Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 818
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(3): 692-711.e26, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262408

RESUMEN

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.


Asunto(s)
Proteínas de Unión al ADN , Desarrollo Embrionario , Factores de Transcripción , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Mesodermo/metabolismo , Factores de Transcripción/metabolismo , Humanos , Animales , Ratones , Extremidades/crecimiento & desarrollo
2.
Cell ; 167(3): 633-642.e11, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768887

RESUMEN

The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.


Asunto(s)
Evolución Biológica , Elementos de Facilitación Genéticos , Extremidades/crecimiento & desarrollo , Proteínas Hedgehog/genética , Serpientes/genética , Animales , Secuencia de Bases , Evolución Molecular , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos , Mutación , Filogenia , Serpientes/clasificación
3.
Cell ; 161(5): 1012-1025, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25959774

RESUMEN

Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome.


Asunto(s)
Modelos Animales de Enfermedad , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Animales , Extremidades/anatomía & histología , Extremidades/crecimiento & desarrollo , Humanos , Deformidades Congénitas de las Extremidades/genética , Ratones , Regiones Promotoras Genéticas , ARN no Traducido/genética , ARN no Traducido/metabolismo , Receptor EphA4/genética
4.
Nat Rev Mol Cell Biol ; 16(2): 110-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25560970

RESUMEN

Retinoic acid (RA) signalling has a central role during vertebrate development. RA synthesized in specific locations regulates transcription by interacting with nuclear RA receptors (RARs) bound to RA response elements (RAREs) near target genes. RA was first implicated in signalling on the basis of its teratogenic effects on limb development. Genetic studies later revealed that endogenous RA promotes forelimb initiation by repressing fibroblast growth factor 8 (Fgf8). Insights into RA function in the limb serve as a paradigm for understanding how RA regulates other developmental processes. In vivo studies have identified RAREs that control repression of Fgf8 during body axis extension or activation of homeobox (Hox) genes and other key regulators during neuronal differentiation and organogenesis.


Asunto(s)
Extremidades/crecimiento & desarrollo , Transducción de Señal/genética , Tretinoina/metabolismo , Animales , Tipificación del Cuerpo/genética , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Vertebrados/genética , Vertebrados/crecimiento & desarrollo , Vertebrados/metabolismo
5.
Annu Rev Cell Dev Biol ; 27: 513-37, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21801010

RESUMEN

Gli zinc-finger proteins are transcription factors involved in the intracellular signal transduction controlled by the Hedgehog family of secreted molecules. They are frequently mutated in human congenital malformations, and their abnormal regulation leads to tumorigenesis. Genetic studies in several model systems indicate that their activity is tightly regulated by Hedgehog signaling through various posttranslational modifications, including phosphorylation, ubiquitin-mediated degradation, and proteolytic processing, as well as through nucleocytoplasmic shuttling. In vertebrate cells, primary cilia are required for the sensing of Hedgehog pathway activity and involved in the processing and activation of Gli proteins. Two evolutionarily conserved Hedgehog pathway components, Suppressor of fused and Kif7, are core intracellular regulators of mammalian Gli proteins. Recent studies revealed that Gli proteins are also regulated transcriptionally and posttranslationally through noncanonical mechanisms independent of Hedgehog signaling. In this review, we describe the regulation of Gli proteins during development and discuss possible mechanisms for their abnormal activation during tumorigenesis.


Asunto(s)
Proteínas Hedgehog/metabolismo , Proteínas Oncogénicas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Transformación Celular Neoplásica , Cromatina/metabolismo , Cilios/metabolismo , Anomalías Congénitas , Extremidades/anatomía & histología , Extremidades/crecimiento & desarrollo , Proteínas Hedgehog/genética , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubo Neural/metabolismo , Proteínas Oncogénicas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Transactivadores/genética , Factores de Transcripción/genética , Proteína con Dedos de Zinc GLI1 , Dedos de Zinc
6.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35169073

RESUMEN

Butterfly eyespots are beautiful novel traits with an unknown developmental origin. Here we show that eyespots likely originated via cooption of parts of an ancestral appendage gene-regulatory network (GRN) to novel locations on the wing. Using comparative transcriptome analysis, we show that eyespots cluster most closely with antennae, relative to multiple other tissues. Furthermore, three genes essential for eyespot development, Distal-less (Dll), spalt (sal), and Antennapedia (Antp), share similar regulatory connections as those observed in the antennal GRN. CRISPR knockout of cis-regulatory elements (CREs) for Dll and sal led to the loss of eyespots, antennae, legs, and also wings, demonstrating that these CREs are highly pleiotropic. We conclude that eyespots likely reused an ancient GRN for their development, a network also previously implicated in the development of antennae, legs, and wings.


Asunto(s)
Tipificación del Cuerpo/genética , Redes Reguladoras de Genes/genética , Pigmentación/genética , Animales , Antenas de Artrópodos/crecimiento & desarrollo , Evolución Biológica , Mariposas Diurnas/embriología , Mariposas Diurnas/genética , Evolución Molecular , Extremidades/crecimiento & desarrollo , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Fenotipo , Alas de Animales/crecimiento & desarrollo
7.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34105722

RESUMEN

Absence of a specialized wound epidermis is hypothesized to block limb regeneration in higher vertebrates. However, the factors preventing its formation in regeneration-incompetent animals are poorly understood. To characterize the endogenous molecular and cellular regulators of specialized wound epidermis formation in Xenopus laevis tadpoles, and the loss of their regeneration competency during development, we used single-cell transcriptomics and ex vivo regenerating limb cultures. Transcriptomic analysis revealed that the specialized wound epidermis is not a novel cell state, but a re-deployment of the apical-ectodermal-ridge (AER) programme underlying limb development. Enrichment of secreted inhibitory factors, including Noggin, a morphogen expressed in developing cartilage/bone progenitor cells, are identified as key inhibitors of AER cell formation in regeneration-incompetent tadpoles. These factors can be overridden by Fgf10, which operates upstream of Noggin and blocks chondrogenesis. These results indicate that manipulation of the extracellular environment and/or chondrogenesis may provide a strategy to restore regeneration potential in higher vertebrates.


Asunto(s)
Extremidades/crecimiento & desarrollo , Regeneración/fisiología , Proteínas de Xenopus/metabolismo , Xenopus laevis/fisiología , Animales , Proteínas Portadoras , Ciclo Celular , División Celular , Células Epidérmicas , Epidermis , Perfilación de la Expresión Génica , Larva , Regeneración/genética , Transcriptoma , Proteínas de Xenopus/genética , Xenopus laevis/genética
8.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34042967

RESUMEN

Regeneration as an adult developmental process is in many aspects similar to embryonic development. Although many studies point out similarities and differences, no large-scale, direct and functional comparative analyses between development and regeneration of a specific cell type or structure in one animal exist. Here, we use the brittle star Amphiura filiformis to characterise the role of the FGF signalling pathway during skeletal development in embryos and arm regeneration. In both processes, we find ligands expressed in ectodermal cells that flank underlying skeletal mesenchymal cells, which express the receptors. Perturbation of FGF signalling showed inhibited skeleton formation in both embryogenesis and regeneration, without affecting other key developmental processes. Differential transcriptome analysis finds mostly differentiation genes rather than transcription factors to be downregulated in both contexts. Moreover, comparative gene analysis allowed us to discover brittle star-specific differentiation genes. In conclusion, our results show that the FGF pathway is crucial for skeletogenesis in the brittle star, as in other deuterostomes, and provide evidence for the re-deployment of a developmental gene regulatory module during regeneration.


Asunto(s)
Desarrollo Óseo/fisiología , Regeneración Ósea/fisiología , Huesos/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Estrellas de Mar/embriología , Animales , Huesos/metabolismo , Ectodermo/citología , Ectodermo/metabolismo , Desarrollo Embrionario/genética , Extremidades/crecimiento & desarrollo , Mesodermo/citología , Mesodermo/metabolismo , Pirroles/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Transducción de Señal/fisiología , Estrellas de Mar/genética , Estrellas de Mar/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34750251

RESUMEN

One of the central problems of vertebrate evolution is understanding the relationship among the distal portions of fins and limbs. Lacking comparable morphological markers of these regions in fish and tetrapods, these relationships have remained uncertain for the past century and a half. Here we show that Gli3 functions in controlling the proliferative expansion of distal progenitors are shared among dorsal and paired fins as well as tetrapod limbs. Mutant knockout gli3 fins in medaka (Oryzias latipes) form multiple radials and rays, in a pattern reminiscent of the polydactyly observed in Gli3-null mutant mice. In limbs, Gli3 controls both anterior-posterior patterning and cell proliferation, two processes that can be genetically uncoupled. In situ hybridization, quantification of proliferation markers, and analysis of regulatory regions reveal that in paired and dorsal fins, gli3 plays a main role in controlling proliferation but not in patterning. Moreover, gli3 down-regulation in shh mutant fins rescues fin loss in a manner similar to how Gli3 deficiency restores digits in the limbs of Shh mutant mouse embryos. We hypothesize that the Gli3/Shh gene pathway preceded the origin of paired appendages and was originally involved in modulating cell proliferation. Accordingly, the distal regions of dorsal fins, paired fins, and limbs retain a deep regulatory and functional homology that predates the origin of paired appendages.


Asunto(s)
Aletas de Animales/crecimiento & desarrollo , Redes Reguladoras de Genes/genética , Proteínas del Tejido Nervioso/genética , Oryzias/genética , Proteína Gli3 con Dedos de Zinc/genética , Animales , Evolución Biológica , Tipificación del Cuerpo/genética , Proliferación Celular/genética , Extremidades/crecimiento & desarrollo , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones
10.
Proc Natl Acad Sci U S A ; 117(49): 31231-31241, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229569

RESUMEN

The HoxD gene cluster is critical for proper limb formation in tetrapods. In the emerging limb buds, different subgroups of Hoxd genes respond first to a proximal regulatory signal, then to a distal signal that organizes digits. These two regulations are exclusive from one another and emanate from two distinct topologically associating domains (TADs) flanking HoxD, both containing a range of appropriate enhancer sequences. The telomeric TAD (T-DOM) contains several enhancers active in presumptive forearm cells and is divided into two sub-TADs separated by a CTCF-rich boundary, which defines two regulatory submodules. To understand the importance of this particular regulatory topology to control Hoxd gene transcription in time and space, we either deleted or inverted this sub-TAD boundary, eliminated the CTCF binding sites, or inverted the entire T-DOM to exchange the respective positions of the two sub-TADs. The effects of such perturbations on the transcriptional regulation of Hoxd genes illustrate the requirement of this regulatory topology for the precise timing of gene activation. However, the spatial distribution of transcripts was eventually resumed, showing that the presence of enhancer sequences, rather than either their exact topology or a particular chromatin architecture, is the key factor. We also show that the affinity of enhancers to find their natural target genes can overcome the presence of both a strong TAD border and an unfavorable orientation of CTCF sites.


Asunto(s)
Factor de Unión a CCCTC/genética , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos/genética , Genes Homeobox/genética , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Extremidades/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Esbozos de los Miembros/crecimiento & desarrollo , Ratones
11.
Proc Natl Acad Sci U S A ; 117(2): 1090-1096, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31896583

RESUMEN

In the tetrapod limb, the digits (fingers or toes) are the elements most subject to morphological diversification in response to functional adaptations. However, despite their functional importance, the mechanisms controlling digit morphology remain poorly understood. Here we have focused on understanding the special morphology of the thumb (digit 1), the acquisition of which was an important adaptation of the human hand. To this end, we have studied the limbs of the Hoxa13 mouse mutant that specifically fail to form digit 1. We show that, consistent with the role of Hoxa13 in Hoxd transcriptional regulation, the expression of Hoxd13 in Hoxa13 mutant limbs does not extend into the presumptive digit 1 territory, which is therefore devoid of distal Hox transcripts, a circumstance that can explain its agenesis. The loss of Hoxd13 expression, exclusively in digit 1 territory, correlates with increased Gli3 repressor activity, a Hoxd negative regulator, resulting from increased Gli3 transcription that, in turn, is due to the release from the negative modulation exerted by Hox13 paralogs on Gli3 regulatory sequences. Our results indicate that Hoxa13 acts hierarchically to initiate the formation of digit 1 by reducing Gli3 transcription and by enabling expansion of the 5'Hoxd second expression phase, thereby establishing anterior-posterior asymmetry in the handplate. Our work uncovers a mutual antagonism between Gli3 and Hox13 paralogs that has important implications for Hox and Gli3 gene regulation in the context of development and evolution.


Asunto(s)
Extremidades/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Proteína Gli3 con Dedos de Zinc/metabolismo , Animales , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Transcriptoma , Proteína Gli3 con Dedos de Zinc/genética
12.
PLoS Genet ; 16(10): e1009022, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33125370

RESUMEN

Adult skeletal muscles are maintained during homeostasis and regenerated upon injury by muscle stem cells (MuSCs). A heterogeneity in self-renewal, differentiation and regeneration properties has been reported for MuSCs based on their anatomical location. Although MuSCs derived from extraocular muscles (EOM) have a higher regenerative capacity than those derived from limb muscles, the molecular determinants that govern these differences remain undefined. Here we show that EOM and limb MuSCs have distinct DNA methylation signatures associated with enhancers of location-specific genes, and that the EOM transcriptome is reprogrammed following transplantation into a limb muscle environment. Notably, EOM MuSCs expressed host-site specific positional Hox codes after engraftment and self-renewal within the host muscle. However, about 10% of EOM-specific genes showed engraftment-resistant expression, pointing to cell-intrinsic molecular determinants of the higher engraftment potential of EOM MuSCs. Our results underscore the molecular diversity of distinct MuSC populations and molecularly define their plasticity in response to microenvironmental cues. These findings provide insights into strategies designed to improve the functional capacity of MuSCs in the context of regenerative medicine.


Asunto(s)
Plasticidad de la Célula/genética , Epigenoma/genética , Trasplante de Células Madre , Transcriptoma/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular/genética , Extremidades/crecimiento & desarrollo , Variación Genética/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Células Musculares/citología , Fibras Musculares Esqueléticas , Músculo Esquelético/citología , Mioblastos/citología , Regeneración/genética , Células Madre/citología , Células Madre/metabolismo
13.
Semin Cell Dev Biol ; 97: 16-25, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30991117

RESUMEN

Wound healing, tissue regeneration, and organ regrowth are all regeneration phenomena observed in vertebrates after an injury. However, the ability to regenerate differs greatly among species. Mammals can undergo wound healing and tissue regeneration, but cannot regenerate an organ; for example, they cannot regrow an amputated limb. In contrast, amphibians and fish have much higher capabilities for organ-level regeneration. In addition to medical studies and those in conventional mammalian models such as mice, studies in amphibians and fish have revealed essential factors for and mechanisms of regeneration, including the regrowth of a limb, tail, or fin. However, the molecular nature of the cellular memory needed to precisely generate a new appendage from an amputation site is not fully understood. Recent reports have indicated that organ regeneration is closely related to epigenetic regulation. For example, the methylation status of genomic DNA is related to the expression of regeneration-related genes, and histone-modification enzymes are required to control the chromatin dynamics for regeneration. A proposed mechanism of cellular memory involving an inheritable system of epigenetic modification led us to hypothesize that epigenetic regulation forms the basis for cellular memory in organ regeneration. Here we summarize the current understanding of the role of epigenetic regulation in organ regeneration and discuss the relationship between organ regeneration and epigenetic memory.


Asunto(s)
Cromatina/metabolismo , Epigénesis Genética/genética , Extremidades/crecimiento & desarrollo , Regeneración/efectos de los fármacos , Vertebrados/metabolismo , Animales , Ratones
14.
Cell Mol Life Sci ; 78(5): 2185-2197, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32909120

RESUMEN

Appendage regeneration has been widely studied in many species. Compared to other animal models, Harmonia axyridis has the advantage of a short life cycle, is easily reared, has strong regeneration capacity and contains systemic RNAi, making it a model organism for research on appendage regeneration. Here, we performed transcriptome analysis, followed by gene functional assays to reveal the molecular mechanism of H. axyridis leg regenerative growth process. Signaling pathways including Decapentaplegic (Dpp), Wingless (Wg), Ds/Ft/Hippo, Notch, Egfr, and Hedgehog (Hh) were all upregulated during the leg regenerative patterning and growth. Among these, Hh and its auxiliary receptor Lrp2 were required for the proper patterning and growth of the regenerative leg. The targets of canonical Hh signaling were required for the regenerative growth which contributes to the leg length, but were not essential for the pattern formation of the regenerative leg. dpp, wg and leg developmental-related genes including rn, dac and Dll were all regulated by hh and lrp2 and may play an essential role in the regenerative patterning of the leg.


Asunto(s)
Tipificación del Cuerpo/genética , Escarabajos/genética , Extremidades/fisiología , Proteínas Hedgehog/genética , Proteínas de Insectos/genética , Transducción de Señal/genética , Amputación Quirúrgica/métodos , Animales , Escarabajos/crecimiento & desarrollo , Extremidades/crecimiento & desarrollo , Extremidades/cirugía , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Interferencia de ARN , Regeneración/genética , Análisis de Secuencia de ARN/métodos
15.
Dev Dyn ; 250(6): 896-901, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33205502

RESUMEN

BACKGROUND: Unlike axolotls, the urodele Notophthalmus viridescens completes two metamorphoses and emerges from its aquatic environment to mate as a fully terrestrial adult. Larval and adult limb regeneration are commonly treated as roughly equivalent processes and, at least in part, as a recapitulation of embryonic development. RESULTS: We compared larval limb development to regeneration of both larval and adult forelimbs and found that there are substantial differences in developmental pattern among larvae and adults. The larval pattern of preaxial dominance is absent in adult regenerates: adult regenerates instead develop digits synchronously, and they do so before proximal autopodial elements have formed discrete aggregation zones. By contrast, larval regenerates follow a pattern of sequential digit formation from anterior to posterior, like their embryonic limb buds. CONCLUSIONS: Based upon these morphological clues, we conclude that larval regenerates are unlikely to exhibit features of epimorphic regeneration seen in adults, but are more likely to represent a form of developmental regulation. Furthermore, we confirm that post-metamorphic limb regeneration is not a simple recapitulation of ontology at the morphological level. These distinctions may help to explain and interpret some experiments and observations of regeneration in neotenic or paedomorphic urodeles.


Asunto(s)
Extremidades/fisiología , Larva/fisiología , Metamorfosis Biológica/fisiología , Notophthalmus viridescens/fisiología , Regeneración/fisiología , Animales , Extremidades/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Esbozos de los Miembros/crecimiento & desarrollo , Notophthalmus viridescens/crecimiento & desarrollo
16.
Hum Mol Genet ; 28(10): 1671-1681, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30649340

RESUMEN

Hand-Foot-Genital syndrome is a rare condition caused by mutations in the HOXA13 gene and characterized by limb malformations and urogenital defects. While the role of Hoxa13 in limb development has been extensively studied, its function during the development of the urogenital system remains elusive mostly due to the embryonic lethality of Hoxa13 homozygous mutant mice. Using a conditional inactivation strategy, we show that mouse fetuses lacking Hoxa13 function develop megaureters, hydronephrosis and malformations of the uterus, reminiscent of the defects characterizing patients with Hand-Foot-Genital syndrome. Our analysis reveals that Hoxa13 plays a critical role in Müllerian ducts fusion and in ureter remodeling by regulating the elimination of the caudal common nephric duct, eventually preventing the separation from the nephric duct. Our data also reveal a specific role for Hoxa13 in the urogenital sinus, which is in part mediated by Gata3, as well as Hoxa13 requirement for the proper organization of the ureter. Finally, we provide evidence that Hoxa13 provides positional and temporal cues during the development of the lower urogenital system, a sine qua non condition for the proper function of the urinary system.


Asunto(s)
Anomalías Múltiples/genética , Deformidades Congénitas del Pie/genética , Factor de Transcripción GATA3/genética , Deformidades Congénitas de la Mano/genética , Proteínas de Homeodominio/genética , Anomalías Urogenitales/genética , Sistema Urogenital/fisiopatología , Anomalías Múltiples/fisiopatología , Animales , Extremidades/crecimiento & desarrollo , Extremidades/fisiopatología , Deformidades Congénitas del Pie/fisiopatología , Deformidades Congénitas de la Mano/fisiopatología , Humanos , Riñón/anomalías , Riñón/patología , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/fisiopatología , Ratones , Conductos Paramesonéfricos/fisiopatología , Mutación , Uréter/anomalías , Uréter/fisiopatología , Anomalías Urogenitales/fisiopatología , Sistema Urogenital/crecimiento & desarrollo
17.
Development ; 145(11)2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884656

RESUMEN

Elly Tanaka is a senior scientist at the Research Institute of Molecular Pathology in Vienna, Austria. Her lab's research uses the axolotl - which possesses impressive regenerative capacity - to understand the molecular and cellular mechanisms underlying limb and spinal cord regeneration. We met Elly in her office in Vienna on the occasion of the recent SY-Stem symposium (see Meeting Review by Porrello and Kirkeby in this issue) to talk about what drew her to regeneration research and the axolotl, the challenges of working in this field, and how she and her colleagues at the Vienna BioCenter are trying to support the new generation of stem cell researchers.


Asunto(s)
Ambystoma mexicanum/crecimiento & desarrollo , Regeneración/fisiología , Animales , Extremidades/crecimiento & desarrollo , Médula Espinal/crecimiento & desarrollo
18.
Am J Med Genet A ; 185(5): 1379-1387, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33522143

RESUMEN

Decades of clinical, pathological, and epidemiological study and the recent application of advanced microarray and gene sequencing technologies have led to an understanding of the causes and pathogenesis of most recognized patterns of malformation. Still, there remain a number of patterns of malformation whose pathogenesis has not been established. Six such patterns of malformation are sirenomelia, VACTERL association, OEIS complex, limb-body wall defect (LBWD), urorectal septum malformation (URSM) sequence, and MURCS association, all of which predominantly affect caudal structures. On the basis of the overlap of the component malformations, the co-occurrence in individual fetuses, and the findings on fetal examination, a common pathogenesis is proposed for these patterns of malformation. The presence of a single artery in the umbilical cord provides a visible clue to the pathogenesis of all cases of sirenomelia and 30%-50% of cases of VACTERL association, OEIS complex, URSM sequence, and LBWD. The single artery is formed by a coalescence of arteries that supply the yolk sac, arises from the descending aorta high in the abdominal cavity, and redirects blood flow from the developing caudal structures of the embryo to the placenta. This phenomenon during embryogenesis is termed vitelline vascular steal.


Asunto(s)
Trastornos del Desarrollo Sexual 46, XX/diagnóstico , Anomalías Múltiples/diagnóstico , Canal Anal/anomalías , Anomalías Congénitas/diagnóstico , Ectromelia/diagnóstico , Esófago/anomalías , Cardiopatías Congénitas/fisiopatología , Riñón/anomalías , Deformidades Congénitas de las Extremidades/fisiopatología , Conductos Paramesonéfricos/anomalías , Columna Vertebral/anomalías , Tráquea/anomalías , Trastornos del Desarrollo Sexual 46, XX/fisiopatología , Anomalías Múltiples/fisiopatología , Canal Anal/irrigación sanguínea , Canal Anal/fisiopatología , Ano Imperforado/fisiopatología , Aorta/patología , Arterias/patología , Anomalías Congénitas/fisiopatología , Ectromelia/fisiopatología , Embrión de Mamíferos , Esófago/irrigación sanguínea , Esófago/fisiopatología , Extremidades/irrigación sanguínea , Extremidades/embriología , Extremidades/crecimiento & desarrollo , Femenino , Feto , Hernia Umbilical/fisiopatología , Humanos , Riñón/irrigación sanguínea , Riñón/fisiopatología , Conductos Paramesonéfricos/irrigación sanguínea , Conductos Paramesonéfricos/fisiopatología , Embarazo , Escoliosis/fisiopatología , Columna Vertebral/irrigación sanguínea , Columna Vertebral/fisiopatología , Torso/irrigación sanguínea , Torso/fisiopatología , Tráquea/irrigación sanguínea , Tráquea/fisiopatología , Cordón Umbilical/irrigación sanguínea , Cordón Umbilical/fisiopatología , Anomalías Urogenitales/fisiopatología
19.
PLoS Biol ; 16(7): e2005263, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30036371

RESUMEN

Bones at different anatomical locations vary dramatically in size. For example, human femurs are 20-fold longer than the phalanges in the fingers and toes. The mechanisms responsible for these size differences are poorly understood. Bone elongation occurs at the growth plates and advances rapidly in early life but then progressively slows due to a developmental program termed "growth plate senescence." This developmental program includes declines in cell proliferation and hypertrophy, depletion of cells in all growth plate zones, and extensive underlying changes in the expression of growth-regulating genes. Here, we show evidence that these functional, structural, and molecular senescent changes occur earlier in the growth plates of smaller bones (metacarpals, phalanges) than in the growth plates of larger bones (femurs, tibias) and that this differential aging contributes to the disparities in bone length. We also show evidence that the molecular mechanisms that underlie the differential aging between different bones involve modulation of critical paracrine regulatory pathways, including insulin-like growth factor (Igf), bone morphogenetic protein (Bmp), and Wingless and Int-1 (Wnt) signaling. Taken together, the findings reveal that the striking disparities in the lengths of different bones, which characterize normal mammalian skeletal proportions, is achieved in part by modulating the progression of growth plate senescence.


Asunto(s)
Envejecimiento/fisiología , Huesos/anatomía & histología , Cartílago/crecimiento & desarrollo , Placa de Crecimiento/crecimiento & desarrollo , Animales , Desarrollo Óseo , Proliferación Celular , Condrocitos/patología , Extremidades/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Hipertrofia , Ratones Endogámicos C57BL , Comunicación Paracrina , Ratas Sprague-Dawley , Tibia/crecimiento & desarrollo
20.
Nature ; 527(7577): 231-4, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26503047

RESUMEN

Among extant tetrapods, salamanders are unique in showing a reversed preaxial polarity in patterning of the skeletal elements of the limbs, and in displaying the highest capacity for regeneration, including full limb and tail regeneration. These features are particularly striking as tetrapod limb development has otherwise been shown to be a highly conserved process. It remains elusive whether the capacity to regenerate limbs in salamanders is mechanistically and evolutionarily linked to the aberrant pattern of limb development; both are features classically regarded as unique to urodeles. New molecular data suggest that salamander-specific orphan genes play a central role in limb regeneration and may also be involved in the preaxial patterning during limb development. Here we show that preaxial polarity in limb development was present in various groups of temnospondyl amphibians of the Carboniferous and Permian periods, including the dissorophoids Apateon and Micromelerpeton, as well as the stereospondylomorph Sclerocephalus. Limb regeneration has also been reported in Micromelerpeton, demonstrating that both features were already present together in antecedents of modern salamanders 290 million years ago. Furthermore, data from lepospondyl 'microsaurs' on the amniote stem indicate that these taxa may have shown some capacity for limb regeneration and were capable of tail regeneration, including re-patterning of the caudal vertebral column that is otherwise only seen in salamander tail regeneration. The data from fossils suggest that salamander-like regeneration is an ancient feature of tetrapods that was subsequently lost at least once in the lineage leading to amniotes. Salamanders are the only modern tetrapods that retained regenerative capacities as well as preaxial polarity in limb development.


Asunto(s)
Anfibios/embriología , Anfibios/fisiología , Evolución Biológica , Regeneración , Anfibios/anatomía & histología , Animales , Extremidades/anatomía & histología , Extremidades/embriología , Extremidades/crecimiento & desarrollo , Fósiles , Filogenia , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/fisiología , Urodelos/anatomía & histología , Urodelos/embriología , Urodelos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA