosis , Euryarchaeota/clasificación , Sedimentos Geológicos , Mar Mediterráneo , Microbiota , Oxidación-Reducción , Filogenia , Especificidad de la Especie
9.
Proc Natl Acad Sci U S A ; 119(36): e2207190119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037354

RESUMEN

Mercaptoethane sulfonate or coenzyme M (CoM) is the smallest known organic cofactor and is most commonly associated with the methane-forming step in all methanogenic archaea but is also associated with the anaerobic oxidation of methane to CO2 in anaerobic methanotrophic archaea and the oxidation of short-chain alkanes in Syntrophoarchaeum species. It has also been found in a small number of bacteria capable of the metabolism of small organics. Although many of the steps for CoM biosynthesis in methanogenic archaea have been elucidated, a complete pathway for the biosynthesis of CoM in archaea or bacteria has not been reported. Here, we present the complete CoM biosynthesis pathway in bacteria, revealing distinct chemical steps relative to CoM biosynthesis in methanogenic archaea. The existence of different pathways represents a profound instance of convergent evolution. The five-step pathway involves the addition of sulfite, the elimination of phosphate, decarboxylation, thiolation, and the reduction to affect the sequential conversion of phosphoenolpyruvate to CoM. The salient features of the pathway demonstrate reactivities for members of large aspartase/fumarase and pyridoxal 5'-phosphate-dependent enzyme families.


Asunto(s)
Bacterias , Coenzimas , Euryarchaeota , Mesna , Anaerobiosis , Archaea/metabolismo , Bacterias/metabolismo , Coenzimas/biosíntesis , Euryarchaeota/metabolismo , Mesna/metabolismo , Metano/metabolismo , Oxidación-Reducción , Fosfatos/metabolismo
10.
Appl Environ Microbiol ; 90(2): e0109023, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38259075

RESUMEN

Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.


Asunto(s)
Bacterias , Euryarchaeota , Filogenia , Acetatos/metabolismo , Bacterias Anaerobias/metabolismo , Euryarchaeota/metabolismo , Anaerobiosis , Oxidación-Reducción , Firmicutes/metabolismo , Metano/metabolismo , Reactores Biológicos/microbiología
11.
Appl Environ Microbiol ; 90(1): e0158123, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38112444

RESUMEN

Viruses have a potential to modify the ruminal digestion via infection and cell lysis of prokaryotes, suggesting that viruses are related to animal performance and methane production. This study aimed to elucidate the genome-based diversity of rumen viral communities and the differences in virus structure between individuals and cattle breeds and to understand how viruses influence on the rumen. To these ends, a metagenomic sequencing of virus-like particles in the rumen of 22 Japanese cattle, including Japanese Black (JB, n = 8), Japanese Shorthorn (n = 2), and Japanese Black sires × Holstein dams crossbred steers (F1, n = 12) was conducted. Additionally, the rumen viromes of six JB and six F1 that were fed identical diets and kept in a single barn were compared. A total of 8,232 non-redundant viral genomes (≥5-kb length and ≥50% completeness), including 982 complete genomes, were constructed, and rumen virome exhibited lysogenic signatures. Furthermore, putative hosts of 1,223 viral genomes were predicted using tRNA and clustered regularly interspaced short palindromic repeat (CRISPR)-spacer matching. The genomes included 1 and 10 putative novel complete genomes associated with Fibrobacter and Ruminococcus, respectively, which are the main rumen cellulose-degrading bacteria. Additionally, the hosts of 22 viral genomes, including 2 complete genomes, were predicted as methanogens, such as Methanobrevibacter and Methanomethylophilus. Most rumen viruses were highly rumen and individual specific and related to rumen-specific prokaryotes. Furthermore, the rumen viral community structure was significantly different between JB and F1 steers, indicating that cattle breed is one of the factors influencing the rumen virome composition.IMPORTANCEHere, we investigated the individual and breed differences of the rumen viral community in Japanese cattle. In the process, we reconstructed putative novel complete viral genomes related to rumen fiber-degrading bacteria and methanogen. The finding strongly suggests that rumen viruses contribute to cellulose and hemicellulose digestion and methanogenesis. Notably, this study also found that rumen viruses are highly rumen and individual specific, suggesting that rumen viruses may not be transmitted through environmental exposure. More importantly, we revealed differences of viral communities between JB and F1 cattle, indicating that cattle breed is a factor that influences the establishment of rumen virome. These results suggest the possibility of rumen virus transmission from mother to offspring and its potential to influence beef production traits. These rumen viral genomes and findings provide new insights into the characterizations of the rumen viruses.


Asunto(s)
Euryarchaeota , Rumen , Humanos , Bovinos , Animales , Fermentación , Rumen/microbiología , Bacterias/genética , Dieta/veterinaria , Celulosa/metabolismo , Metano/metabolismo , Digestión
12.
Appl Environ Microbiol ; 90(4): e0235123, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38517167

RESUMEN

In rice paddies, soil and plant-derived organic matter are degraded anaerobically to methane (CH4), a powerful greenhouse gas. The highest rate of methane emission occurs during the reproductive stage of the plant when mostly dicarboxylic acids are exudated by the roots. The emission of methane at this stage depends largely on the cooperative interaction between dicarboxylic acid-fermenting bacteria and methanogenic archaea in the rhizosphere. The fermentation of tartrate, one of the major acids exudated, has been scarcely explored in rice paddy soils. In this work, we characterized an anaerobic consortium from rice paddy soil composed of four bacterial strains, whose principal member (LT8) can ferment tartrate, producing H2 and acetate. Tartrate fermentation was accelerated by co-inoculation with a hydrogenotrophic methanogen. The assembled genome of LT8 possesses a Na+-dependent oxaloacetate decarboxylase and shows that this bacterium likely invests part of the H2 produced to reduce NAD(P)+ to assimilate C from tartrate. The phylogenetic analysis of the 16S rRNA gene, the genome-based classification as well as the average amino acid identity (AAI) indicated that LT8 belongs to a new genus within the Sporomusaceae family. LT8 shares a few common features with its closest relatives, for which tartrate degradation has not been described. LT8 is limited to a few environments but is more common in rice paddy soils, where it might contribute to methane emissions from root exudates.IMPORTANCEThis is the first report of the metabolic characterization of a new anaerobic bacterium able to degrade tartrate, a compound frequently associated with plants, but rare as a microbial metabolite. Tartrate fermentation by this bacterium can be coupled to methanogenesis in the rice rhizosphere where tartrate is mainly produced at the reproductive stage of the plant, when the maximum methane rate emission occurs. The interaction between secondary fermentative bacteria, such as LT8, and methanogens could represent a fundamental step in exploring mitigation strategies for methane emissions from rice fields. Possible strategies could include controlling the activity of these secondary fermentative bacteria or selecting plants whose exudates are more difficult to ferment.


Asunto(s)
Euryarchaeota , Oryza , Suelo/química , Oryza/microbiología , Fermentación , Tartratos/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Filogenia , Composición de Base , Análisis de Secuencia de ADN , Bacterias , Bacterias Anaerobias/metabolismo , Euryarchaeota/metabolismo , Firmicutes/metabolismo , Bacterias Gramnegativas/genética , Metano/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-38634834

RESUMEN

A novel mesophilic, hydrogenotrophic methanogen, strain CWC-04T, was obtained from a sediment sample extracted from a gravity core retrieved at station 22 within the KP-9 area off the southwestern coast of Taiwan during the ORIII-1368 cruise in 2009. Cells of strain CWC-04T were rod-shaped, 1.4-2.9 µm long by 0.5-0.6 µm wide, and occurred singly. Strain CWC-04Tutilized formate, H2/CO2, 2-propanol/CO2 or 2-butanol/CO2 as catabolic substrates. The optimal growth conditions were 42 °C, 0.17 M NaCl and pH 5.35. The genomic DNA G+C content calculated from the genome sequence of strain CWC-04T was 46.19 mol%. Phylogenetic analysis of 16S rRNA gene revealed that strain CWC-04T is affiliated with the genus Methanocella. The 16S rRNA gene sequences similarities within strains Methanocella arvoryzae MRE50T, Methanocella paludicola SANAET and Methanocella conradii HZ254T were 93.7, 93.0 and 91.3 %, respectively. In addition, the optical density of CWC-04T culture dropped abruptly upon entering the late-log growth phase, with virus-like particles (150 nm in diameter) being observed on and around the cells. This observation suggests that strain CWC-04T harbours a lytic virus. Based on these phenotypic, phylogenetic and genomic results, we propose that strain CWC-04T represents a novel species of a novel genus in the family Methanocellaceae, for which the name Methanooceanicella nereidis gen. nov., sp. nov. is proposed. The type strain is CWC-04T (=BCRC AR10050T=NBRC 113165T).


Asunto(s)
Dióxido de Carbono , Euryarchaeota , Composición de Base , Filogenia , ARN Ribosómico 16S/genética , Taiwán , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Metano
14.
Extremophiles ; 28(2): 22, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546878

RESUMEN

The taxonomic status of some species of Halobellus, Haloferax, Halogranum, and Haloplanus within the family Haloferacaceae was elucidated by phylogenetic, phylogenomic, and comparative genomic analyses. The relative species of each genus should constitute a single species based on the overall genome-related indexes proposed for species demarcation. The cutoff values of AAI (72.1%), ANI (82.2%), and rpoB' gene similarity (90.7%) were proposed to differentiate genera within the family Haloferacaceae. According to these standards, a novel genus related to the genus Halobaculum was proposed to accommodate Halobaculum halophilum Gai3-2 T and Halobaculum salinum NJ-3-1 T. Five halophilic archaeal strains, DT31T, DT55T, DT92T, SYNS20T, and YSMS11T, isolated from a tidal flat and a marine solar saltern in China, were subjected to polyphasic classification. The phenotypic, phylogenetic, phylogenomic, and comparative genomic analyses revealed that strains DT31T (= CGMCC 1.18923 T = JCM 35417 T), DT55T (= CGMCC 1.19048 T = JCM 36147 T), DT92T (= CGMCC 1.19057 T = JCM 36148 T), SYNS20T (= CGMCC 1.62628 T = JCM 36154 T), and YSMS11T (= CGMCC 1.18927 T = JCM 34912 T) represent five novel species of the genus Halobaculum, for which the names, Halobaculum lipolyticum sp. nov., Halobaculum marinum sp. nov., Halobaculum litoreum sp. nov., Halobaculum halobium sp. nov., and Halobaculum limi sp. nov., are proposed.


Asunto(s)
Euryarchaeota , Halobacteriaceae , Filogenia , ADN de Archaea/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Euryarchaeota/genética , China , Glucolípidos
15.
Environ Sci Technol ; 58(15): 6637-6646, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38580315

RESUMEN

Methanogenesis is a critical process in the carbon cycle that is applied industrially in anaerobic digestion and biogas production. While naturally occurring in diverse environments, methanogenesis requires anaerobic and reduced conditions, although varying degrees of oxygen tolerance have been described. Microaeration is suggested as the next step to increase methane production and improve hydrolysis in digestion processes; therefore, a deeper understanding of the methanogenic response to oxygen stress is needed. To explore the drivers of oxygen tolerance in methanogenesis, two parallel enrichments were performed under the addition of H2/CO2 in an environment without reducing agents and in a redox-buffered environment by adding redox mediator 9,10-anthraquinone-2,7-disulfonate disodium. The cellular response to oxidative conditions is mapped using proteomic analysis. The resulting community showed remarkable tolerance to high-redox environments and was unperturbed in its methane production. Next to the expression of pathways to mitigate reactive oxygen species, the higher redox potential environment showed an increased presence of selenocysteine and selenium-associated pathways. By including sulfur-to-selenium mass shifts in a proteomic database search, we provide the first evidence of the dynamic and large-scale incorporation of selenocysteine as a response to oxidative stress in hydrogenotrophic methanogenesis and the presence of a dynamic selenoproteome.


Asunto(s)
Euryarchaeota , Selenio , Metano , Proteómica , Selenocisteína/metabolismo , Euryarchaeota/metabolismo , Estrés Oxidativo , Oxígeno , Anaerobiosis , Reactores Biológicos
16.
Appl Microbiol Biotechnol ; 108(1): 60, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183483

RESUMEN

The potential consequences for mankind could be disastrous due to global warming, which arises from an increase in the average temperature on Earth. The elevation in temperature primarily stems from the escalation in the concentration of greenhouse gases (GHG) such as CO2, CH4, and N2O within the atmosphere. Among these gases, methane (CH4) is particularly significant in driving alterations to the worldwide climate. Methanotrophic bacteria possess the distinctive ability to employ methane as both as source of carbon and energy. These bacteria show great potential as exceptional biocatalysts in advancing C1 bioconversion technology. The present review describes recent findings in methanotrophs including aerobic and anaerobic methanotroph bacteria, phenotypic characteristics, biotechnological potential, their physiology, ecology, and native multi-carbon utilizing pathways, and their molecular biology. The existing understanding of methanogenesis and methanotrophy in soil, as well as anaerobic methane oxidation and methanotrophy in temperate and extreme environments, is also covered in this discussion. New types of methanogens and communities of methanotrophic bacteria have been identified from various ecosystems and thoroughly examined for a range of biotechnological uses. Grasping the processes of methanogenesis and methanotrophy holds significant importance in the development of innovative agricultural techniques and industrial procedures that contribute to a more favorable equilibrium of GHG. This current review centers on the diversity of emerging methanogen and methanotroph species and their effects on the environment. By amalgamating advanced genetic analysis with ecological insights, this study pioneers a holistic approach to unraveling the biopotential of methanotrophs, offering unprecedented avenues for biotechnological applications. KEY POINTS: • The physiology of methanotrophic bacteria is fundamentally determined. • Native multi-carbon utilizing pathways in methanotrophic bacteria are summarized. • The genes responsible for encoding methane monooxygenase are discussed.


Asunto(s)
Euryarchaeota , Gases de Efecto Invernadero , Ecosistema , Agricultura , Biotecnología , Carbono , Metano
17.
Appl Microbiol Biotechnol ; 108(1): 127, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229305

RESUMEN

For several decades, the formation of microbial self-aggregates, known as granules, has been extensively documented in the context of anaerobic digestion. However, current understanding of the underlying microbial-associated mechanisms responsible for this phenomenon remains limited. This study examined morphological and biochemical changes associated with cell aggregation in model co-cultures of the syntrophic propionate oxidizing bacterium Syntrophobacterium fumaroxidans and hydrogenotrophic methanogens, Methanospirillum hungatei or Methanobacterium formicicum. Formerly, we observed that when syntrophs grow for long periods with methanogens, cultures tend to form aggregates visible to the eye. In this study, we maintained syntrophic co-cultures of S. fumaroxidans with either M. hungatei or M. formicicum for a year in a fed-batch growth mode to stimulate aggregation. Millimeter-scale aggregates were observed in both co-cultures within the first 5 months of cultivation. In addition, we detected quorum sensing molecules, specifically N-acyl homoserine lactones, in co-culture supernatants preceding the formation of macro-aggregates (with diameter of more than 20 µm). Comparative transcriptomics revealed higher expression of genes related to signal transduction, polysaccharide secretion and metal transporters in the late-aggregation state co-cultures, compared to the initial ones. This is the first study to report in detail both biochemical and physiological changes associated with the aggregate formation in syntrophic methanogenic co-cultures. KEYPOINTS: • Syntrophic co-cultures formed mm-scale aggregates within 5 months of fed-batch cultivation. • N-acyl homoserine lactones were detected during the formation of aggregates. • Aggregated co-cultures exhibited upregulated expression of adhesins- and polysaccharide-associated genes.


Asunto(s)
Deltaproteobacteria , Euryarchaeota , Homoserina/metabolismo , Euryarchaeota/metabolismo , Polisacáridos/metabolismo , Lactonas/metabolismo , Metano/metabolismo
18.
Appl Microbiol Biotechnol ; 108(1): 192, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305902

RESUMEN

Micro-aeration was shown to improve anaerobic digestion (AD) processes, although oxygen is known to inhibit obligate anaerobes, such as syntrophic communities of bacteria and methanogens. The effect of micro-aeration on the activity and microbial interaction in syntrophic communities, as well as on the potential establishment of synergetic relationships with facultative anaerobic bacteria (FAB) or aerobic bacteria (AB), was investigated. Anaerobic sludge was incubated with ethanol and increasing oxygen concentrations (0-5% in the headspace). Assays with acetate or H2/CO2 (direct substrates for methanogens) were also performed. When compared with the controls (0% O2), oxygen significantly decreased substrate consumption and initial methane production rate (MPR) from acetate or H2/CO2. At 0.5% O2, MPR from these substrates was inhibited 30-40%, and close to 100% at 5% O2. With ethanol, significant inhibition (>36%) was only observed for oxygen concentrations higher than 2.5%. Oxygen was consumed in the assays, pointing to the stimulation of AB/FAB by ethanol, which helped to protect the syntrophic consortia under micro-aerobic conditions. This highlights the importance of AB/FAB in maintaining functional and resilient syntrophic communities, which is relevant for real AD systems (in which vestigial O2 amounts are frequently present), as well as for AD systems using micro-aeration as a process strategy. KEY POINTS: •Micro-aeration impacts syntrophic communities of bacteria and methanogens. •Oxygen stimulates AB/FAB, maintaining functional and resilient consortia. •Micro-aeration studies are critical for systems using micro-aeration as a process strategy.


Asunto(s)
Euryarchaeota , Aguas del Alcantarillado , Anaerobiosis , Aguas del Alcantarillado/microbiología , Reactores Biológicos , Dióxido de Carbono , Metano , Bacterias , Acetatos , Oxígeno , Etanol
19.
Nucleic Acids Res ; 50(8): 4601-4615, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35466371

RESUMEN

Site-specific incorporation of distinct non-canonical amino acids into proteins via genetic code expansion requires mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs are ideal for genetic code expansion and have been extensively engineered for developing mutually orthogonal pairs. Here, we identify two novel wild-type PylRS/tRNAPyl pairs simultaneously present in the deep-rooted extremely halophilic euryarchaeal methanogen Candidatus Methanohalarchaeum thermophilum HMET1, and show that both pairs are functional in the model halophilic archaeon Haloferax volcanii. These pairs consist of two different PylRS enzymes and two distinct tRNAs with dissimilar discriminator bases. Surprisingly, these two PylRS/tRNAPyl pairs display mutual orthogonality enabled by two unique features, the A73 discriminator base of tRNAPyl2 and a shorter motif 2 loop in PylRS2. In vivo translation experiments show that tRNAPyl2 charging by PylRS2 is defined by the enzyme's shortened motif 2 loop. Finally, we demonstrate that the two HMET1 PylRS/tRNAPyl pairs can simultaneously decode UAG and UAA codons for incorporation of two distinct noncanonical amino acids into protein. This example of a single base change in a tRNA leading to additional coding capacity suggests that the growth of the genetic code is not yet limited by the number of identity elements fitting into the tRNA structure.


Asunto(s)
Aminoacil-ARNt Sintetasas , Euryarchaeota , Aminoacil-ARNt Sintetasas/metabolismo , Lisina/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Código Genético , Euryarchaeota/genética , Aminoácidos/genética
20.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203843

RESUMEN

The inflammatory bowel disease (IBD) is associated with gut microbiota dysbiosis; however, studies on methanogens-especially those focused on children-are extremely limited. The aim of this study was to determine the abundance of total methanogenic archaea and their three subgroups: Methanobrevibacter (Mb.) smithii, Methanosphaera (Ms.) stadtmanae, and Methanomassiliicoccales, in the feces of children with both active and inactive Crohn's disease (CD) and ulcerative colitis (UC). The results of a quantitative real-time PCR were cross-referenced with the disease type (CD vs. UC) and activity assessed with the use of Pediatric Crohn's Disease Activity Index (PCDAI) and Pediatric Ulcerative Colitis Activity Index (PUCAI) indices, and fecal calprotectin (FCP) concentration, and compared with controls. There was a significant decrease in the number of total methanogens in CD and UC compared to controls. The prevalence of total methanogens was also lower in UC compared to controls. Furthermore, patients from the inactive UC group were colonized by a lower number of Mb. smithii, and demonstrated the most pronounced positive correlation between the number of Ms. stadtmanae and the FCP concentration. Our results demonstrate that gut methanogens are related to the type and activity of pediatric IBD.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Euryarchaeota , Enfermedades Inflamatorias del Intestino , Humanos , Niño , Archaea/genética , Complejo de Antígeno L1 de Leucocito
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA