Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(10): 1424-1432, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138187

RESUMEN

B cell progenitor acute lymphoblastic leukemia (B-ALL) treatment has been revolutionized by T cell-based immunotherapies-including chimeric antigen receptor T cell therapy (CAR-T) and the bispecific T cell engager therapeutic, blinatumomab-targeting surface glycoprotein CD19. Unfortunately, many patients with B-ALL will fail immunotherapy due to 'antigen escape'-the loss or absence of leukemic CD19 targeted by anti-leukemic T cells. In the present study, we utilized a genome-wide CRISPR-Cas9 screening approach to identify modulators of CD19 abundance on human B-ALL blasts. These studies identified a critical role for the transcriptional activator ZNF143 in CD19 promoter activation. Conversely, the RNA-binding protein, NUDT21, limited expression of CD19 by regulating CD19 messenger RNA polyadenylation and stability. NUDT21 deletion in B-ALL cells increased the expression of CD19 and the sensitivity to CD19-specific CAR-T and blinatumomab. In human B-ALL patients treated with CAR-T and blinatumomab, upregulation of NUDT21 mRNA coincided with CD19 loss at disease relapse. Together, these studies identify new CD19 modulators in human B-ALL.


Asunto(s)
Linfoma de Burkitt , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Antígenos CD19/genética , Antígenos CD19/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Humanos , Inmunoterapia Adoptiva/efectos adversos , Glicoproteínas de Membrana/metabolismo , Poliadenilación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Transactivadores/metabolismo
2.
Cell ; 172(1-2): 106-120.e21, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249356

RESUMEN

Cell fate transitions involve rapid gene expression changes and global chromatin remodeling, yet the underlying regulatory pathways remain incompletely understood. Here, we identified the RNA-processing factor Nudt21 as a novel regulator of cell fate change using transcription-factor-induced reprogramming as a screening assay. Suppression of Nudt21 enhanced the generation of induced pluripotent stem cells, facilitated transdifferentiation into trophoblast stem cells, and impaired differentiation of myeloid precursors and embryonic stem cells, suggesting a broader role for Nudt21 in cell fate change. We show that Nudt21 directs differential polyadenylation of over 1,500 transcripts in cells acquiring pluripotency, although only a fraction changed protein levels. Remarkably, these proteins were strongly enriched for chromatin regulators, and their suppression neutralized the effect of Nudt21 during reprogramming. Collectively, our data uncover Nudt21 as a novel post-transcriptional regulator of cell fate and establish a direct, previously unappreciated link between alternative polyadenylation and chromatin signaling.


Asunto(s)
Reprogramación Celular , Ensamble y Desensamble de Cromatina , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Poliadenilación , Transducción de Señal , Animales , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células HEK293 , Humanos , Ratones
3.
Mol Cell ; 84(15): 2900-2917.e10, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39032490

RESUMEN

INTS11 and CPSF73 are metal-dependent endonucleases for Integrator and pre-mRNA 3'-end processing, respectively. Here, we show that the INTS11 binding partner BRAT1/CG7044, a factor important for neuronal fitness, stabilizes INTS11 in the cytoplasm and is required for Integrator function in the nucleus. Loss of BRAT1 in neural organoids leads to transcriptomic disruption and precocious expression of neurogenesis-driving transcription factors. The structures of the human INTS9-INTS11-BRAT1 and Drosophila dIntS11-CG7044 complexes reveal that the conserved C terminus of BRAT1/CG7044 is captured in the active site of INTS11, with a cysteine residue directly coordinating the metal ions. Inspired by these observations, we find that UBE3D is a binding partner for CPSF73, and UBE3D likely also uses a conserved cysteine residue to directly coordinate the active site metal ions. Our studies have revealed binding partners for INTS11 and CPSF73 that behave like cytoplasmic chaperones with a conserved impact on the nuclear functions of these enzymes.


Asunto(s)
Núcleo Celular , Citoplasma , Proteínas de Drosophila , Unión Proteica , Humanos , Animales , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Citoplasma/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Endonucleasas/metabolismo , Endonucleasas/genética , Células HEK293 , Neurogénesis/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Dominio Catalítico
4.
Genes Dev ; 36(3-4): 195-209, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35177537

RESUMEN

The 3' ends of almost all eukaryotic mRNAs are generated in an essential two-step processing reaction: endonucleolytic cleavage of an extended precursor followed by the addition of a poly(A) tail. By reconstituting the reaction from overproduced and purified proteins, we provide a minimal list of 14 polypeptides that are essential and two that are stimulatory for RNA processing. In a reaction depending on the polyadenylation signal AAUAAA, the reconstituted system cleaves pre-mRNA at a single preferred site corresponding to the one used in vivo. Among the proteins, cleavage factor I stimulates cleavage but is not essential, consistent with its prominent role in alternative polyadenylation. RBBP6 is required, with structural data showing it to contact and presumably activate the endonuclease CPSF73 through its DWNN domain. The C-terminal domain of RNA polymerase II is dispensable. ATP, but not its hydrolysis, supports RNA cleavage by binding to the hClp1 subunit of cleavage factor II with submicromolar affinity.


Asunto(s)
Poliadenilación , Precursores del ARN , Animales , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Mamíferos/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
5.
Genes Dev ; 36(3-4): 210-224, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35177536

RESUMEN

3' end processing of most human mRNAs is carried out by the cleavage and polyadenylation specificity factor (CPSF; CPF in yeast). Endonucleolytic cleavage of the nascent pre-mRNA defines the 3' end of the mature transcript, which is important for mRNA localization, translation, and stability. Cleavage must therefore be tightly regulated. Here, we reconstituted specific and efficient 3' endonuclease activity of human CPSF with purified proteins. This required the seven-subunit CPSF as well as three additional protein factors: cleavage stimulatory factor (CStF), cleavage factor IIm (CFIIm), and, importantly, the multidomain protein RBBP6. Unlike its yeast homolog Mpe1, which is a stable subunit of CPF, RBBP6 does not copurify with CPSF and is recruited in an RNA-dependent manner. Sequence and mutational analyses suggest that RBBP6 interacts with the WDR33 and CPSF73 subunits of CPSF. Thus, it is likely that the role of RBBP6 is conserved from yeast to humans. Overall, our data are consistent with CPSF endonuclease activation and site-specific pre-mRNA cleavage being highly controlled to maintain fidelity in mRNA processing.


Asunto(s)
Proteínas de Unión al ADN , Precursores del ARN , Ubiquitina-Proteína Ligasas , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
6.
Cell ; 157(3): 651-63, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766810

RESUMEN

Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Cerebelo/patología , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Proteínas Nucleares/genética , Fosfotransferasas/genética , Empalme del ARN , ARN de Transferencia/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Femenino , Humanos , Masculino , Ratones , Modelos Moleculares , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Proteínas Nucleares/metabolismo , Linaje , Fosfotransferasas/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
7.
Cell ; 156(5): 920-34, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24581493

RESUMEN

Argonaute (Ago) proteins mediate posttranscriptional gene repression by binding guide miRNAs to regulate targeted RNAs. To confidently assess Ago-bound small RNAs, we adapted a mouse embryonic stem cell system to express a single epitope-tagged Ago protein family member in an inducible manner. Here, we report the small RNA profile of Ago-deficient cells and show that Ago-dependent stability is a common feature of mammalian miRNAs. Using this criteria and immunopurification, we identified an Ago-dependent class of noncanonical miRNAs derived from protein-coding gene promoters, which we name transcriptional start site miRNAs (TSS-miRNAs). A subset of promoter-proximal RNA polymerase II (RNAPII) complexes produces hairpin RNAs that are processed in a DiGeorge syndrome critical region gene 8 (Dgcr8)/Drosha-independent but Dicer-dependent manner. TSS-miRNA activity is detectable from endogenous levels and following overexpression of mRNA constructs. Finally, we present evidence of differential expression and conservation in humans, suggesting important roles in gene regulation.


Asunto(s)
Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , ARN Pequeño no Traducido/metabolismo , Elongación de la Transcripción Genética , Animales , Proteínas Argonautas , Secuencia de Bases , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Células Madre Embrionarias/metabolismo , Técnicas Genéticas , Humanos , Ratones , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , Sitio de Iniciación de la Transcripción
8.
Mol Cell ; 81(3): 514-529.e6, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33385327

RESUMEN

Termination of RNA polymerase II (RNAPII) transcription in metazoans relies largely on the cleavage and polyadenylation (CPA) and integrator (INT) complexes originally found to act at the ends of protein-coding and small nuclear RNA (snRNA) genes, respectively. Here, we monitor CPA- and INT-dependent termination activities genome-wide, including at thousands of previously unannotated transcription units (TUs), producing unstable RNA. We verify the global activity of CPA occurring at pA sites indiscriminately of their positioning relative to the TU promoter. We also identify a global activity of INT, which is largely sequence-independent and restricted to a ~3-kb promoter-proximal region. Our analyses suggest two functions of genome-wide INT activity: it dampens transcriptional output from weak promoters, and it provides quality control of RNAPII complexes that are unfavorably configured for transcriptional elongation. We suggest that the function of INT in stable snRNA production is an exception from its general cellular role, the attenuation of non-productive transcription.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño/biosíntesis , Terminación de la Transcripción Genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Poliadenilación , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Nuclear Pequeño/genética
9.
Mol Cell ; 77(4): 800-809.e6, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31810758

RESUMEN

The mammalian pre-mRNA 3'-end-processing machinery consists of cleavage and polyadenylation specificity factor (CPSF), cleavage stimulation factor (CstF), and other proteins, but the overall architecture of this machinery remains unclear. CPSF contains two functionally distinct modules: a cleavage factor (mCF) and a polyadenylation specificity factor (mPSF). Here, we have produced recombinant human CPSF and CstF and examined these factors by electron microscopy (EM). We find that mPSF is the organizational core of the machinery, while the conformations of mCF and CstF and the position of mCF relative to mPSF are highly variable. We have identified by cryo-EM a segment in CPSF100 that tethers mCF to mPSF, and we have named it the PSF interaction motif (PIM). Mutations in the PIM can abolish CPSF formation, indicating that it is a crucial contact in CPSF. We have also obtained reconstructions of mCF and CstF77 by cryo-EM, assembled around the mPSF core.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Estimulación del Desdoblamiento/química , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Mutación , Procesamiento de Término de ARN 3' , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo
10.
Mol Cell ; 77(6): 1206-1221.e7, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31980388

RESUMEN

Alternative polyadenylation (APA) contributes to transcriptome complexity by generating mRNA isoforms with varying 3' UTR lengths. APA leading to 3' UTR shortening (3' US) is a common feature of most cancer cells; however, the molecular mechanisms are not understood. Here, we describe a widespread mechanism promoting 3' US in cancer through ubiquitination of the mRNA 3' end processing complex protein, PCF11, by the cancer-specific MAGE-A11-HUWE1 ubiquitin ligase. MAGE-A11 is normally expressed only in the male germline but is frequently re-activated in cancers. MAGE-A11 is necessary for cancer cell viability and is sufficient to drive tumorigenesis. Screening for targets of MAGE-A11 revealed that it ubiquitinates PCF11, resulting in loss of CFIm25 from the mRNA 3' end processing complex. This leads to APA of many transcripts affecting core oncogenic and tumor suppressors, including cyclin D2 and PTEN. These findings provide insights into the molecular mechanisms driving APA in cancer and suggest therapeutic strategies.


Asunto(s)
Regiones no Traducidas 3'/genética , Antígenos de Neoplasias/metabolismo , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/patología , ARN Mensajero/metabolismo , Ubiquitina/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Antígenos de Neoplasias/genética , Apoptosis , Biomarcadores de Tumor , Carcinogénesis , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Poliadenilación , Empalme del ARN , ARN Mensajero/genética , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto , Factores de Escisión y Poliadenilación de ARNm/genética
11.
Genes Dev ; 34(1-2): 132-145, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805520

RESUMEN

The allosteric and torpedo models have been used for 30 yr to explain how transcription terminates on protein-coding genes. The former invokes termination via conformational changes in the transcription complex and the latter proposes that degradation of the downstream product of poly(A) signal (PAS) processing is important. Here, we describe a single mechanism incorporating features of both models. We show that termination is completely abolished by rapid elimination of CPSF73, which causes very extensive transcriptional readthrough genome-wide. This is because CPSF73 functions upstream of modifications to the elongation complex and provides an entry site for the XRN2 torpedo. Rapid depletion of XRN2 enriches these events that we show are underpinned by protein phosphatase 1 (PP1) activity, the inhibition of which extends readthrough in the absence of XRN2. Our results suggest a combined allosteric/torpedo mechanism, in which PP1-dependent slowing down of polymerases over termination regions facilitates their pursuit/capture by XRN2 following PAS processing.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Terminación de la Transcripción Genética/fisiología , Línea Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Exorribonucleasas/metabolismo , Eliminación de Gen , Células HCT116 , Humanos , ARN/metabolismo , ARN Polimerasa II/metabolismo , Receptores de Neuropéptido Y/metabolismo , Ribonucleasa H/metabolismo
12.
Genes Dev ; 34(23-24): 1753-1761, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33122294

RESUMEN

Most eukaryotic pre-mRNAs must undergo 3'-end cleavage and polyadenylation prior to their export from the nucleus. A large number of proteins in several complexes participate in this 3'-end processing, including cleavage and polyadenylation specificity factor (CPSF) in mammals. The CPSF30 subunit contains five CCCH zinc fingers (ZFs), with ZF2-ZF3 being required for the recognition of the AAUAAA poly(A) signal. ZF4-ZF5 recruits the hFip1 subunit of CPSF, although the details of this interaction have not been characterized. Here we report the crystal structure of human CPSF30 ZF4-ZF5 in complex with residues 161-200 of hFip1 at 1.9 Å resolution, illuminating the molecular basis for their interaction. Unexpectedly, the structure reveals one hFip1 molecule binding to each ZF4 and ZF5, with a conserved mode of interaction. Our mutagenesis studies confirm that the CPSF30-hFip1 complex has 1:2 stoichiometry in vitro. Mutation of each binding site in CPSF30 still allows one copy of hFip1 to bind, while mutation of both sites abrogates binding. Our fluorescence polarization binding assays show that ZF4 has higher affinity for hFip1, with a Kd of 1.8 nM. We also demonstrate that two copies of the catalytic module of poly(A) polymerase (PAP) are recruited by the CPSF30-hFip1 complex in vitro, and both hFip1 binding sites in CPSF30 can support polyadenylation.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Modelos Moleculares , Factores de Escisión y Poliadenilación de ARNm/química , Sitios de Unión , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Escherichia coli/genética , Humanos , Mutación , Unión Proteica , Estructura Cuaternaria de Proteína , Dedos de Zinc/fisiología , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
13.
Mol Cell ; 76(4): 590-599.e4, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31522989

RESUMEN

Full-length transcription in the majority of human genes depends on U1 snRNP (U1) to co-transcriptionally suppress transcription-terminating premature 3' end cleavage and polyadenylation (PCPA) from cryptic polyadenylation signals (PASs) in introns. However, the mechanism of this U1 activity, termed telescripting, is unknown. Here, we captured a complex, comprising U1 and CPA factors (U1-CPAFs), that binds intronic PASs and suppresses PCPA. U1-CPAFs are distinct from U1-spliceosomal complexes; they include CPA's three main subunits, CFIm, CPSF, and CstF; lack essential splicing factors; and associate with transcription elongation and mRNA export complexes. Telescripting requires U1:pre-mRNA base-pairing, which can be disrupted by U1 antisense oligonucleotide (U1 AMO), triggering PCPA. U1 AMO remodels U1-CPAFs, revealing changes, including recruitment of CPA-stimulating factors, that explain U1-CPAFs' switch from repressive to activated states. Our findings outline this U1 telescripting mechanism and demonstrate U1's unique role as central regulator of pre-mRNA processing and transcription.


Asunto(s)
Núcleo Celular/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , División del ARN , Precursores del ARN/biosíntesis , ARN Mensajero/biosíntesis , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transcripción Genética , Regiones no Traducidas 3' , Transporte Activo de Núcleo Celular , Sitios de Unión , Núcleo Celular/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Estimulación del Desdoblamiento/genética , Factor de Estimulación del Desdoblamiento/metabolismo , Células HeLa , Humanos , Complejos Multiproteicos , Poli A/metabolismo , Unión Proteica , Precursores del ARN/genética , ARN Mensajero/genética , Ribonucleoproteína Nuclear Pequeña U1/genética
14.
RNA ; 30(9): 1122-1140, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38986572

RESUMEN

The cleavage and polyadenylation specificity factor (CPSF) complex plays a central role in the formation of mRNA 3' ends, being responsible for the recognition of the poly(A) signal sequence, the endonucleolytic cleavage step, and recruitment of poly(A) polymerase. CPSF has been extensively studied for over three decades, and its functions and those of its individual subunits are becoming increasingly well-defined, with much current research focusing on the impact of these proteins on the normal functioning or disease/stress states of cells. In this review, we provide an overview of the general functions of CPSF and its subunits, followed by a discussion of how they exert their functions in a surprisingly diverse variety of biological processes and cellular conditions. These include transcription termination, small RNA processing, and R-loop prevention/resolution, as well as more generally cancer, differentiation/development, and infection/immunity.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación , ARN Mensajero , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Animales , Poliadenilación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Terminación de la Transcripción Genética , Procesamiento de Término de ARN 3'
15.
RNA ; 30(7): 795-806, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38538052

RESUMEN

3' end processing of most eukaryotic precursor-mRNAs (pre-mRNAs) is a crucial cotranscriptional process that generally involves the cleavage and polyadenylation of the precursor transcripts. Within the human 3' end processing machinery, the four-subunit mammalian polyadenylation specificity factor (mPSF) recognizes the polyadenylation signal (PAS) in the pre-mRNA and recruits the poly(A) polymerase α (PAPOA) to it. To shed light on the molecular mechanisms of PAPOA recruitment to mPSF, we used a combination of cryogenic-electron microscopy (cryo-EM) single-particle analysis, computational structure prediction, and in vitro biochemistry to reveal an intricate interaction network. A short linear motif in the mPSF subunit FIP1 interacts with the structured core of human PAPOA, with a binding mode that is evolutionarily conserved from yeast to human. In higher eukaryotes, however, PAPOA contains a conserved C-terminal motif that can interact intramolecularly with the same residues of the PAPOA structured core used to bind FIP1. Interestingly, using biochemical assay and cryo-EM structural analysis, we found that the PAPOA C-terminal motif can also directly interact with mPSF at the subunit CPSF160. These results show that PAPOA recruitment to mPSF is mediated by two distinct intermolecular connections and further suggest the presence of mutually exclusive interactions in the regulation of 3' end processing.


Asunto(s)
Microscopía por Crioelectrón , Polinucleotido Adenililtransferasa , Factores de Escisión y Poliadenilación de ARNm , Humanos , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/genética , Polinucleotido Adenililtransferasa/metabolismo , Polinucleotido Adenililtransferasa/genética , Polinucleotido Adenililtransferasa/química , Unión Proteica , Poliadenilación , Modelos Moleculares , Precursores del ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/química
16.
Proc Natl Acad Sci U S A ; 120(16): e2210418120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040401

RESUMEN

The hypoxia-inducible factor 1-α (HIF-1α) enables cells to adapt and respond to hypoxia (Hx), and the activity of this transcription factor is regulated by several oncogenic signals and cellular stressors. While the pathways controlling normoxic degradation of HIF-1α are well understood, the mechanisms supporting the sustained stabilization and activity of HIF-1α under Hx are less clear. We report that ABL kinase activity protects HIF-1α from proteasomal degradation during Hx. Using a fluorescence-activated cell sorting (FACS)-based CRISPR/Cas9 screen, we identified HIF-1α as a substrate of the cleavage and polyadenylation specificity factor-1 (CPSF1), an E3-ligase which targets HIF-1α for degradation in the presence of an ABL kinase inhibitor in Hx. We show that ABL kinases phosphorylate and interact with CUL4A, a cullin ring ligase adaptor, and compete with CPSF1 for CUL4A binding, leading to increased HIF-1α protein levels. Further, we identified the MYC proto-oncogene protein as a second CPSF1 substrate and show that active ABL kinase protects MYC from CPSF1-mediated degradation. These studies uncover a role for CPSF1 in cancer pathobiology as an E3-ligase antagonizing the expression of the oncogenic transcription factors, HIF-1α and MYC.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Humanos , Proteínas Cullin/metabolismo , Hipoxia , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Genes abl , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo
17.
Genes Dev ; 32(2): 127-139, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29432121

RESUMEN

Termination is a ubiquitous phase in every transcription cycle but is incompletely understood and a subject of debate. We used gene editing as a new approach to address its mechanism through engineered conditional depletion of the 5' → 3' exonuclease Xrn2 or the polyadenylation signal (PAS) endonuclease CPSF73 (cleavage and polyadenylation specificity factor 73). The ability to rapidly control Xrn2 reveals a clear and general role for it in cotranscriptional degradation of 3' flanking region RNA and transcriptional termination. This defect is characterized genome-wide at high resolution using mammalian native elongating transcript sequencing (mNET-seq). An Xrn2 effect on termination requires prior RNA cleavage, and we provide evidence for this by showing that catalytically inactive CPSF73 cannot restore termination to cells lacking functional CPSF73. Notably, Xrn2 plays no significant role in either Histone or small nuclear RNA (snRNA) gene termination even though both RNA classes undergo 3' end cleavage. In sum, efficient termination on most protein-coding genes involves CPSF73-mediated RNA cleavage and cotranscriptional degradation of polymerase-associated RNA by Xrn2. However, as CPSF73 loss caused more extensive readthrough transcription than Xrn2 elimination, it likely plays a more underpinning role in termination.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Exorribonucleasas/fisiología , ARN Polimerasa II/metabolismo , Terminación de la Transcripción Genética , Regiones no Traducidas 3' , Línea Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/antagonistas & inhibidores , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Exorribonucleasas/antagonistas & inhibidores , Exorribonucleasas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas , Humanos , Ácidos Indolacéticos/farmacología , Mutación , ARN Nuclear Pequeño/genética , Análisis de Secuencia de ARN
18.
Trends Biochem Sci ; 46(9): 772-784, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33941430

RESUMEN

Cleavage of nascent transcripts is a fundamental process for eukaryotic mRNA maturation and for the production of different mRNA isoforms. In eukaryotes, cleavage of mRNA precursors by the highly conserved endonuclease CPSF73 is critical for mRNA stability, export from the nucleus, and translation. As an essential enzyme in the cell, CPSF73 surprisingly shows promise as a drug target for specific cancers and for protozoan parasites. In this review, we cover our current understanding of CPSF73 in cleavage and polyadenylation, histone pre-mRNA processing, and transcription termination. We discuss the potential of CPSF73 as a target for novel therapeutics and highlight further research into the regulation of CPSF73 that will be critical to understanding its role in cancer and other diseases.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación , Precursores del ARN , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Endonucleasas/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
J Biol Chem ; 299(4): 103047, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822327

RESUMEN

Human cleavage and polyadenylation specificity factor (CPSF)73 (also known as CPSF3) is the endoribonuclease that catalyzes the cleavage reaction for the 3'-end processing of pre-mRNAs. The active site of CPSF73 is located at the interface between a metallo-ß-lactamase domain and a ß-CASP domain. Two metal ions are coordinated by conserved residues, five His and two Asp, in the active site, and they are critical for the nuclease reaction. The metal ions have long been thought to be zinc ions, but their exact identity has not been examined. Here we present evidence from inductively coupled plasma mass spectrometry and X-ray diffraction analyses that a mixture of metal ions, including Fe, Zn, and Mn, is present in the active site of CPSF73. The abundance of the various metal ions is different in samples prepared from different expression hosts. Zinc is present at less than 20% abundance in a sample expressed in insect cells, but the sample is active in cleaving a pre-mRNA substrate in a reconstituted canonical 3'-end processing machinery. Zinc is present at 75% abundance in a sample expressed in human cells, which has comparable endonuclease activity. We also observe a mixture of metal ions in the active site of the CPSF73 homolog INTS11, the endonuclease for Integrator. Taken together, our results provide further insights into the role of metal ions in the activity of CPSF73 and INTS11 for RNA 3'-end processing.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación , Endonucleasas , Humanos , Dominio Catalítico , Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Endonucleasas/química , Endonucleasas/metabolismo , Procesamiento Postranscripcional del ARN , Zinc/metabolismo
20.
J Biol Chem ; 299(7): 104854, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224962

RESUMEN

Functional depletion of the U1 small nuclear ribonucleoprotein (snRNP) with a 25 nt U1 AMO (antisense morpholino oligonucleotide) may lead to intronic premature cleavage and polyadenylation of thousands of genes, a phenomenon known as U1 snRNP telescripting; however, the underlying mechanism remains elusive. In this study, we demonstrated that U1 AMO could disrupt U1 snRNP structure both in vitro and in vivo, thereby affecting the U1 snRNP-RNAP polymerase II interaction. By performing chromatin immunoprecipitation sequencing for phosphorylation of Ser2 and Ser5 of the C-terminal domain of RPB1, the largest subunit of RNAP polymerase II, we showed that transcription elongation was disturbed upon U1 AMO treatment, with a particular high phosphorylation of Ser2 signal at intronic cryptic polyadenylation sites (PASs). In addition, we showed that core 3'processing factors CPSF/CstF are involved in the processing of intronic cryptic PAS. Their recruitment accumulated toward cryptic PASs upon U1 AMO treatment, as indicated by chromatin immunoprecipitation sequencing and individual-nucleotide resolution CrossLinking and ImmunoPrecipitation sequencing analysis. Conclusively, our data suggest that disruption of U1 snRNP structure mediated by U1 AMO provides a key for understanding the U1 telescripting mechanism.


Asunto(s)
Morfolinos , Oligonucleótidos Antisentido , Precursores del ARN , Ribonucleoproteína Nuclear Pequeña U1 , Morfolinos/metabolismo , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , Poliadenilación , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , Humanos , Células HeLa , Técnicas de Silenciamiento del Gen , Factor de Especificidad de Desdoblamiento y Poliadenilación , Factor de Estimulación del Desdoblamiento/metabolismo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA