Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.135
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 24(9): 651-667, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37277471

RESUMEN

Actin plays many well-known roles in cells, and understanding any specific role is often confounded by the overlap of multiple actin-based structures in space and time. Here, we review our rapidly expanding understanding of actin in mitochondrial biology, where actin plays multiple distinct roles, exemplifying the versatility of actin and its functions in cell biology. One well-studied role of actin in mitochondrial biology is its role in mitochondrial fission, where actin polymerization from the endoplasmic reticulum through the formin INF2 has been shown to stimulate two distinct steps. However, roles for actin during other types of mitochondrial fission, dependent on the Arp2/3 complex, have also been described. In addition, actin performs functions independent of mitochondrial fission. During mitochondrial dysfunction, two distinct phases of Arp2/3 complex-mediated actin polymerization can be triggered. First, within 5 min of dysfunction, rapid actin assembly around mitochondria serves to suppress mitochondrial shape changes and to stimulate glycolysis. At a later time point, at more than 1 h post-dysfunction, a second round of actin polymerization prepares mitochondria for mitophagy. Finally, actin can both stimulate and inhibit mitochondrial motility depending on the context. These motility effects can either be through the polymerization of actin itself or through myosin-based processes, with myosin 19 being an important mitochondrially attached myosin. Overall, distinct actin structures assemble in response to diverse stimuli to affect specific changes to mitochondria.


Asunto(s)
Actinas , Mitocondrias , Actinas/metabolismo , Mitocondrias/metabolismo , Forminas/metabolismo , Miosinas/metabolismo , Retículo Endoplásmico/metabolismo
2.
Cell ; 167(6): 1571-1585.e18, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27839864

RESUMEN

Cell migration in confined 3D tissue microenvironments is critical for both normal physiological functions and dissemination of tumor cells. We discovered a cytoskeletal structure that prevents damage to the nucleus during migration in confined microenvironments. The formin-family actin filament nucleator FMN2 associates with and generates a perinuclear actin/focal adhesion (FA) system that is distinct from previously characterized actin/FA structures. This system controls nuclear shape and positioning in cells migrating on 2D surfaces. In confined 3D microenvironments, FMN2 promotes cell survival by limiting nuclear envelope damage and DNA double-strand breaks. We found that FMN2 is upregulated in human melanomas and showed that disruption of FMN2 in mouse melanoma cells inhibits their extravasation and metastasis to the lung. Our results indicate a critical role for FMN2 in generating a perinuclear actin/FA system that protects the nucleus and DNA from damage to promote cell survival during confined migration and thus promote cancer metastasis.


Asunto(s)
Núcleo Celular/metabolismo , Adhesiones Focales , Neoplasias Pulmonares/secundario , Melanoma/patología , Proteínas de Microfilamentos/metabolismo , Metástasis de la Neoplasia , Proteínas Nucleares/metabolismo , Actinas/metabolismo , Animales , Roturas del ADN de Doble Cadena , Embrión de Mamíferos/citología , Matriz Extracelular/metabolismo , Femenino , Forminas , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso
3.
Nature ; 617(7961): 616-622, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36972684

RESUMEN

Steroid hormone receptors are ligand-binding transcription factors essential for mammalian physiology. The androgen receptor (AR) binds androgens mediating gene expression for sexual, somatic and behavioural functions, and is involved in various conditions including androgen insensitivity syndrome and prostate cancer1. Here we identified functional mutations in the formin and actin nucleator DAAM2 in patients with androgen insensitivity syndrome. DAAM2 was enriched in the nucleus, where its localization correlated with that of the AR to form actin-dependent transcriptional droplets in response to dihydrotestosterone. DAAM2 AR droplets ranged from 0.02 to 0.06 µm3 in size and associated with active RNA polymerase II. DAAM2 polymerized actin directly at the AR to promote droplet coalescence in a highly dynamic manner, and nuclear actin polymerization is required for prostate-specific antigen expression in cancer cells. Our data uncover signal-regulated nuclear actin assembly at a steroid hormone receptor necessary for transcription.


Asunto(s)
Actinas , Forminas , Proteínas Nucleares , Receptores Androgénicos , Transcripción Genética , Humanos , Actinas/metabolismo , Síndrome de Resistencia Androgénica/genética , Síndrome de Resistencia Androgénica/metabolismo , Andrógenos/farmacología , Andrógenos/metabolismo , Forminas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Nucleares/metabolismo , Polimerizacion/efectos de los fármacos , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal/efectos de los fármacos , Esteroides/metabolismo , Esteroides/farmacología , Testosterona/análogos & derivados , Transcripción Genética/efectos de los fármacos
4.
Plant Cell ; 36(3): 764-789, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38057163

RESUMEN

Precise control over how and where actin filaments are created leads to the construction of unique cytoskeletal arrays within a common cytoplasm. Actin filament nucleators are key players in this activity and include the conserved actin-related protein 2/3 (Arp2/3) complex as well as a large family of formins. In some eukaryotic cells, these nucleators compete for a common pool of actin monomers and loss of one favors the activity of the other. To test whether this mechanism is conserved, we combined the ability to image single filament dynamics in the homeostatic cortical actin array of living Arabidopsis (Arabidopsis thaliana) epidermal cells with genetic and/or small molecule inhibitor approaches to stably or acutely disrupt nucleator activity. We found that Arp2/3 mutants or acute CK-666 treatment markedly reduced the frequency of side-branched nucleation events as well as overall actin filament abundance. We also confirmed that plant formins contribute to side-branched filament nucleation in vivo. Surprisingly, simultaneous inhibition of both classes of nucleator increased overall actin filament abundance and enhanced the frequency of de novo nucleation events by an unknown mechanism. Collectively, our findings suggest that multiple actin nucleation mechanisms cooperate to generate and maintain the homeostatic cortical array of plant epidermal cells.


Asunto(s)
Actinas , Arabidopsis , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Forminas/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Células Epidérmicas/metabolismo
5.
PLoS Genet ; 20(3): e1011211, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498576

RESUMEN

Age-related hearing loss (ARHL) is a common sensory impairment with complex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results. We observed Fhod3 expression in auditory hair cells (HCs) primarily localized at the cuticular plate (CP). To understand the functional implications of Fhod3 in the cochlea, we generated Fhod3 overexpression mice (Pax2-Cre+/-; Fhod3Tg/+) (TG) and HC-specific conditional knockout mice (Atoh1-Cre+/-; Fhod3fl/fl) (KO). Audiological assessments in TG mice demonstrated progressive high-frequency hearing loss, characterized by predominant loss of outer hair cells, and a decreased phalloidin intensities of CP. Ultrastructural analysis revealed loss of the shortest row of stereocilia in the basal turn of the cochlea, and alterations in the cuticular plate surrounding stereocilia rootlets. Importantly, the hearing and HC phenotype in TG mice phenocopied that of the KO mice. These findings suggest that balanced expression of Fhod3 is critical for proper CP and stereocilia structure and function. Further investigation of Fhod3 related hearing impairment mechanisms may lend new insight towards the myriad mechanisms underlying ARHL, which in turn could facilitate the development of therapeutic strategies for ARHL.


Asunto(s)
Actinas , Pérdida Auditiva de Alta Frecuencia , Animales , Ratones , Actinas/genética , Actinas/metabolismo , Cóclea/metabolismo , Forminas/genética , Estudio de Asociación del Genoma Completo , Audición , Ratones Noqueados , Polimerizacion
6.
PLoS Genet ; 20(1): e1011117, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38198522

RESUMEN

During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.


Asunto(s)
Miopatías Nemalínicas , Sarcómeros , Animales , Humanos , Sarcómeros/metabolismo , Forminas/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo
7.
J Cell Sci ; 137(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38323924

RESUMEN

Filopodia are narrow actin-rich protrusions with important roles in neuronal development where membrane-binding adaptor proteins, such as I-BAR- and F-BAR-domain-containing proteins, have emerged as upstream regulators that link membrane interactions to actin regulators such as formins and proteins of the Ena/VASP family. Both the adaptors and their binding partners are part of diverse and redundant protein networks that can functionally compensate for each other. To explore the significance of the F-BAR domain-containing neuronal membrane adaptor TOCA-1 (also known as FNBP1L) in filopodia we performed a quantitative analysis of TOCA-1 and filopodial dynamics in Xenopus retinal ganglion cells, where Ena/VASP proteins have a native role in filopodial extension. Increasing the density of TOCA-1 enhances Ena/VASP protein binding in vitro, and an accumulation of TOCA-1, as well as its coincidence with Ena, correlates with filopodial protrusion in vivo. Two-colour single-molecule localisation microscopy of TOCA-1 and Ena supports their nanoscale association. TOCA-1 clusters promote filopodial protrusion and this depends on a functional TOCA-1 SH3 domain and activation of Cdc42, which we perturbed using the small-molecule inhibitor CASIN. We propose that TOCA-1 clusters act independently of membrane curvature to recruit and promote Ena activity for filopodial protrusion.


Asunto(s)
Actinas , Seudópodos , Actinas/metabolismo , Seudópodos/metabolismo , Proteínas Portadoras/metabolismo , Neuronas/metabolismo , Forminas/metabolismo
8.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37997920

RESUMEN

Optical insulation of the unit eyes (ommatidia) is an important prerequisite of precise sight with compound eyes. Separation of the ommatidia is ensured by pigment cells that organize into a hexagonal lattice in the Drosophila eye, forming thin walls between the facets. Cell adhesion, mediated by apically and latero-basally located junctional complexes, is crucial for stable attachment of these cells to each other and the basal lamina. Whereas former studies have focused on the formation and remodelling of the cellular connections at the apical region, here, we report a specific alteration of the lateral adhesion of the lattice cells, leaving the apical junctions largely unaffected. We found that DAAM and FRL, two formin-type cytoskeleton regulatory proteins, play redundant roles in lateral adhesion of the interommatidial cells and patterning of the retinal floor. We show that formin-dependent cortical actin assembly is crucial for latero-basal sealing of the ommatidial lattice. We expect that the investigation of these previously unreported eye phenotypes will pave the way toward a better understanding of the three-dimensional aspects of compound eye development.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Forminas/metabolismo , Drosophila/metabolismo , Citoesqueleto/metabolismo , Retina/metabolismo , Ojo/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
9.
PLoS Genet ; 19(12): e1011084, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38157491

RESUMEN

mDia formin proteins regulate the dynamics and organization of the cytoskeleton through their linear actin nucleation and polymerization activities. We previously showed that mDia1 deficiency leads to aberrant innate immune activation and induces myelodysplasia in a mouse model, and mDia2 regulates enucleation and cytokinesis of erythroblasts and the engraftment of hematopoietic stem and progenitor cells (HSPCs). However, whether and how mDia formins interplay and regulate hematopoiesis under physiological and stress conditions remains unknown. Here, we found that both mDia1 and mDia2 are required for HSPC regeneration under stress, such as serial plating, aging, and reconstitution after myeloid ablation. We showed that mDia1 and mDia2 form hetero-oligomers through the interactions between mDia1 GBD-DID and mDia2 DAD domains. Double knockout of mDia1 and mDia2 in hematopoietic cells synergistically impaired the filamentous actin network and serum response factor-involved transcriptional signaling, which led to declined HSPCs, severe anemia, and significant mortality in neonates and newborn mice. Our data demonstrate the potential roles of mDia hetero-oligomerization and their non-rodent functions in the regulation of HSPCs activity and orchestration of hematopoiesis.


Asunto(s)
Actinas , Proteínas Portadoras , Ratones , Animales , Forminas/genética , Forminas/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(11): e2220825120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897976

RESUMEN

Macroendocytosis comprising phagocytosis and macropinocytosis is an actin-driven process regulated by small GTPases that depend on the dynamic reorganization of the membrane that protrudes and internalizes extracellular material by cup-shaped structures. To effectively capture, enwrap, and internalize their targets, these cups are arranged into a peripheral ring or ruffle of protruding actin sheets emerging from an actin-rich, nonprotrusive zone at its base. Despite extensive knowledge of the mechanism driving actin assembly of the branched network at the protrusive cup edge, which is initiated by the actin-related protein (Arp) 2/3 complex downstream of Rac signaling, our understanding of actin assembly in the base is still incomplete. In the Dictyostelium model system, the Ras-regulated formin ForG was previously shown to specifically contribute to actin assembly at the cup base. Loss of ForG is associated with a strongly impaired macroendocytosis and a 50% reduction in F-actin content at the base of phagocytic cups, in turn indicating the presence of additional factors that specifically contribute to actin formation at the base. Here, we show that ForG synergizes with the Rac-regulated formin ForB to form the bulk of linear filaments at the cup base. Consistently, combined loss of both formins virtually abolishes cup formation and leads to severe defects of macroendocytosis, emphasizing the relevance of converging Ras- and Rac-regulated formin pathways in assembly of linear filaments in the cup base, which apparently provide mechanical support to the entire structure. Remarkably, we finally show that active ForB, unlike ForG, additionally drives phagosome rocketing to aid particle internalization.


Asunto(s)
Fagosomas , Dictyostelium , Forminas/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Transducción de Señal , Fagosomas/metabolismo , Actinas/metabolismo
11.
EMBO J ; 40(11): e106868, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33913175

RESUMEN

Mitochondrial homeostasis is essential for providing cellular energy, particularly in resource-demanding neurons, defects in which cause neurodegeneration, but the function of interferons (IFNs) in regulating neuronal mitochondrial homeostasis is unknown. We found that neuronal IFN-ß is indispensable for mitochondrial homeostasis and metabolism, sustaining ATP levels and preventing excessive ROS by controlling mitochondrial fission. IFN-ß induces events that are required for mitochondrial fission, phosphorylating STAT5 and upregulating PGAM5, which phosphorylates serine 622 of Drp1. IFN-ß signaling then recruits Drp1 to mitochondria, oligomerizes it, and engages INF2 to stabilize mitochondria-endoplasmic reticulum (ER) platforms. This process tethers damaged mitochondria to the ER to separate them via fission. Lack of neuronal IFN-ß in the Ifnb-/- model of Parkinson disease (PD) disrupts STAT5-PGAM5-Drp1 signaling, impairing fission and causing large multibranched, damaged mitochondria with insufficient ATP production and excessive oxidative stress to accumulate. In other PD models, IFN-ß rescues dopaminergic neuronal cell death and pathology, associated with preserved mitochondrial homeostasis. Thus, IFN-ß activates mitochondrial fission in neurons through the pSTAT5/PGAM5/S622 Drp1 pathway to stabilize mitochondria/ER platforms, constituting an essential neuroprotective mechanism.


Asunto(s)
Interferón beta/metabolismo , Dinámicas Mitocondriales , Enfermedad de Parkinson/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Dinaminas/metabolismo , Forminas/metabolismo , Interferón beta/genética , Ratones , Mitocondrias/metabolismo , Neuronas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Factor de Transcripción STAT5/metabolismo
12.
J Cell Sci ; 136(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070275

RESUMEN

Biochemical studies of human actin and its binding partners rely heavily on abundant and easily purified α-actin from skeletal muscle. Therefore, muscle actin has been used to evaluate and determine the activities of most actin regulatory proteins but there is an underlying concern that these proteins perform differently from actin present in non-muscle cells. To provide easily accessible and relatively abundant sources of human ß- or γ-actin (i.e. cytoplasmic actins), we developed Saccharomyces cerevisiae strains that express each as their sole source of actin. Both ß- or γ-actin purified in this system polymerize and interact with various binding partners, including profilin, mDia1 (formin), fascin and thymosin-ß4 (Tß4). Notably, Tß4 and profilin bind to ß- or γ-actin with higher affinity than to α-actin, emphasizing the value of testing actin ligands with specific actin isoforms. These reagents will make specific isoforms of actin more accessible for future studies on actin regulation.


Asunto(s)
Actinas , Saccharomycetales , Humanos , Actinas/metabolismo , Profilinas/metabolismo , Saccharomycetales/metabolismo , Isoformas de Proteínas , Forminas , Saccharomyces cerevisiae/metabolismo
13.
J Cell Sci ; 136(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36994763

RESUMEN

Looking back at two decades of research on SPIRE actin nucleator proteins, the first decade was clearly dominated by the discovery of SPIRE proteins as founding members of the novel WH2-domain-based actin nucleators, which initiate actin filament assembly through multiple WH2 actin-binding domains. Through complex formation with formins and class 5 myosins, SPIRE proteins coordinate actin filament assembly and myosin motor-dependent force generation. The discovery of SPIRE-regulated cytoplasmic actin filament meshworks in oocytes initiated the next phase of SPIRE research, which has found that SPIRE proteins are integrated in a diverse range of cell biological processes. In addition to regulating vesicle-based actin filament meshworks, SPIRE proteins function in the organisation of actin structures driving the inward movement of pronuclei of the mouse zygote. Localisation at cortical ring structures and the results of knockdown experiments indicate that SPIRE proteins function in the formation of meiotic cleavage sites in mammalian oocytes and the externalisation of von Willebrand factor from endothelial cells. Alternative splicing targets mammalian SPIRE1 towards mitochondria, where it has a role in fission. In this Review, we summarise the past two decades of SPIRE research by addressing the biochemical and cell biological functions of SPIRE proteins in mammalian reproduction, skin pigmentation and wound healing, as well as in mitochondrial dynamics and host-pathogen interactions.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Animales , Ratones , Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Células Endoteliales/metabolismo , Citoesqueleto de Actina/metabolismo , Forminas/metabolismo , Mamíferos/metabolismo , Proteínas del Tejido Nervioso/metabolismo
14.
J Cell Sci ; 136(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924352

RESUMEN

The myotendinous junction (MTJ) is a specialized domain of the multinucleated myofibre that is faced with the challenge of maintaining robust cell-matrix contact with the tendon under high mechanical stress and strain. Here, we profiled 24,124 nuclei in semitendinosus muscle-tendon samples from three healthy males by using single-nucleus RNA sequencing (snRNA-seq), alongside spatial transcriptomics, to gain insight into the genes characterizing this specialization in humans. We identified a cluster of MTJ myonuclei represented by 47 enriched transcripts, of which the presence of ABI3BP, ABLIM1, ADAMTSL1, BICD1, CPM, FHOD3, FRAS1 and FREM2 was confirmed at the MTJ at the protein level in immunofluorescence assays. Four distinct subclusters of MTJ myonuclei were apparent, comprising two COL22A1-expressing subclusters and two subclusters lacking COL22A1 expression but with differing fibre type profiles characterized by expression of either MYH7 or MYH1 and/or MYH2. Our findings reveal distinct myonuclei profiles of the human MTJ, which represents a weak link in the musculoskeletal system that is selectively affected in pathological conditions ranging from muscle strains to muscular dystrophies.


Asunto(s)
Unión Miotendinosa , Tendones , Masculino , Humanos , Tendones/fisiología , Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Forminas/metabolismo
15.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686626

RESUMEN

Cells reposition their nuclei for diverse specialized functions through a wide variety of cytoskeletal mechanisms. During Drosophila oogenesis, 15 nurse cells connected by ring canals to each other and the oocyte contract, 'dumping' their cytoplasm into the oocyte. Prior to dumping, actin cables initiate from the nurse cell cortex and elongate toward their nuclei, pushing them away from ring canals to prevent obstruction. How the cable arrays reposition nuclei is unknown. We found that these arrays are asymmetric, with regional differences in actin cable growth rate dependent on the differential localization of the actin assembly factors Enabled and Diaphanous. Enabled mislocalization produces a uniform growth rate. In oocyte-contacting nurse cells with asymmetric cable arrays, nuclei move away from ring canals. With uniform arrays, these nuclei move toward the adjacent ring canal instead. This correlated with ring canal nuclear blockage and incomplete dumping. Our data suggest that nuclear repositioning relies on the regulated cortical localization of Diaphanous and Enabled to produce actin cable arrays with asymmetric growth that push nuclei away from ring canals, enabling successful oogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Actinas/fisiología , Animales , Núcleo Celular , Drosophila/fisiología , Forminas , Oocitos , Oogénesis/fisiología
16.
Plant Cell ; 34(1): 374-394, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34726756

RESUMEN

The assembly of macromolecules on the plasma membrane concentrates cell surface biomolecules into nanometer- to micrometer-scale clusters (nano- or microdomains) that help the cell initiate or respond to signals. In plant-microbe interactions, the actin cytoskeleton undergoes rapid remodeling during pathogen-associated molecular pattern-triggered immunity (PTI). The nanoclustering of formin-actin nucleator proteins at the cell surface has been identified as underlying actin nucleation during plant innate immune responses. Here, we show that the condensation of nanodomain constituents and the self-assembly of remorin proteins enables this mechanism of controlling formin condensation and activity during innate immunity in Arabidopsis thaliana. Through intrinsically disordered region-mediated remorin oligomerization and formin interaction, remorin gradually recruits and condenses formins upon PTI activation in lipid bilayers, consequently increasing actin nucleation in a time-dependent manner postinfection. Such nanodomain- and remorin-mediated regulation of plant surface biomolecules is expected to be a general feature of plant innate immune responses that creates spatially separated biochemical compartments and fine tunes membrane physicochemical properties for transduction of immune signals in the host.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Forminas/metabolismo , Inmunidad de la Planta/genética , Actinas/metabolismo , Arabidopsis/genética , Inmunidad Innata/genética
17.
Cell Mol Life Sci ; 81(1): 279, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916773

RESUMEN

Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.


Asunto(s)
Forminas , Mitosis , Podocitos , Transcriptoma , Humanos , Mitosis/genética , Podocitos/metabolismo , Podocitos/patología , Transcriptoma/genética , Forminas/genética , Forminas/metabolismo , Muerte Celular/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Mutación , Núcleo Celular/metabolismo , Núcleo Celular/genética , Línea Celular
18.
J Med Genet ; 61(5): 423-427, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38160043

RESUMEN

Formin homology 2 domain-containing 3 (FHOD3) gene has emerged as one of the main non-sarcomeric genes associated with hypertrophic cardiomyopathy (HCM), but no cases of biallelic variants associated with disease have been described to date. From 2014 until 2021, FHOD3 was evaluated in our center by next-generation sequencing in 22 806 consecutive unrelated probands. The p.Arg637Gln variant in FHOD3 was enriched in our HCM cohort (284 of 9668 probands; 2.94%) compared with internal controls (64 of 11 480; 0.59%) and gnomAD controls (373 of 64 409; 0.58%), with ORs of 5.40 (95% CI: 4.11 to 7.09) and 5.19 (95% CI: 4.44 to 6.07). The variant affects a highly conserved residue localised in a supercoiled alpha helix considered a clustering site for HCM variants, and in heterozygosis can act as a predisposing factor (intermediate-effect variant) for HCM, with an estimated penetrance of around 1%. Additionally, seven homozygous carriers of p.Arg637Gln in FHOD3 were identified. All but one (unaffected) showed an early presentation and a severe HCM phenotype. All this information suggest that p.Arg637Gln variant in FHOD3 is a low-penetrant variant, with an intermediate effect, that contributes to the development of HCM in simple heterozygosis, being associated with a more severe phenotype in homozygous carriers.


Asunto(s)
Cardiomiopatía Hipertrófica , Humanos , Cardiomiopatía Hipertrófica/genética , Fenotipo , Homocigoto , Penetrancia , Heterocigoto , Forminas/genética
19.
Carcinogenesis ; 45(4): 199-209, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38270181

RESUMEN

Disulfidptosis is a novel form of programmed cell death involved in migration and invasion of cancer cells, but few studies investigated the roles of genetic variants in disulfidptosis-related genes in survival of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). We used Cox proportional hazards regression analyses, Kaplan-Meier curves and receiver operating characteristic curves to assess effects of genetic variants in 14 disulfidptosis-related genes on overall survival of 866 HBV-HCC patients. The Bayesian false discovery probability was used for multiple testing corrections. We also investigated biological mechanisms of the significant variants through expression quantitative trait loci analyses using the data from publicly available databases, luciferase reporter assays and differential expression analyses. As a result, we identified two independently functional single nucleotide polymorphisms (SNPs) (INF2 rs4072285 G > A and INF2 rs4444271 A > T) that predicted overall survival of HBV-HCC patients, with adjusted hazard ratios of 1.60 (95% CI = 1.22-2.11, P = 0.001) and 1.50 (95% CI = 1.80-1.90, P < 0.001), respectively, after multiple testing correction. Luciferase reporter assays indicated that both INF2 rs4072285 A and INF2 rs4444271 T alleles increased INF2 mRNA expression levels (P < 0.001) that were also higher in HCC tumor tissues than in adjacent normal tissues (P < 0.001); such elevated INF2 expression levels were associated with a poorer survival of HBV-HCC patients (P < 0.001) in the TCGA database. In summary, this study supported that INF2 rs4072285 and INF2 rs4444271 may be novel biomarkers for survival of HBV-HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Forminas , Hepatitis B , Neoplasias Hepáticas , Humanos , Teorema de Bayes , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Forminas/genética , Hepatitis B/complicaciones , Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Luciferasas
20.
J Biol Chem ; 299(11): 105342, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832872

RESUMEN

The diaphanous-related formin, Diaphanous 1 (DIAPH1), is required for the assembly of Filamentous (F)-actin structures. DIAPH1 is an intracellular effector of the receptor for advanced glycation end products (RAGE) and contributes to RAGE signaling and effects such as increased cell migration upon RAGE stimulation. Mutations in DIAPH1, including those in the basic "RRKR" motif of its autoregulatory domain, diaphanous autoinhibitory domain (DAD), are implicated in hearing loss, macrothrombocytopenia, and cardiovascular diseases. The solution structure of the complex between the N-terminal inhibitory domain, DID, and the C-terminal DAD, resolved by NMR spectroscopy shows only transient interactions between DID and the basic motif of DAD, resembling those found in encounter complexes. Cross-linking studies placed the RRKR motif into the negatively charged cavity of DID. Neutralizing the cavity resulted in a 5-fold decrease in the binding affinity and 4-fold decrease in the association rate constant of DAD for DID, indicating that the RRKR interactions with DID form a productive encounter complex. A DIAPH1 mutant containing a neutralized RRKR binding cavity shows excessive colocalization with actin and is unresponsive to RAGE stimulation. This is the first demonstration of a specific alteration of the surfaces responsible for productive encounter complexation with implications for human pathology.


Asunto(s)
Citoesqueleto de Actina , Actinas , Forminas , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Forminas/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA