Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(7): 104902, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302554

RESUMEN

Fusobacterium nucleatum is an opportunistic oral pathogen that is associated with various cancers. To fulfill its essential need for iron, this anaerobe will express heme uptake machinery encoded at a single genetic locus. The heme uptake operon includes HmuW, a class C radical SAM-dependent methyltransferase that degrades heme anaerobically to release Fe2+ and a linear tetrapyrrole called anaerobilin. The last gene in the operon, hmuF encodes a member of the flavodoxin superfamily of proteins. We discovered that HmuF and a paralog, FldH, bind tightly to both FMN and heme. The structure of Fe3+-heme-bound FldH (1.6 Å resolution) reveals a helical cap domain appended to the ⍺/ß core of the flavodoxin fold. The cap creates a hydrophobic binding cleft that positions the heme planar to the si-face of the FMN isoalloxazine ring. The ferric heme iron is hexacoordinated to His134 and a solvent molecule. In contrast to flavodoxins, FldH and HmuF do not stabilize the FMN semiquinone but instead cycle between the FMN oxidized and hydroquinone states. We show that heme-loaded HmuF and heme-loaded FldH traffic heme to HmuW for degradation of the protoporphyrin ring. Both FldH and HmuF then catalyze multiple reductions of anaerobilin through hydride transfer from the FMN hydroquinone. The latter activity eliminates the aromaticity of anaerobilin and the electrophilic methylene group that was installed through HmuW turnover. Hence, HmuF provides a protected path for anaerobic heme catabolism, offering F. nucleatum a competitive advantage in the colonization of anoxic sites of the human body.


Asunto(s)
Flavodoxina , Fusobacterium nucleatum , Hemo , Tetrapirroles , Humanos , Mononucleótido de Flavina/metabolismo , Flavodoxina/química , Flavodoxina/clasificación , Flavodoxina/genética , Flavodoxina/metabolismo , Fusobacterium nucleatum/química , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Oxidación-Reducción , Tetrapirroles/metabolismo , Transporte Biológico , Genes Bacterianos , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominios Proteicos , Infecciones por Fusobacterium/microbiología
2.
Plant J ; 115(2): 369-385, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37009644

RESUMEN

Maintenance of stable mitochondrial respiratory chains could enhance adaptability to high temperature, but the potential mechanism was not elucidated clearly in plants. In this study, we identified and isolated a TrFQR1 gene encoding the flavodoxin-like quinone reductase 1 (TrFQR1) located in mitochondria of leguminous white clover (Trifolium repens). Phylogenetic analysis indicated that amino acid sequences of FQR1 in various plant species showed a high degree of similarities. Ectopic expression of TrFQR1 protected yeast (Saccharomyces cerevisiae) from heat damage and toxic levels of benzoquinone, phenanthraquinone and hydroquinone. Transgenic Arabidopsis thaliana and white clover overexpressing TrFQR1 exhibited significantly lower oxidative damage and better photosynthetic capacity and growth than wild-type in response to high-temperature stress, whereas AtFQR1-RNAi A. thaliana showed more severe oxidative damage and growth retardation under heat stress. TrFQR1-transgenic white clover also maintained better respiratory electron transport chain than wild-type plants, as manifested by significantly higher mitochondrial complex II and III activities, alternative oxidase activity, NAD(P)H content, and coenzyme Q10 content in response to heat stress. In addition, overexpression of TrFQR1 enhanced the accumulation of lipids including phosphatidylglycerol, monogalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol and cardiolipin as important compositions of bilayers involved in dynamic membrane assembly in mitochondria or chloroplasts positively associated with heat tolerance. TrFQR1-transgenic white clover also exhibited higher lipids saturation level and phosphatidylcholine:phosphatidylethanolamine ratio, which could be beneficial to membrane stability and integrity during a prolonged period of heat stress. The current study proves that TrFQR1 is essential for heat tolerance associated with mitochondrial respiratory chain, cellular reactive oxygen species homeostasis, and lipids remodeling in plants. TrFQR1 could be selected as a key candidate marker gene to screen heat-tolerant genotypes or develop heat-tolerant crops via molecular-based breeding.


Asunto(s)
Arabidopsis , Trifolium , Trifolium/genética , Trifolium/metabolismo , Flavodoxina/genética , Flavodoxina/metabolismo , Diglicéridos/metabolismo , Filogenia , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Oxidativo , Arabidopsis/genética , Arabidopsis/metabolismo , Homeostasis , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
3.
J Exp Bot ; 75(15): 4625-4640, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38364822

RESUMEN

Foliar development involves successive phases of cell proliferation and expansion that determine the final leaf size, and is characterized by an early burst of reactive oxygen species generated in the photosynthetic electron transport chain (PETC). Introduction of the alternative PETC acceptor flavodoxin in tobacco chloroplasts led to a reduction in leaf size associated to lower cell expansion, without affecting cell number per leaf. Proteomic analysis showed that the biogenesis of the PETC proceeded stepwise in wild-type leaves, with accumulation of light-harvesting proteins preceding that of electron transport components, which might explain the increased energy and electron transfer to oxygen and reactive oxygen species build-up at this stage. Flavodoxin expression did not affect biogenesis of the PETC but prevented hydroperoxide formation through its function as electron sink. Mature leaves from flavodoxin-expressing plants were shown to contain higher levels of transcripts encoding components of the proteasome, a key negative modulator of organ size. Proteome profiling revealed that this differential accumulation was initiated during expansion and led to increased proteasomal activity, whereas a proteasome inhibitor reverted the flavodoxin-dependent size phenotype. Cells expressing plastid-targeted flavodoxin displayed lower endoreduplication, also associated to decreased organ size. These results provide novel insights into the regulation of leaf growth by chloroplast-generated redox signals, and highlight the potential of alternative electron shuttles to investigate the link(s) between photosynthesis and plant development.


Asunto(s)
Cloroplastos , Nicotiana , Hojas de la Planta , Complejo de la Endopetidasa Proteasomal , Cloroplastos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Transporte de Electrón , Fotosíntesis , Flavodoxina/metabolismo , Flavodoxina/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
4.
Biotechnol Lett ; 44(3): 503-511, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35124760

RESUMEN

OBJECTIVE: This study aimed to identify genes related to freeze-thaw tolerance and elucidate the tolerance mechanism in yeast Saccharomyces cerevisiae as an appropriate eukaryote model. RESULTS: In this study, one tolerant strain exposed to freeze-thaw stress was isolated by screening a transposon-mediated mutant library and the disrupted gene was identified to be YCP4. In addition, this phenotype related to freeze-thaw tolerance was confirmed by deletion and overexpressing of this corresponding gene. This mutant strain showed a freeze-thaw tolerance by reducing the intracellular level of reactive oxygen species and the activation of the MSN2/4 and STRE-mediated genes such as CTT1 and HSP12. CONCLUSIONS: Disruption of YCP4 in S. cerevisiae results in increased tolerance to freeze-thaw stress.


Asunto(s)
Flavodoxina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Unión al ADN/genética , Tolerancia a Medicamentos , Flavodoxina/genética , Congelación , Especies Reactivas de Oxígeno , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
5.
Proc Natl Acad Sci U S A ; 116(51): 25917-25922, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31801875

RESUMEN

Flavodoxins, electron transfer proteins essential for diverse metabolisms in microbes from the domain Bacteria, are extensively characterized. Remarkably, although genomic annotations of flavodoxins are widespread in microbes from the domain Archaea, none have been isolated and characterized. Herein is described the structural, biochemical, and physiological characterization of an unusual flavodoxin (FldA) from Methanosarcina acetivorans, an acetate-utilizing methane-producing microbe of the domain Archaea In contrast to all flavodoxins, FldA is homodimeric, markedly less acidic, and stabilizes an anionic semiquinone. The crystal structure reveals an flavin mononucleotide (FMN) binding site unique from all other flavodoxins that provides a rationale for stabilization of the anionic semiquinone and a remarkably low reduction potentials for both the oxidized/semiquinone (-301 mV) and semiquinone/hydroquinone couples (-464 mV). FldA is up-regulated in acetate-grown versus methanol-grown cells and shown here to substitute for ferredoxin in mediating the transfer of low potential electrons from the carbonyl of acetate to the membrane-bound electron transport chain that generates ion gradients driving ATP synthesis. FldA offers potential advantages over ferredoxin by (i) sparing iron for abundant iron-sulfur proteins essential for acetotrophic growth and (ii) resilience to oxidative damage.


Asunto(s)
Flavodoxina/química , Flavodoxina/metabolismo , Methanosarcina/metabolismo , Acetatos/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Ferredoxinas/química , Ferredoxinas/metabolismo , Mononucleótido de Flavina/química , Flavodoxina/genética , Flavodoxina/aislamiento & purificación , Flavoproteínas/química , Calentamiento Global , Hidroquinonas , Metano/metabolismo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
6.
Infect Immun ; 89(4)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33468576

RESUMEN

Survival of the fungal pathogen Candida albicans within a mammalian host relies on its ability to resist oxidative stress. The four flavodoxin-like proteins (Pst1, Pst2, Pst3, and Ycp4) that reside on the inner surface of the C. albicans plasma membrane represent a recently discovered antioxidant mechanism that is essential for virulence. Flavodoxin-like proteins combat oxidative stress by promoting a two-electron reduction of quinone molecules, which prevents the formation of toxic semiquinone radicals. Previous studies indicated that Pst3 played a major role in promoting resistance to the small quinone molecules p-benzoquinone and menadione. Analysis of additional quinones confirmed this role for Pst3. To better define their function, antibodies were raised against each of the four flavodoxin-like proteins and used to quantify protein levels. Interestingly, the basal level of flavodoxin-like proteins differed, with Pst3 and Ycp4 being the most abundant. However, after induction with p-benzoquinone, Pst1 and Pst3 were the most highly induced, resulting in Pst3 becoming the most abundant. Constitutive expression of the flavodoxin-like protein genes from a TDH3 promoter resulted in similar protein levels and showed that Pst1 and Pst3 were better at protecting C. albicans against p-benzoquinone than Pst2 or Ycp4. In contrast, Pst1 and Ycp4 provided better protection against oxidative damage induced by tert-butyl hydroperoxide. Thus, both the functional properties and the relative abundance contribute to the distinct roles of the flavodoxin-like proteins in resisting oxidative stress. These results further define how C. albicans combats the host immune response and survives in an environment rich in oxidative stress.


Asunto(s)
Benzoquinonas/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Flavodoxina/genética , Proteínas Fúngicas/genética , Familia de Multigenes , Estrés Oxidativo , Anticuerpos Antifúngicos , Benzoquinonas/química , Farmacorresistencia Fúngica , Flavodoxina/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Peroxidación de Lípido , Pruebas de Sensibilidad Microbiana
7.
Proc Natl Acad Sci U S A ; 114(48): 12785-12790, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133393

RESUMEN

Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis Here we utilized FrvA, a high-affinity Fe2+ efflux transporter from Listeria monocytogenes, as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron (efeUOB), ferric citrate (fecCDEF), and petrobactin (fpbNOPQ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin (dhbACEBF) and turns on bacillibactin (feuABC) and hydroxamate siderophore (fhuBCGD) uptake systems to scavenge iron from the environment and flavodoxins (ykuNOP) to replace ferredoxins. Third, as iron levels decline further, an "iron-sparing" response (fsrA, fbpAB, and fbpC) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the "late"-induced genes.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Proteínas Represoras/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Benzamidas/metabolismo , Proteínas Portadoras/metabolismo , Compuestos Férricos/metabolismo , Flavodoxina/genética , Flavodoxina/metabolismo , Homeostasis/genética , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Oligopéptidos/biosíntesis , Oligopéptidos/genética , Operón , Regulón , Proteínas Represoras/metabolismo , Sideróforos/biosíntesis , Sideróforos/genética
8.
Biochemistry ; 58(48): 4790-4793, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31724394

RESUMEN

Evolutionary processes that led to the emergence of structured protein domains left footprints in the sequences of modern proteins. We searched for such hints employing state-of-the-art sequence analysis and found evidence that the HemD-like fold emerged from the flavodoxin-like fold through segment swap and gene duplication. To verify this hypothesis, we reverted these evolutionary steps experimentally, constructing a HemD-half that resulted in a protein with the canonical flavodoxin-like architecture. These results of fold reconstruction from the sequence of a different fold strongly support our hypothesis of common ancestry. It further illustrates the plasticity of modern proteins to form new folded proteins.


Asunto(s)
Bacterias/metabolismo , Flavodoxina/química , Flavodoxina/genética , Bacterias/química , Bacterias/genética , Flavodoxina/metabolismo , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína
9.
J Biol Chem ; 292(34): 14039-14049, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28615449

RESUMEN

Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase I and can be an indication of capacity for electron bifurcation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavina-Adenina Dinucleótido/análogos & derivados , Flavodoxina/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Nitrorreductasas/metabolismo , Oxidorreductasas/metabolismo , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Biocatálisis , Desulfovibrio vulgaris/enzimología , Transporte de Electrón , Enterobacter cloacae/enzimología , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Flavodoxina/química , Flavodoxina/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/genética , Nitrorreductasas/química , Nitrorreductasas/genética , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Pyrococcus furiosus/enzimología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mutación Silenciosa , Thermus thermophilus/enzimología , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo
10.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 2-10, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28734978

RESUMEN

The Arabidopsis thaliana gene encoding CYP71A16 is part of the gene cluster for the biosynthesis and modification of the triterpenoid marneral. Previous investigations of A. thaliana have revealed that CYP71A16 catalyzes marneral oxidation, while it also can accept marnerol as substrate. The aim of the present study was to investigate functional properties of CYP71A16 in vitro. For this purpose, heterologous expression of a N-terminally modified version of CYP71A16 was established in Escherichia coli, which yielded up to 50mgL-1 recombinant enzyme. The enzyme was purified and activity was reconstituted in vitro with different redox partners. A heterologous bacterial redox partner system consisting of the flavodoxin YkuN from Bacillus subtilis and the flavodoxin reductase Fpr from E. coli clearly outperformed the cytochrome P450 reductase ATR2 from A. thaliana in supporting the CYP71A16-mediated hydroxylation of marnerol. Substrate binding experiments with CYP71A16 revealed a dissociation constant KD of 225µM for marnerol. CYP71A16 catalyzed the hydroxylation of marnerol to 23-hydroxymarnerol with a KM of 142µM and a kcat of 3.9min-1. Furthermore, GC/MS analysis revealed an as of yet unidentified overoxidation product of this in vitro reaction. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Bacillus subtilis/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Escherichia coli/metabolismo , Ferredoxina-NADP Reductasa/metabolismo , Flavodoxina/metabolismo , Triterpenos/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/genética , Bacillus subtilis/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ferredoxina-NADP Reductasa/genética , Flavodoxina/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hidroxilación , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
11.
J Biol Chem ; 291(50): 25911-25920, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27784783

RESUMEN

Folding of proteins usually involves intermediates, of which an important type is the molten globule (MG). MGs are ensembles of interconverting conformers that contain (non-)native secondary structure and lack the tightly packed tertiary structure of natively folded globular proteins. Whereas MGs of various purified proteins have been probed to date, no data are available on their presence and/or effect during protein synthesis. To study whether MGs arise during translation, we use ribosome-nascent chain (RNC) complexes of the electron transfer protein flavodoxin. Full-length isolated flavodoxin, which contains a non-covalently bound flavin mononucleotide (FMN) as cofactor, acquires its native α/ß parallel topology via a folding mechanism that contains an off-pathway intermediate with molten globular characteristics. Extensive population of this MG state occurs at physiological ionic strength for apoflavodoxin variant F44Y, in which a phenylalanine at position 44 is changed to a tyrosine. Here, we show for the first time that ascertaining the binding rate of FMN as a function of ionic strength can be used as a tool to determine the presence of the off-pathway MG on the ribosome. Application of this methodology to F44Y apoflavodoxin RNCs shows that at physiological ionic strength the ribosome influences formation of the off-pathway MG and forces the nascent chain toward the native state.


Asunto(s)
Azotobacter vinelandii/metabolismo , Mononucleótido de Flavina/metabolismo , Flavodoxina/biosíntesis , Pliegue de Proteína , Ribosomas/metabolismo , Sustitución de Aminoácidos , Azotobacter vinelandii/genética , Mononucleótido de Flavina/genética , Flavodoxina/genética , Mutación Missense , Ribosomas/genética
12.
Plant Biotechnol J ; 15(4): 433-446, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27638479

RESUMEN

Flavodoxin (Fld) plays a pivotal role in photosynthetic microorganisms as an alternative electron carrier flavoprotein under adverse environmental conditions. Cyanobacterial Fld has been demonstrated to be able to substitute ferredoxin of higher plants in most electron transfer processes under stressful conditions. We have explored the potential of Fld for use in improving plant stress response in creeping bentgrass (Agrostis stolonifera L.). Overexpression of Fld altered plant growth and development. Most significantly, transgenic plants exhibited drastically enhanced performance under oxidative, drought and heat stress as well as nitrogen (N) starvation, which was associated with higher water retention and cell membrane integrity than wild-type controls, modified expression of heat-shock protein genes, production of more reduced thioredoxin, elevated N accumulation and total chlorophyll content as well as up-regulated expression of nitrite reductase and N transporter genes. Further analysis revealed that the expression of other stress-related genes was also impacted in Fld-expressing transgenics. Our data establish a key role of Fld in modulating plant growth and development and plant response to multiple sources of adverse environmental conditions in crop species. This demonstrates the feasibility of manipulating Fld in crop species for genetic engineering of plant stress tolerance.


Asunto(s)
Agrostis/metabolismo , Flavodoxina/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Agrostis/efectos de los fármacos , Agrostis/genética , Sequías , Flavodoxina/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Calor , Paraquat/toxicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética
13.
Plant Physiol ; 172(2): 968-979, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27503604

RESUMEN

Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered "ocean deserts" due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom's response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (<3 d, phase I) and chronic (>5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment.


Asunto(s)
Adaptación Fisiológica/fisiología , Diatomeas/fisiología , Hierro/metabolismo , Estrés Oxidativo/fisiología , Adaptación Fisiológica/genética , Antioxidantes/metabolismo , Clorofila/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Flavodoxina/genética , Flavodoxina/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Glutatión/metabolismo , Peróxido de Hidrógeno/farmacología , Espectrometría de Masas , Océanos y Mares , Oxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Consumo de Oxígeno , Fotosíntesis , Proteómica/métodos
14.
FEMS Yeast Res ; 17(3)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28449083

RESUMEN

Yeast AP-1 transcription factor (Yap1p) and the enigmatic oxidoreductases Oye2p and Oye3p are involved in counteracting lipid oxidants and their unsaturated breakdown products. In order to uncover the response to linoleic acid hydroperoxide (LoaOOH) and the roles of Oye2p, Oye3p and Yap1p, we carried out proteomic analysis of the homozygous deletion mutants oye3Δ, oye2Δ and yap1Δ alongside the diploid parent strain BY4743. The findings demonstrate that deletion of YAP1 narrowed the response to LoaOOH, as the number of proteins differentially expressed in yap1Δ was 70% of that observed in BY4743. The role of Yap1p in regulating the major yeast peroxiredoxin Tsa1p was demonstrated by the decreased expression of Tsa1p in yap1Δ. The levels of Ahp1p and Hsp31p, previously shown to be regulated by Yap1p, were increased in LoaOOH-treated yap1Δ, indicating their expression is also regulated by another transcription factor(s). Relative to BY4743, protein expression differed in oye3Δ and oye2Δ under LoaOOH, underscored by superoxide dismutase (Sod1p), multiple heat shock proteins (Hsp60p, Ssa1p, and Sse1p), the flavodoxin-like protein Pst2p and the actin stabiliser tropomyosin (Tpm1p). Proteins associated with glycolysis were increased in all strains following treatment with LoaOOH. Together, the dataset reveals, for the first time, the yeast proteomic response to LoaOOH, highlighting the significance of carbohydrate metabolism, as well as distinction between the roles of Oye3p, Oye2p and Yap1p.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Ácidos Linoleicos/farmacología , Peróxidos Lipídicos/farmacología , Oxidantes/farmacología , Proteoma/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Flavodoxina/genética , Flavodoxina/metabolismo , Eliminación de Gen , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Anotación de Secuencia Molecular , Estrés Oxidativo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Proteoma/metabolismo , Proteómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Phys Chem Chem Phys ; 19(29): 19021-19031, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28702545

RESUMEN

Near the minimum free energy basin of proteins where the native ensemble resides, partly unfolded conformations of slightly higher energy can be significantly populated under native conditions. It has been speculated that they play roles in molecular recognition and catalysis, but they might represent contemporary features of the evolutionary process without functional relevance. Obtaining conclusive evidence on these alternatives is difficult because it requires comparing the performance of a given protein when populating and when not populating one such intermediate, in otherwise identical conditions. Wild type apoflavodoxin populates under native conditions a partly unfolded conformation (10% of molecules) whose unstructured region includes the binding sites for the FMN cofactor and for redox partner proteins. We recently engineered a thermostable variant where the intermediate is no longer detectable. Using the wild type and variant, we assess the relevance of the intermediate comparing folding kinetics, cofactor binding kinetics, cofactor affinity, X-ray structure, intrinsic dynamics, redox potential of the apoflavodoxin-cofactor complex (Fld), its affinity for partner protein FNR, and electron transfer rate within the Fld/FNR physiological complex. Our data strongly suggest the intermediate state, conserved in long-chain apoflavodoxins, is not required for the correct assembly of flavodoxin nor does it contribute to shape its electron transfer properties. This analysis can be applied to evaluate other native basin intermediates.


Asunto(s)
Apoproteínas/química , Flavodoxina/química , Apoproteínas/genética , Apoproteínas/metabolismo , Sitios de Unión , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Cristalografía por Rayos X , Transporte de Electrón , Mononucleótido de Flavina/química , Flavodoxina/genética , Flavodoxina/metabolismo , Cinética , Simulación de Dinámica Molecular , Mutagénesis , Pliegue de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína , Temperatura
16.
PLoS Genet ; 10(2): e1004163, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24550745

RESUMEN

Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for fl avo d oxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments.


Asunto(s)
Flavodoxina/genética , Interacciones Huésped-Parásitos/genética , Estrés Oxidativo , Pseudomonas aeruginosa/genética , Clonación Molecular , Flavodoxina/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Pseudomonas aeruginosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Biochim Biophys Acta ; 1854(10 Pt A): 1317-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26073784

RESUMEN

Correct folding of proteins is crucial for cellular homeostasis. More than thirty percent of proteins contain one or more cofactors, but the impact of these cofactors on co-translational folding remains largely unknown. Here, we address the binding of flavin mononucleotide (FMN) to nascent flavodoxin, by generating ribosome-arrested nascent chains that expose either the entire protein or C-terminally truncated segments thereof. The native α/ß parallel fold of flavodoxin is among the most ancestral and widely distributed folds in nature and exploring its co-translational folding is thus highly relevant. In Escherichia coli (strain BL21(DE3) Δtig::kan) FMN turns out to be limiting for saturation of this flavoprotein on time-scales vastly exceeding those of flavodoxin synthesis. Because the ribosome affects protein folding, apoflavodoxin cannot bind FMN during its translation. As a result, binding of cofactor to released protein is the last step in production of this flavoprotein in the cell. We show that once apoflavodoxin is entirely synthesized and exposed outside the ribosome to which it is stalled by an artificial linker containing the SecM sequence, the protein is natively folded and capable of binding FMN.


Asunto(s)
Apoproteínas/química , Azotobacter vinelandii/química , Proteínas Bacterianas/química , Mononucleótido de Flavina/química , Flavodoxina/química , Ribosomas/química , Apoproteínas/genética , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Flavodoxina/genética , Expresión Génica , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribosomas/metabolismo
18.
J Biol Chem ; 289(4): 1930-7, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24311779

RESUMEN

Cyanobacteria are able to use solar energy for the production of hydrogen. It is generally accepted that cyanobacterial NiFe-hydrogenases are reduced by NAD(P)H. This is in conflict with thermodynamic considerations, as the midpoint potentials of NAD(P)H do not suffice to support the measured hydrogen production under physiological conditions. We show that flavodoxin and ferredoxin directly reduce the bidirectional NiFe-hydrogenase of Synechocystis sp. PCC 6803 in vitro. A merodiploid ferredoxin-NADP reductase mutant produced correspondingly more photohydrogen. We furthermore found that the hydrogenase receives its electrons via pyruvate:flavodoxin/ferredoxin oxidoreductase (PFOR)-flavodoxin/ferredoxin under fermentative conditions, enabling the cells to gain ATP. These results strongly support that the bidirectional NiFe-hydrogenases in cyanobacteria function as electron sinks for low potential electrons from photosystem I and as a redox balancing device under fermentative conditions. However, the selective advantage of this enzyme is not known. No strong phenotype of mutants lacking the hydrogenase has been found. Because bidirectional hydrogenases are widespread in aquatic nutrient-rich environments that are capable of triggering phytoplankton blooms, we mimicked those conditions by growing cells in the presence of increased amounts of dissolved organic carbon and dissolved organic nitrogen. Under these conditions the hydrogenase was found to be essential. As these conditions close the two most important sinks for reduced flavodoxin/ferredoxin (CO2-fixation and nitrate reduction), this discovery further substantiates the connection between flavodoxin/ferredoxin and the NiFe-hydrogenase.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ferredoxinas/metabolismo , Flavodoxina/metabolismo , Hidrogenasas/metabolismo , Nitratos/metabolismo , Synechocystis/metabolismo , Proteínas Bacterianas/genética , Ferredoxinas/genética , Flavodoxina/genética , Hidrogenasas/genética , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Synechocystis/genética
19.
J Biol Chem ; 289(42): 29437-45, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25194416

RESUMEN

Production of nitric oxide (NO) by nitric oxide synthase (NOS) requires electrons to reduce the heme iron for substrate oxidation. Both FAD and FMN flavin groups mediate the transfer of NADPH derived electrons to NOS. Unlike mammalian NOS that contain both FAD and FMN binding domains within a single polypeptide chain, bacterial NOS is only composed of an oxygenase domain and must rely on separate redox partners for electron transfer and subsequent activity. Here, we report on the native redox partners for Bacillus subtilis NOS (bsNOS) and a novel chimera that promotes bsNOS activity. By identifying and characterizing native redox partners, we were also able to establish a robust enzyme assay for measuring bsNOS activity and inhibition. This assay was used to evaluate a series of established NOS inhibitors. Using the new assay for screening small molecules led to the identification of several potent inhibitors for which bsNOS-inhibitor crystal structures were determined. In addition to characterizing potent bsNOS inhibitors, substrate binding was also analyzed using isothermal titration calorimetry giving the first detailed thermodynamic analysis of substrate binding to NOS.


Asunto(s)
Antibacterianos/química , Bacillus subtilis/enzimología , NADH NADPH Oxidorreductasas/metabolismo , NADP/metabolismo , Óxido Nítrico Sintasa/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Calorimetría , Clonación Molecular , Citocromos c/metabolismo , Electrones , Escherichia coli/metabolismo , Ferredoxina-NADP Reductasa/genética , Flavodoxina/genética , Humanos , Imidazoles/química , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxidación-Reducción , Ratas
20.
FEBS Lett ; 598(11): 1375-1386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508768

RESUMEN

Modular assembly is a compelling pathway to create new proteins, a concept supported by protein engineering and millennia of evolution. Natural evolution provided a repository of building blocks, known as domains, which trace back to even shorter segments that underwent numerous 'copy-paste' processes culminating in the scaffolds we see today. Utilizing the subdomain-database Fuzzle, we constructed a fold-chimera by integrating a flavodoxin-like fragment into a periplasmic binding protein. This chimera is well-folded and a crystal structure reveals stable interfaces between the fragments. These findings demonstrate the adaptability of α/ß-proteins and offer a stepping stone for optimization. By emphasizing the practicality of fragment databases, our work pioneers new pathways in protein engineering. Ultimately, the results substantiate the conjecture that periplasmic binding proteins originated from a flavodoxin-like ancestor.


Asunto(s)
Ingeniería de Proteínas , Pliegue de Proteína , Ingeniería de Proteínas/métodos , Modelos Moleculares , Flavodoxina/química , Flavodoxina/metabolismo , Flavodoxina/genética , Proteínas de Unión Periplasmáticas/metabolismo , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Cristalografía por Rayos X , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA