Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.892
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 55(8): 1336-1339, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947977

RESUMEN

Fibroblasts strongly impact tumor progression, but whether they prime the pre-metastatic niche is poorly understood. In this issue of Immunity, Gong and Li et al. identify lung-specific immunosuppressive fibroblasts, which are hijacked by breast cancer cells to facilitate metastasis.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Línea Celular Tumoral , Femenino , Fertilizantes , Fibroblastos/patología , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Melanoma , Metástasis de la Neoplasia/patología , Neoplasias Cutáneas , Suelo , Microambiente Tumoral , Melanoma Cutáneo Maligno
2.
Nature ; 626(8000): 792-798, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297125

RESUMEN

Crop production is a large source of atmospheric ammonia (NH3), which poses risks to air quality, human health and ecosystems1-5. However, estimating global NH3 emissions from croplands is subject to uncertainties because of data limitations, thereby limiting the accurate identification of mitigation options and efficacy4,5. Here we develop a machine learning model for generating crop-specific and spatially explicit NH3 emission factors globally (5-arcmin resolution) based on a compiled dataset of field observations. We show that global NH3 emissions from rice, wheat and maize fields in 2018 were 4.3 ± 1.0 Tg N yr-1, lower than previous estimates that did not fully consider fertilizer management practices6-9. Furthermore, spatially optimizing fertilizer management, as guided by the machine learning model, has the potential to reduce the NH3 emissions by about 38% (1.6 ± 0.4 Tg N yr-1) without altering total fertilizer nitrogen inputs. Specifically, we estimate potential NH3 emissions reductions of 47% (44-56%) for rice, 27% (24-28%) for maize and 26% (20-28%) for wheat cultivation, respectively. Under future climate change scenarios, we estimate that NH3 emissions could increase by 4.0 ± 2.7% under SSP1-2.6 and 5.5 ± 5.7% under SSP5-8.5 by 2030-2060. However, targeted fertilizer management has the potential to mitigate these increases.


Asunto(s)
Amoníaco , Producción de Cultivos , Fertilizantes , Amoníaco/análisis , Amoníaco/metabolismo , Producción de Cultivos/métodos , Producción de Cultivos/estadística & datos numéricos , Producción de Cultivos/tendencias , Conjuntos de Datos como Asunto , Ecosistema , Fertilizantes/efectos adversos , Fertilizantes/análisis , Fertilizantes/estadística & datos numéricos , Aprendizaje Automático , Nitrógeno/análisis , Nitrógeno/metabolismo , Oryza/metabolismo , Suelo/química , Triticum/metabolismo , Zea mays/metabolismo , Cambio Climático/estadística & datos numéricos
3.
Nature ; 615(7950): 73-79, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813959

RESUMEN

Avoiding excessive agricultural nitrogen (N) use without compromising yields has long been a priority for both research and government policy in China1,2. Although numerous rice-related strategies have been proposed3-5, few studies have assessed their impacts on national food self-sufficiency and environmental sustainability and fewer still have considered economic risks faced by millions of smallholders. Here we established an optimal N rate strategy based on maximizing either economic (ON) or ecological (EON) performance using new subregion-specific models. Using an extensive on-farm dataset, we then assessed the risk of yield losses among smallholder farmers and the challenges of implementing the optimal N rate strategy. We find that meeting national rice production targets in 2030 is possible while concurrently reducing nationwide N consumption by 10% (6-16%) and 27% (22-32%), mitigating reactive N (Nr) losses by 7% (3-13%) and 24% (19-28%) and increasing N-use efficiency by 30% (3-57%) and 36% (8-64%) for ON and EON, respectively. This study identifies and targets subregions with disproportionate environmental impacts and proposes N rate strategies to limit national Nr pollution below proposed environmental thresholds, without compromising soil N stocks or economic benefits for smallholders. Thereafter, the preferable N strategy is allocated to each region based on the trade-off between economic risk and environmental benefit. To facilitate the adoption of the annually revised subregional N rate strategy, several recommendations were provided, including a monitoring network, fertilization quotas and smallholder subsidies.


Asunto(s)
Agricultura , Productos Agrícolas , Ambientalismo , Nitrógeno , Oryza , Desarrollo Sostenible , Agricultura/economía , Agricultura/métodos , China , Fertilizantes/análisis , Fertilizantes/economía , Nitrógeno/análisis , Nitrógeno/economía , Nitrógeno/metabolismo , Oryza/metabolismo , Suelo/química , Productos Agrícolas/economía , Productos Agrícolas/metabolismo , Productos Agrícolas/provisión & distribución , Ecología , Agricultores , Conjuntos de Datos como Asunto , Abastecimiento de Alimentos
4.
Nature ; 616(7956): 300-305, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36927804

RESUMEN

Achieving food-system sustainability is a multidimensional challenge. In China, a doubling of crop production since 1990 has compromised other dimensions of sustainability1,2. Although the country is promoting various interventions to enhance production efficiency and reduce environmental impacts3, there is little understanding of whether crop switching can achieve more sustainable cropping systems and whether coordinated action is needed to avoid tradeoffs. Here we combine high-resolution data on crop-specific yields, harvested areas, environmental footprints and farmer incomes to first quantify the current state of crop-production sustainability. Under varying levels of inter-ministerial and central coordination, we perform spatial optimizations that redistribute crops to meet a suite of agricultural sustainable development targets. With a siloed approach-in which each government ministry seeks to improve a single sustainability outcome in isolation-crop switching could realize large individual benefits but produce tradeoffs for other dimensions and between regions. In cases of central coordination-in which tradeoffs are prevented-we find marked co-benefits for environmental-impact reductions (blue water (-4.5% to -18.5%), green water (-4.4% to -9.5%), greenhouse gases (GHGs) (-1.7% to -7.7%), fertilizers (-5.2% to -10.9%), pesticides (-4.3% to -10.8%)) and increased farmer incomes (+2.9% to +7.5%). These outcomes of centrally coordinated crop switching can contribute substantially (23-40% across dimensions) towards China's 2030 agricultural sustainable development targets and potentially produce global resource savings. This integrated approach can inform feasible targeted agricultural interventions that achieve sustainability co-benefits across several dimensions.


Asunto(s)
Producción de Cultivos , Ambiente , Agricultores , Renta , Desarrollo Sostenible , China , Producción de Cultivos/economía , Producción de Cultivos/métodos , Fertilizantes/análisis , Desarrollo Sostenible/economía , Desarrollo Sostenible/tendencias , Plaguicidas , Gases de Efecto Invernadero
5.
Nature ; 614(7948): 463-470, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792743

RESUMEN

Aerial seeding can quickly cover large and physically inaccessible areas1 to improve soil quality and scavenge residual nitrogen in agriculture2, and for postfire reforestation3-5 and wildland restoration6,7. However, it suffers from low germination rates, due to the direct exposure of unburied seeds to harsh sunlight, wind and granivorous birds, as well as undesirable air humidity and temperature1,8,9. Here, inspired by Erodium seeds10-14, we design and fabricate self-drilling seed carriers, turning wood veneer into highly stiff (about 4.9 GPa when dry, and about 1.3 GPa when wet) and hygromorphic bending or coiling actuators with an extremely large bending curvature (1,854 m-1), 45 times larger than the values in the literature15-18. Our three-tailed carrier has an 80% drilling success rate on flat land after two triggering cycles, due to the beneficial resting angle (25°-30°) of its tail anchoring, whereas the natural Erodium seed's success rate is 0%. Our carriers can carry payloads of various sizes and contents including biofertilizers and plant seeds as large as those of whitebark pine, which are about 11 mm in length and about 72 mg. We compare data from experiments and numerical simulation to elucidate the curvature transformation and actuation mechanisms to guide the design and optimization of the seed carriers. Our system will improve the effectiveness of aerial seeding to relieve agricultural and environmental stresses, and has potential applications in energy harvesting, soft robotics and sustainable buildings.


Asunto(s)
Materiales Biomiméticos , Semillas , Agricultura/métodos , Germinación , Semillas/química , Semillas/metabolismo , Suelo , Luz Solar , Madera/análisis , Madera/química , Humectabilidad , Fertilizantes , Materiales Biomiméticos/análisis , Materiales Biomiméticos/química , Tamaño de la Partícula
6.
Nature ; 613(7942): 77-84, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36600068

RESUMEN

Cropland is a main source of global nitrogen pollution1,2. Mitigating nitrogen pollution from global croplands is a grand challenge because of the nature of non-point-source pollution from millions of farms and the constraints to implementing pollution-reduction measures, such as lack of financial resources and limited nitrogen-management knowledge of farmers3. Here we synthesize 1,521 field observations worldwide and identify 11 key measures that can reduce nitrogen losses from croplands to air and water by 30-70%, while increasing crop yield and nitrogen use efficiency (NUE) by 10-30% and 10-80%, respectively. Overall, adoption of this package of measures on global croplands would allow the production of 17 ± 3 Tg (1012 g) more crop nitrogen (20% increase) with 22 ± 4 Tg less nitrogen fertilizer used (21% reduction) and 26 ± 5 Tg less nitrogen pollution (32% reduction) to the environment for the considered base year of 2015. These changes could gain a global societal benefit of 476 ± 123 billion US dollars (USD) for food supply, human health, ecosystems and climate, with net mitigation costs of only 19 ± 5 billion USD, of which 15 ± 4 billion USD fertilizer saving offsets 44% of the gross mitigation cost. To mitigate nitrogen pollution from croplands in the future, innovative policies such as a nitrogen credit system (NCS) could be implemented to select, incentivize and, where necessary, subsidize the adoption of these measures.


Asunto(s)
Producción de Cultivos , Productos Agrícolas , Contaminación Ambiental , Nitrógeno , Suelo , Humanos , Análisis Costo-Beneficio , Ecosistema , Fertilizantes/análisis , Nitrógeno/análisis , Suelo/química , Contaminación Ambiental/economía , Contaminación Ambiental/prevención & control , Producción de Cultivos/economía , Producción de Cultivos/métodos , Producción de Cultivos/tendencias
7.
Nature ; 619(7971): 782-787, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438520

RESUMEN

Many communities in low- and middle-income countries globally lack sustainable, cost-effective and mutually beneficial solutions for infectious disease, food, water and poverty challenges, despite their inherent interdependence1-7. Here we provide support for the hypothesis that agricultural development and fertilizer use in West Africa increase the burden of the parasitic disease schistosomiasis by fuelling the growth of submerged aquatic vegetation that chokes out water access points and serves as habitat for freshwater snails that transmit Schistosoma parasites to more than 200 million people globally8-10. In a cluster randomized controlled trial (ClinicalTrials.gov: NCT03187366) in which we removed invasive submerged vegetation from water points at 8 of 16 villages (that is, clusters), control sites had 1.46 times higher intestinal Schistosoma infection rates in schoolchildren and lower open water access than removal sites. Vegetation removal did not have any detectable long-term adverse effects on local water quality or freshwater biodiversity. In feeding trials, the removed vegetation was as effective as traditional livestock feed but 41 to 179 times cheaper and converting the vegetation to compost provided private crop production and total (public health plus crop production benefits) benefit-to-cost ratios as high as 4.0 and 8.8, respectively. Thus, the approach yielded an economic incentive-with important public health co-benefits-to maintain cleared waterways and return nutrients captured in aquatic plants back to agriculture with promise of breaking poverty-disease traps. To facilitate targeting and scaling of the intervention, we lay the foundation for using remote sensing technology to detect snail habitats. By offering a rare, profitable, win-win approach to addressing food and water access, poverty alleviation, infectious disease control and environmental sustainability, we hope to inspire the interdisciplinary search for planetary health solutions11 to the many and formidable, co-dependent global grand challenges of the twenty-first century.


Asunto(s)
Agricultura , Ecosistema , Salud Rural , Esquistosomiasis , Caracoles , Animales , Niño , Humanos , Esquistosomiasis/epidemiología , Esquistosomiasis/prevención & control , Esquistosomiasis/transmisión , Caracoles/parasitología , África Occidental , Fertilizantes , Especies Introducidas , Intestinos/parasitología , Agua Dulce , Plantas/metabolismo , Biodiversidad , Alimentación Animal , Calidad del Agua , Producción de Cultivos/métodos , Salud Pública , Pobreza/prevención & control , Organismos Acuáticos/metabolismo , Tecnología de Sensores Remotos
8.
Nature ; 616(7955): 96-103, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813965

RESUMEN

Rapid demographic ageing substantially affects socioeconomic development1-4 and presents considerable challenges for food security and agricultural sustainability5-8, which have so far not been well understood. Here, by using data from more than 15,000 rural households with crops but no livestock across China, we show that rural population ageing reduced farm size by 4% through transferring cropland ownership and land abandonment (approximately 4 million hectares) in 2019, taking the population age structure in 1990 as a benchmark. These changes led to a reduction of agricultural inputs, including chemical fertilizers, manure and machinery, which decreased agricultural output and labour productivity by 5% and 4%, respectively, further lowering farmers' income by 15%. Meanwhile, fertilizer loss increased by 3%, resulting in higher pollutant emissions to the environment. In new farming models, such as cooperative farming, farms tend to be larger and operated by younger farmers, who have a higher average education level, hence improving agricultural management. By encouraging the transition to new farming models, the negative consequences of ageing can be reversed. Agricultural input, farm size and farmer's income would grow by approximately 14%, 20% and 26%, respectively, and fertilizer loss would reduce by 4% in 2100 compared with that in 2020. This suggests that management of rural ageing will contribute to a comprehensive transformation of smallholder farming to sustainable agriculture in China.


Asunto(s)
Distribución por Edad , Agricultura , Agricultores , Granjas , Seguridad Alimentaria , Población Rural , Desarrollo Sostenible , Humanos , Agricultura/economía , Agricultura/educación , Agricultura/métodos , Agricultura/organización & administración , China , Agricultores/educación , Agricultores/estadística & datos numéricos , Granjas/economía , Granjas/organización & administración , Granjas/estadística & datos numéricos , Granjas/tendencias , Fertilizantes/análisis , Factores de Edad , Seguridad Alimentaria/economía , Seguridad Alimentaria/métodos , Desarrollo Sostenible/economía , Desarrollo Sostenible/tendencias , Población Rural/estadística & datos numéricos , Población Rural/tendencias , Eficiencia , Contaminantes Ambientales
9.
Nature ; 611(7935): 301-305, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323777

RESUMEN

Enrichment of nutrients and loss of herbivores are assumed to cause a loss of plant diversity in grassland ecosystems because they increase plant cover, which leads to a decrease of light in the understory1-3. Empirical tests of the role of competition for light in natural systems are based on indirect evidence, and have been a topic of debate for the last 40 years. Here we show that experimentally restoring light to understory plants in a natural grassland mitigates the loss of plant diversity that is caused by either nutrient enrichment or the absence of mammalian herbivores. The initial effect of light addition on restoring diversity under fertilization was transitory and outweighed by the greater effect of herbivory on light levels, indicating that herbivory is a major factor that controls diversity, partly through light. Our results provide direct experimental evidence, in a natural system, that competition for light is a key mechanism that contributes to the loss of biodiversity after cessation of mammalian herbivory. Our findings also show that the effects of herbivores can outpace the effects of fertilization on competition for light. Management practices that target maintaining grazing by native or domestic herbivores could therefore have applications in protecting biodiversity in grassland ecosystems, because they alleviate competition for light in the understory.


Asunto(s)
Biodiversidad , Herbivoria , Luz , Plantas , Animales , Pradera , Mamíferos/fisiología , Nutrientes/metabolismo , Plantas/clasificación , Plantas/metabolismo , Plantas/efectos de la radiación , Fertilizantes
10.
Proc Natl Acad Sci U S A ; 120(17): e2221459120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068247

RESUMEN

Growing population and consumption pose unprecedented demands on food production. However, ammonia emissions mainly from food systems increase oceanic nitrogen deposition contributing to eutrophication. Here, we developed a long-term oceanic nitrogen deposition dataset (1970 to 2018) with updated ammonia emissions from food systems, evaluated the impact of ammonia emissions on oceanic nitrogen deposition patterns, and discussed the potential impact of nitrogen fertilizer overuse. Based on the chemical transport modeling approach, oceanic ammonia-related nitrogen deposition increased by 89% globally between 1970 and 2018, and now, it exceeds oxidized nitrogen deposition by over 20% in coastal regions including China Sea, India Coastal, and Northeastern Atlantic Shelves. Approximately 38% of agricultural nitrogen fertilizer was excessive, which corresponds to 15% of global oceanic ammonia-related nitrogen deposition. Policymakers and water quality managers need to pay increasingly more attention to ammonia associated with food production if the goal of reducing coastal nitrogen pollution is to be achieved for Sustainable Development Goals.


Asunto(s)
Amoníaco , Nitrógeno , Nitrógeno/análisis , Amoníaco/análisis , Fertilizantes/análisis , Agricultura , China , Calidad del Agua , Suelo
11.
Nature ; 567(7749): 516-520, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30818324

RESUMEN

The nitrogen cycle has been radically changed by human activities1. China consumes nearly one third of the world's nitrogen fertilizers. The excessive application of fertilizers2,3 and increased nitrogen discharge from livestock, domestic and industrial sources have resulted in pervasive water pollution. Quantifying a nitrogen 'boundary'4 in heterogeneous environments is important for the effective management of local water quality. Here we use a combination of water-quality observations and simulated nitrogen discharge from agricultural and other sources to estimate spatial patterns of nitrogen discharge into water bodies across China from 1955 to 2014. We find that the critical surface-water quality standard (1.0 milligrams of nitrogen per litre) was being exceeded in most provinces by the mid-1980s, and that current rates of anthropogenic nitrogen discharge (14.5 ± 3.1 megatonnes of nitrogen per year) to fresh water are about 2.7 times the estimated 'safe' nitrogen discharge threshold (5.2 ± 0.7 megatonnes of nitrogen per year). Current efforts to reduce pollution through wastewater treatment and by improving cropland nitrogen management can partially remedy this situation. Domestic wastewater treatment has helped to reduce net discharge by 0.7 ± 0.1 megatonnes in 2014, but at high monetary and energy costs. Improved cropland nitrogen management could remove another 2.3 ± 0.3 megatonnes of nitrogen per year-about 25 per cent of the excess discharge to fresh water. Successfully restoring a clean water environment in China will further require transformational changes to boost the national nutrient recycling rate from its current average of 36 per cent to about 87 per cent, which is a level typical of traditional Chinese agriculture. Although ambitious, such a high level of nitrogen recycling is technologically achievable at an estimated capital cost of approximately 100 billion US dollars and operating costs of 18-29 billion US dollars per year, and could provide co-benefits such as recycled wastewater for crop irrigation and improved environmental quality and ecosystem services.


Asunto(s)
Agricultura/métodos , Fertilizantes/análisis , Fertilizantes/provisión & distribución , Ciclo del Nitrógeno , Nitrógeno/análisis , Nitrógeno/provisión & distribución , Calidad del Agua/normas , Agricultura/estadística & datos numéricos , Animales , China , Ecosistema , Monitoreo del Ambiente , Abastecimiento de Alimentos/métodos , Abastecimiento de Alimentos/estadística & datos numéricos , Humanos , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis
12.
Nature ; 571(7764): 257-260, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31217589

RESUMEN

Increasing global food demand, low grain reserves and climate change threaten the stability of food systems on national to global scales1-5. Policies to increase yields, irrigation and tolerance of crops to drought have been proposed as stability-enhancing solutions1,6,7. Here we evaluate a complementary possibility-that greater diversity of crops at the national level may increase the year-to-year stability of the total national harvest of all crops combined. We test this crop diversity-stability hypothesis using 5 decades of data on annual yields of 176 crop species in 91 nations. We find that greater effective diversity of crops at the national level is associated with increased temporal stability of total national harvest. Crop diversity has stabilizing effects that are similar in magnitude to the observed destabilizing effects of variability in precipitation. This greater stability reflects markedly lower frequencies of years with sharp harvest losses. Diversity effects remained robust after statistically controlling for irrigation, fertilization, precipitation, temperature and other variables, and are consistent with the variance-scaling characteristics of individual crops required by theory8,9 for diversity to lead to stability. Ensuring stable food supplies is a challenge that will probably require multiple solutions. Our results suggest that increasing national effective crop diversity may be an additional way to address this challenge.


Asunto(s)
Productos Agrícolas/clasificación , Productos Agrícolas/provisión & distribución , Abastecimiento de Alimentos/métodos , Abastecimiento de Alimentos/estadística & datos numéricos , Geografía , Riego Agrícola/estadística & datos numéricos , Biodiversidad , Calorimetría , Productos Agrícolas/crecimiento & desarrollo , Sequías/estadística & datos numéricos , Fertilizantes/provisión & distribución , Modelos Teóricos , Probabilidad , Lluvia , Temperatura
13.
Nature ; 575(7781): 109-118, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31695205

RESUMEN

The current trajectory for crop yields is insufficient to nourish the world's population by 20501. Greater and more consistent crop production must be achieved against a backdrop of climatic stress that limits yields, owing to shifts in pests and pathogens, precipitation, heat-waves and other weather extremes. Here we consider the potential of plant sciences to address post-Green Revolution challenges in agriculture and explore emerging strategies for enhancing sustainable crop production and resilience in a changing climate. Accelerated crop improvement must leverage naturally evolved traits and transformative engineering driven by mechanistic understanding, to yield the resilient production systems that are needed to ensure future harvests.


Asunto(s)
Producción de Cultivos/métodos , Producción de Cultivos/estadística & datos numéricos , Productos Agrícolas/genética , Abastecimiento de Alimentos/métodos , Abastecimiento de Alimentos/estadística & datos numéricos , Calentamiento Global/estadística & datos numéricos , Desarrollo Sostenible/tendencias , Aclimatación/genética , Aclimatación/fisiología , Animales , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Productos Agrícolas/virología , Fertilizantes , Humanos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/estadística & datos numéricos , Lluvia
14.
Proc Natl Acad Sci U S A ; 119(10): e2112010119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235460

RESUMEN

Eutrophication is a major driver of species loss in plant communities worldwide. However, the underlying mechanisms of this phenomenon are controversial. Previous studies have raised three main explanations: 1) High levels of soil resources increase standing biomass, thereby intensifying competitive interactions (the "biomass-driven competition hypothesis"). 2) High levels of soil resources reduce the potential for resource-based niche partitioning (the "niche dimension hypothesis"). 3) Increasing soil nitrogen causes stress by changing the abiotic or biotic conditions (the "nitrogen detriment hypothesis"). Despite several syntheses of resource addition experiments, so far, no study has tested all of the hypotheses together. This is a major shortcoming, since the mechanisms underlying the three hypotheses are not independent. Here, we conduct a simultaneous test of the three hypotheses by integrating data from 630 resource addition experiments located in 99 sites worldwide. Our results provide strong support for the nitrogen detriment hypothesis, weaker support for the biomass-driven competition hypothesis, and negligible support for the niche dimension hypothesis. The results further show that the indirect effect of nitrogen through its effect on biomass is minor compared to its direct effect and is much larger than that of all other resources (phosphorus, potassium, and water). Thus, we conclude that nitrogen-specific mechanisms are more important than biomass or niche dimensionality as drivers of species loss under high levels of soil resources. This conclusion is highly relevant for future attempts to reduce biodiversity loss caused by global eutrophication.


Asunto(s)
Biodiversidad , Biomasa , Fertilizantes , Pradera , Nitrógeno
15.
Plant Mol Biol ; 114(2): 35, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587705

RESUMEN

Fixing atmospheric nitrogen for use as fertilizer is a crucial process in promoting plant growth and enhancing crop yields in agricultural production. Currently, the chemical production of nitrogen fertilizer from atmospheric N2 relies on the energy-intensive Haber-Bosch process. Therefore, developing a low-cost and easily applicable method for fixing nitrogen from the air would provide a beneficial alternative. In this study, we tested the utilization of dinitrogen pentoxide (N2O5) gas, generated from oxygen and nitrogen present in ambient air with the help of a portable plasma device, as a nitrogen source for the model plant Arabidopsis thaliana. Nitrogen-deficient plants supplied with medium treated with N2O5, were able to overcome nitrogen deficiency, similar to those provided with medium containing a conventional nitrogen source. However, prolonged direct exposure of plants to N2O5 gas adversely affected their growth. Short-time exposure of plants to N2O5 gas mitigated its toxicity and was able to support growth. Moreover, when the exposure of N2O5 and the contact with plants were physically separated, plants cultured under nitrogen deficiency were able to grow. This study shows that N2O5 gas generated from atmospheric nitrogen can be used as an effective nutrient for plants, indicating its potential to serve as an alternative nitrogen fertilization method for promoting plant growth.


Asunto(s)
Arabidopsis , Gases , Nitrógeno , Fertilizantes , Oxígeno , Agricultura
16.
Funct Integr Genomics ; 24(1): 26, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329581

RESUMEN

The medicinal herb Artemisia annua L. is prized for its capacity to generate artemisinin, which is used to cure malaria. Potentially influencing the biomass and secondary metabolite synthesis of A. annua is plant nutrition, particularly phosphorus (P). However, most soil P exist as insoluble inorganic and organic phosphates, which results to low P availability limiting plant growth and development. Although plants have developed several adaptation strategies to low P levels, genetics and metabolic responses to P status remain largely unknown. In a controlled greenhouse experiment, the sparingly soluble P form, hydroxyapatite (Ca5OH(PO4)3/CaP) was used to simulate calcareous soils with low P availability. In contrast, the soluble P form KH2PO4/KP was used as a control. A. annua's morphological traits, growth, and artemisinin concentration were determined, and RNA sequencing was used to identify the differentially expressed genes (DEGs) under two different P forms. Total biomass, plant height, leaf number, and stem diameter, as well as leaf area, decreased by 64.83%, 27.49%, 30.47%, 38.70%, and 54.64% in CaP compared to KP; however, LC-MS tests showed an outstanding 37.97% rise in artemisinin content per unit biomass in CaP contrary to KP. Transcriptome analysis showed 2015 DEGs (1084 up-regulated and 931 down-regulated) between two P forms, including 39 transcription factor (TF) families. Further analysis showed that DEGs were mainly enriched in carbohydrate metabolism, secondary metabolites biosynthesis, enzyme catalytic activity, signal transduction, and so on, such as tricarboxylic acid (TCA) cycle, glycolysis, starch and sucrose metabolism, flavonoid biosynthesis, P metabolism, and plant hormone signal transduction. Meanwhile, several artemisinin biosynthesis genes were up-regulated, including DXS, GPPS, GGPS, MVD, and ALDH, potentially increasing artemisinin accumulation. Furthermore, 21 TF families, including WRKY, MYB, bHLH, and ERF, were up-regulated in reaction to CaP, confirming their importance in P absorption, internal P cycling, and artemisinin biosynthesis regulation. Our results will enable us to comprehend how low P availability impacts the parallel transcriptional control of plant development, growth, and artemisinin production in A. annua. This study could lay the groundwork for future research into the molecular mechanisms underlying A. annua's low P adaptation.


Asunto(s)
Artemisia annua , Artemisininas , Artemisia annua/genética , Fertilizantes , Perfilación de la Expresión Génica , Lagos , Fósforo
17.
Environ Microbiol ; 26(3): e16587, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38454741

RESUMEN

To comprehensively evaluate the impact of agricultural management practices on soil productivity, it is imperative to conduct a thorough analysis of soil bacterial ecology. Deep-banding nutrient-rich amendments is a soil management practice that aims to improve plant growth and soil structure by addressing the plant-growth constraints posed by dense-clay subsoils. However, the response of bacterial communities to deep-banded amendments has not been thoroughly studied. To address this knowledge gap, we conducted a controlled-environment column experiment to examine the effects of different types of soil amendments (poultry litter, wheat straw + chemical fertiliser and chemical fertiliser alone) on bacterial taxonomic composition in simulated dense-clay subsoils. We evaluated the bacterial taxonomic and ecological group composition in soils beside and below the amendment using 16S rRNA amplicon sequencing and robust statistical methods. Our results indicate that deep-banded amendments alter bacterial communities through direct and indirect mechanisms. All amendments directly facilitated a shift in bacterial communities in the absence of growing wheat. However, a combination of amendments with growing wheat led to a more pronounced bacterial community shift which was distinct from and eclipsed the direct impact of the amendments and plants alone. This indirect mechanism was evidenced to be mediated primarily by plant growth and hypothesised to result from an enhancement in wheat root distribution, density and rhizodeposition changes. Therefore, we propose that subsoil amendments regardless of type facilitated an expansion in the rhizosphere which engineered a substantial plant-mediated bacterial community response within the simulated dense-clay subsoils. Overall, our findings highlight the importance of considering the complex and synergistic interactions between soil physicochemical properties, plant growth and bacterial communities when assessing agricultural management strategies for improving soil and plant productivity.


Asunto(s)
Microbiota , Microbiota/genética , Arcilla , Rizosfera , Fertilizantes , ARN Ribosómico 16S/genética , Microbiología del Suelo , Suelo/química , Plantas/genética , Bacterias , Triticum/microbiología
18.
BMC Plant Biol ; 24(1): 510, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844838

RESUMEN

BACKGROUND: Optimum planting date and appropriate fertilizer module are essential facets of chrysanthemum cultivation, to enhance quality yield, and improve soil health. A field-based study was undertaken over multiple growing seasons in 2022 and 2023, where six different planting dates, viz., P1:June 15, P2:June 30, P3:July 15, P4:July 30, P5:August 15 and P6:August 30 and two fertilizer modules, FM1:Jeevamrit @ 30 ml plant-1 and FM2:NPK @ 30 g m-2 were systematically examined using a Randomized Block Design (factorial), replicated thrice. RESULTS: P6 planting resulted in early bud formation (44.03 days) and harvesting stage (90.78 days). Maximum plant height (79.44 cm), plant spread (34.04 cm), cut stem length (68.40 cm), flower diameter (7.83 cm), stem strength (19.38˚), vase life (14.90 days), flowering duration (24.08 days), available soil N (314 kg ha-1), available P (37 kg ha-1), available K (347 kg ha-1), bacterial count (124.87 × 107 cfu g-1 soil), actinomycetes count (60.72 × 102 cfu g-1 soil), fungal count (30.95 × 102 cfu g-1 soil), microbial biomass (48.79 µg g-1 soil), dehydrogenase enzyme (3.64 mg TPF h-1 g-1 soil) and phosphatase enzyme (23.79 mol PNP h-1 g-1 soil) was recorded in P1 planting. Among the fertilization module, minimum days to bud formation (74.94 days) and days to reach the harvesting stage (120.95 days) were recorded with the application of NPK @30 g m-2. However, maximum plant height (60.62 cm), plant spread (23.10 cm), number of cut stems m-2 (43.88), cut stem length (51.34 cm), flower diameter (6.92 cm), stem strength (21.24˚), flowering duration (21.75 days), available soil N (317 kg ha-1), available P (37 kg ha-1) and available K (349 kg ha-1) were also recorded with the application of NPK @300 kg ha-1. Maximum vase life (13.87 days), OC (1.13%), bacterial count (131.65 × 107 cfu g-1 soil), actinomycetes count (60.89 × 102 cfu g-1 soil), fungal count (31.11 × 102 cfu g-1 soil), microbial biomass (51.27 µg g-1 soil), dehydrogenase enzyme (3.77 mg TPF h-1 g-1 soil) and phosphatase enzyme (21.72 mol PNP h-1 g-1 soil) were observed with the application of Jeevamrit @ 30 ml plant-1. CONCLUSION: Early planting (P1) and inorganic fertilization (NPK @ 30 g m-2) resulted in improved yield and soil macronutrient content. The soil microbial population and enzymatic activity were improved with the jeevamrit application. This approach highlights the potential for improved yield and soil health in chrysanthemum cultivation, promoting a more eco-friendly and economically viable agricultural model.


Asunto(s)
Chrysanthemum , Fertilizantes , Microbiología del Suelo , Suelo , Chrysanthemum/crecimiento & desarrollo , Fertilizantes/análisis , Suelo/química , Estaciones del Año , Biomasa
19.
BMC Plant Biol ; 24(1): 268, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605320

RESUMEN

BACKGROUND: Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters. Focus was placed on the eventual improved capacity of plants to recover N from applied fertilizers (AFR) and enhance N use efficiency (NUE) during photosynthesis. The two-year field trial involved four seed inoculation treatments (control, A. brasilense, B. subtilis, and A. brasilense + B. subtilis) and five N application rates (0 to 240 kg N ha-1, applied as side-dress). RESULTS: Our results suggested that the combined effects of microbial consortia and adequate N-application rates played a crucial role in N-recovery; enhanced NUE; increased N accumulation, leaf chlorophyll index (LCI), and shoot and root growth; consequently improving corn grain yield. The integration of inoculation and adequate N rates upregulated CO2 uptake and assimilation, transpiration, and water use efficiency, while downregulated oxidative stress. CONCLUSIONS: The results indicated that the optimum N application rate could be reduced from 240 to 175 kg N ha-1 while increasing corn yield by 5.2%. Furthermore, our findings suggest that replacing 240 by 175 kg N ha-1 of N fertilizer (-65 kg N ha-1) with microbial consortia would reduce CO2 emission by 682.5 kg CO2 -e ha-1. Excessive N application, mainly with the presence of beneficial bacteria, can disrupt N-balance in the plant, alter soil and bacteria levels, and ultimately affect plant growth and yield. Hence, highlighting the importance of adequate N management to maximize the benefits of inoculation in agriculture and to counteract N loss from agricultural systems intensification.


Asunto(s)
Fertilizantes , Zea mays , Nitrógeno/análisis , Dióxido de Carbono , Agricultura , Suelo
20.
BMC Plant Biol ; 24(1): 176, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448825

RESUMEN

BACKGROUND: The microbiome plays a fundamental role in plant health and performance. Soil serves as a reservoir of microbial diversity where plants attract microorganisms via root exudates. The soil has an important impact on the composition of the rhizosphere microbiome, but greenhouse ornamental plants are commonly grown in soilless substrates. While soil microbiomes have been extensively studied in traditional agriculture to improve plant performance, health, and sustainability, information about the microbiomes of soilless substrates is still limited. Thus, we conducted an experiment to explore the microbiome of a peat-based substrate used in container production of Impatiens walleriana, a popular greenhouse ornamental plant. We investigated the effects of plant phenological stage and fertilization level on the substrate microbiome. RESULTS: Impatiens plants grown under low fertilization rates were smaller and produced more flowers than plants grown under optimum and high fertilization. The top five bacterial phyla present in the substrate were Proteobacteria, Actinobacteria, Bacteriodota, Verrucomicrobiota, and Planctomycetota. We found a total of 2,535 amplicon sequence variants (ASV) grouped into 299 genera. The substrate core microbiome was represented by only 1.8% (48) of the identified ASV. The microbiome community composition was influenced by plant phenological stage and fertilizer levels. Phenological stage exhibited a stronger influence on microbiome composition than fertilizer levels. Differential abundance analysis using DESeq2 identified more ASVs significantly affected (enriched or depleted) in the high fertilizer levels at flowering. As observed for community composition, the effect of plant phenological stage on microbial community function was stronger than fertilizer level. Phenological stage and fertilizer treatments did not affect alpha-diversity in the substrate. CONCLUSIONS: In container-grown ornamental plants, the substrate serves as the main microbial reservoir for the plant, and the plant and agricultural inputs (fertilization) modulate the microbial community structure and function of the substrate. The differences observed in substrate microbiome composition across plant phenological stage were explained by pH, total organic carbon (TOC) and fluoride, and across fertilizer levels by pH and phosphate (PO4). Our project provides an initial diversity profile of the bacteria occurring in soilless substrates, an underexplored source of microbial diversity.


Asunto(s)
Impatiens , Microbiota , Fertilizantes , Nutrientes , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA