Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 579(7799): 443-447, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103179

RESUMEN

In eukaryotic protein N-glycosylation, a series of glycosyltransferases catalyse the biosynthesis of a dolichylpyrophosphate-linked oligosaccharide before its transfer onto acceptor proteins1. The final seven steps occur in the lumen of the endoplasmic reticulum (ER) and require dolichylphosphate-activated mannose and glucose as donor substrates2. The responsible enzymes-ALG3, ALG9, ALG12, ALG6, ALG8 and ALG10-are glycosyltransferases of the C-superfamily (GT-Cs), which are loosely defined as containing membrane-spanning helices and processing an isoprenoid-linked carbohydrate donor substrate3,4. Here we present the cryo-electron microscopy structure of yeast ALG6 at 3.0 Å resolution, which reveals a previously undescribed transmembrane protein fold. Comparison with reported GT-C structures suggests that GT-C enzymes contain a modular architecture with a conserved module and a variable module, each with distinct functional roles. We used synthetic analogues of dolichylphosphate-linked and dolichylpyrophosphate-linked sugars and enzymatic glycan extension to generate donor and acceptor substrates using purified enzymes of the ALG pathway to recapitulate the activity of ALG6 in vitro. A second cryo-electron microscopy structure of ALG6 bound to an analogue of dolichylphosphate-glucose at 3.9 Å resolution revealed the active site of the enzyme. Functional analysis of ALG6 variants identified a catalytic aspartate residue that probably acts as a general base. This residue is conserved in the GT-C superfamily. Our results define the architecture of ER-luminal GT-C enzymes and provide a structural basis for understanding their catalytic mechanisms.


Asunto(s)
Microscopía por Crioelectrón , Retículo Endoplásmico/enzimología , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Biocatálisis , Dominio Catalítico , Secuencia Conservada , Monofosfato de Dolicol Manosa/metabolismo , Fosfatos de Dolicol/metabolismo , Glucosa/análogos & derivados , Glucosa/metabolismo , Glicosiltransferasas/deficiencia , Técnicas In Vitro , Lípidos , Proteínas de la Membrana/deficiencia , Modelos Moleculares , Mutación , Monosacáridos de Poliisoprenil Fosfato/química , Monosacáridos de Poliisoprenil Fosfato/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Especificidad por Sustrato
2.
J Biol Chem ; 299(2): 102911, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642187

RESUMEN

The attachment of a sugar to a hydrophobic lipid carrier is the first step in the biosynthesis of many glycoconjugates. In the halophilic archaeon Haloarcula hispanica, HAH_1206, renamed AepG, is a predicted glycosyltransferase belonging to the CAZy Group 2 family that shares a conserved amino acid sequence with dolichol phosphate mannose synthases. In this study, the function of AepG was investigated by genetic and biochemical approaches. We found that aepG deletion led to the disappearance of dolichol phosphate-glucuronic acid. Our biochemical assays revealed that recombinant cellulose-binding, domain-tagged AepG could catalyze the formation of dolichol phosphate-glucuronic acid in time- and dose-dependent manners. Based on the in vivo and in vitro analyses, AepG was confirmed to be a dolichol phosphate glucuronosyltransferase involved in the synthesis of the acidic exopolysaccharide produced by H. hispanica. Furthermore, lack of aepG resulted in hindered growth and cell aggregation in high salt medium, indicating that AepG is vital for the adaptation of H. hispanica to a high salt environment. In conclusion, AepG is the first dolichol phosphate glucuronosyltransferase identified in any of the three domains of life and, moreover, offers a starting point for further investigation into the diverse pathways used for extracellular polysaccharide biosynthesis in archaea.


Asunto(s)
Haloarcula , Secuencia de Aminoácidos , Fosfatos de Dolicol/metabolismo , Haloarcula/metabolismo , Transferasas/metabolismo , Polisacáridos/metabolismo
3.
Anal Chem ; 95(6): 3210-3217, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36716239

RESUMEN

Dolichyl monophosphates (DolPs) are essential lipids in glycosylation pathways that are highly conserved across almost all domains of life. The availability of DolP is critical for all glycosylation processes, as these lipids serve as membrane-anchored building blocks used by various types of glycosyltransferases to generate complex post-translational modifications of proteins and lipids. The analysis of DolP species by reverse-phase liquid chromatography-mass spectrometry (RPLC-MS) remains a challenge due to their very low abundance and wide range of lipophilicities. Until now, a method for the simultaneous qualitative and quantitative assessment of DolP species from biological membranes has been lacking. Here, we describe a novel approach based on simple sample preparation, rapid and efficient trimethylsilyl diazomethane-dependent phosphate methylation, and RPLC-MS analysis for quantification of DolP species with different isoprene chain lengths. We used this workflow to selectively quantify DolP species from lipid extracts derived of Saccharomyces cerevisiae, HeLa, and human skin fibroblasts from steroid 5-α-reductase 3- congenital disorders of glycosylation (SRD5A3-CDG) patients and healthy controls. Integration of this workflow with global lipidomics analyses will be a powerful tool to expand our understanding of the role of DolPs in pathophysiological alterations of metabolic pathways downstream of HMG-CoA reductase, associated with CDGs, hypercholesterolemia, neurodegeneration, and cancer.


Asunto(s)
Cromatografía de Fase Inversa , Fosfatos , Humanos , Metilación , Fosfatos/metabolismo , Espectrometría de Masas , Procesamiento Proteico-Postraduccional , Fosfatos de Dolicol/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Glycobiology ; 31(12): 1645-1654, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34314490

RESUMEN

Although Halobacterium salinarum provided the first example of N-glycosylation outside the Eukarya, much regarding such post-translational modification in this halophilic archaea remains either unclear or unknown. The composition of an N-linked glycan decorating both the S-layer glycoprotein and archaellins offers one such example. Originally described some 40 years ago, reports from that time on have presented conflicted findings regarding the composition of this glycan, as well as differences between the protein-bound glycan and that version of the glycan attached to the lipid upon which it is assembled. To clarify these points, liquid chromatography-electrospray ionization mass spectrometry was employed here to revisit the composition of this glycan both when attached to selected asparagine residues of target proteins and when bound to the lipid dolichol phosphate upon which the glycan is assembled. Such efforts revealed the N-linked glycan as corresponding to a tetrasaccharide comprising a hexose, a sulfated hexuronic acid, a hexuronic acid and a second sulfated hexuronic acid. When attached to dolichol phosphate but not to proteins, the same tetrasaccharide is methylated on the final sugar. Moreover, in the absence of the oligosaccharyltransferase AglB, there is an accumulation of the dolichol phosphate-linked methylated and disulfated tetrasaccharide. Knowing the composition of this glycan at both the lipid- and protein-bound stages, together with the availability of gene deletion approaches for manipulating Hbt. salinarum, will allow delineation of the N-glycosylation pathway in this organism.


Asunto(s)
Fosfatos de Dolicol , Haloferax volcanii , Fosfatos de Dolicol/química , Fosfatos de Dolicol/metabolismo , Dolicoles , Glicoproteínas/metabolismo , Glicosilación , Halobacterium salinarum/metabolismo , Haloferax volcanii/química , Fosfatos/metabolismo , Espectrometría de Masa por Ionización de Electrospray
5.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255655

RESUMEN

In a wide range of organisms, dolichyl phosphate mannose (DPM) synthase is a complex of tree proteins Dpm1, Dpm2, and Dpm3. However, in the yeast Saccharomyces cerevisiae, it is believed to be a single Dpm1 protein. The function of Dpm3 is performed in S. cerevisiae by the C-terminal transmembrane domain of the catalytic subunit Dpm1. Until present, the regulatory Dpm2 protein has not been found in S. cerevisiae. In this study, we show that, in fact, the Yil102c-A protein interacts directly with Dpm1 in S. cerevisiae and influences its DPM synthase activity. Deletion of the YIL102c-A gene is lethal, and this phenotype is reversed by the dpm2 gene from Trichoderma reesei. Functional analysis of Yil102c-A revealed that it also interacts with glucosylphosphatidylinositol-N-acetylglucosaminyl transferase (GPI-GnT), similar to DPM2 in human cells. Taken together, these results show that Yil102c-A is a functional homolog of DPMII from T. reesei and DPM2 from humans.


Asunto(s)
Proteínas Fúngicas/genética , Manosiltransferasas/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos/genética , Fosfatos de Dolicol/metabolismo , Proteínas Fúngicas/metabolismo , Glicosilación , Humanos , Manosa/metabolismo , Manosiltransferasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Trichoderma/genética
6.
Biochim Biophys Acta ; 1861(11): 1705-1718, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27524515

RESUMEN

The endoplasmic reticulum (ER) has numerous biological functions including protein synthesis, protein folding, and lipid synthesis. The CAX4 gene encodes dolichyl pyrophosphate (Dol-PP) phosphatase, which is involved in protein N-glycosylation. In cax4Δ cells, the N-glycosylation of the vacuolar carboxypeptidase (CPY) was severely affected, and expression of the ER chaperone Kar2p was elevated, which resulted in UPR activation as an adaptive response. The cax4Δ cell growth was reduced, and this could be attributed to the formation of clumped aggregates, high vesiculation of the intracellular membrane, and plasma membrane alterations were depicted using DiOC6 fluorescence. In the cax4 deletion strain, the transcription factors INO2 and INO4 were upregulated, and the negative regulator OPI1 was concomitantly down regulated, which led to the derepression of the phospholipid genes CHO2, OPI3, PSD1, and PSD2 and resulted in increased phospholipid levels. However, the TAG, SE, and LD levels were significantly reduced, and FFA, sterol, and DAG levels were increased. These findings could be attributed to the derepression of the TAG and SE lipases TGL3, TGL4, TGL5, YEH1, and YEH2 and the repression of LRO1, DGA1, ARE1, and ARE2 in cax4Δ cells. Interestingly, the overexpression of SEC59 or CAX4 in cax4Δ cells prevented the ER stress and growth defect, and restored normal level of phospholipids, neutral lipids, and LDs. The current study revealed the disruption of N-glycosylation-induced ER stress, altered lipid homeostasis accounts for pleiotropic phenotype. Thus, CAX4 regulates membrane biogenesis by coordinating lipid homeostasis with protein quality control.


Asunto(s)
Fosfatos de Dolicol/metabolismo , Homeostasis , Metabolismo de los Lípidos , Pirofosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Western Blotting , Catepsina A/metabolismo , Membrana Celular/metabolismo , Estrés del Retículo Endoplásmico , Fluorescencia , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Prueba de Complementación Genética , Glicosilación , Proteínas Fluorescentes Verdes/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Mutación/genética , Fenotipo , Fosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Factores de Tiempo , Respuesta de Proteína Desplegada
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(6): 589-599, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28330764

RESUMEN

N-glycosylation, a post-translational modification whereby glycans are covalently linked to select Asn residues of target proteins, occurs in all three domains of life. Across evolution, the N-linked glycans are initially assembled on phosphorylated cytoplasmically-oriented polyisoprenoids, with polyprenol (mainly C55 undecaprenol) fulfilling this role in Bacteria and dolichol assuming this function in Eukarya and Archaea. The eukaryal and archaeal versions of dolichol can, however, be distinguished on the basis of their length, degree of saturation and by other traits. As is true for many facets of their biology, Archaea, best known in their capacity as extremophiles, present unique approaches for synthesizing phosphodolichols. At the same time, general insight into the assembly and processing of glycan-bearing phosphodolichols has come from studies of the archaeal enzymes responsible. In this review, these and other aspects of archaeal phosphodolichol biology are addressed.


Asunto(s)
Archaea/metabolismo , Fosfatos de Dolicol/metabolismo , Archaea/genética , Carbohidratos/genética , Fosfatos de Dolicol/genética , Glicosilación
8.
Bioconjug Chem ; 28(9): 2461-2470, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28809486

RESUMEN

N-glycosylation, the covalent attachment of glycans to select protein target Asn residues, is a post-translational modification performed by all three domains of life. In the halophilic archaea Haloferax volcanii, in which understanding of this universal protein-processing event is relatively well-advanced, genes encoding the components of the archaeal glycosylation (Agl) pathway responsible for the assembly and attachment of an N-linked pentasaccharide have been identified. As elsewhere, the N-linked glycan is assembled on phosphodolichol carriers before transfer to target Asn residues. However, as little is presently known of the Hfx. volcanii Agl pathway at the protein level, the seemingly unique ability of Archaea to use dolichol phosphate (DolP) as the glycan lipid carrier, rather than dolichol pyrophosphate used by eukaryotes, remains poorly understood. With this in mind, a chemoenzymatic approach was taken to biochemically study AglG, one of the five glycosyltransferases of the pathway. Accordingly, a novel regio- and stereoselective reduction of naturally isolated polyprenol gave facile access to S-dolichol via asymmetric transfer hydrogenation under very mild conditions. This compound was used to generate glucose-charged DolP, a precursor of the N-linked pentasaccharide, as well as DolP-glucose-glucuronic acid and DolP-glucuronic acid. AglG, purified from Hfx. volcanii membranes in hypersaline conditions, like those encountered in situ, was subsequently combined with uridine diphosphate (UDP)-glucuronic acid and DolP-glucose to yield DolP-glucose-glucuronic acid. The in vitro system for the study of AglG activity developed here represents the first such tool for studying halophilic glycosyltransferases and will allow for a detailed understanding of archaeal N-glycosylation.


Asunto(s)
Proteínas Arqueales/metabolismo , Fosfatos de Dolicol/metabolismo , Glicosiltransferasas/metabolismo , Haloferax volcanii/metabolismo , Polisacáridos/metabolismo , Glicosilación , Oligosacáridos/metabolismo , Procesamiento Proteico-Postraduccional
9.
J Lipid Res ; 57(6): 1029-42, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27037250

RESUMEN

Oligosaccharyl phosphates (OSPs) are hydrolyzed from oligosaccharide-diphosphodolichol (DLO) during protein N-glycosylation by an uncharacterized process. An OSP-generating activity has been reported in vitro, and here we asked if its biochemical characteristics are compatible with a role in endoplasmic reticulum (ER)-situated DLO regulation. We demonstrate a Co(2+)-dependent DLO diphosphatase (DLODP) activity that splits DLO into dolichyl phosphate and OSP. DLODP has a pH optimum of 5.5 and is inhibited by vanadate but not by NaF. Polyprenyl diphosphates inhibit [(3)H]OSP release from [(3)H]DLO, the length of their alkyl chains correlating positively with inhibition potency. The diphosphodiester GlcNAc2-PP-solanesol is hydrolyzed to yield GlcNAc2-P and inhibits [(3)H]OSP release from [(3)H]DLO more effectively than the diphosphomonoester solanesyl diphosphate. During subcellular fractionation of liver homogenates, DLODP codistributes with microsomal markers, and density gradient centrifugation revealed that the distribution of DLODP is closer to that of Golgi apparatus-situated UDP-galactose glycoprotein galactosyltransferase than those of dolichyl-P-dependent glycosyltransferases required for DLO biosynthesis in the ER. Therefore, a DLODP activity showing selectivity toward lipophilic diphosphodiesters such as DLO, and possessing properties distinct from other lipid phosphatases, is identified. Separate subcellular locations for DLODP action and DLO biosynthesis may be required to prevent uncontrolled DLO destruction.


Asunto(s)
Dolicoles/metabolismo , Oligosacáridos/metabolismo , Pirofosfatasas/metabolismo , Fosfatos de Dolicol/química , Fosfatos de Dolicol/metabolismo , Dolicoles/química , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Glicosilación , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Células Hep G2 , Humanos , Hígado/química , Hígado/metabolismo , Oligosacáridos/química , Fosfatos de Poliisoprenilo/química , Fosfatos de Poliisoprenilo/metabolismo , Pirofosfatasas/química
10.
J Lipid Res ; 57(8): 1477-91, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27281477

RESUMEN

We reported an oligosaccharide diphosphodolichol (DLO) diphosphatase (DLODP) that generates dolichyl-phosphate and oligosaccharyl phosphates (OSPs) from DLO in vitro. This enzyme could underlie cytoplasmic OSP generation and promote dolichyl-phosphate recycling from truncated endoplasmic reticulum (ER)-generated DLO intermediates. However, during subcellular fractionation, DLODP distribution is closer to that of a Golgi apparatus (GA) marker than those of ER markers. Here, we examined the effect of brefeldin A (BFA), which fuses the GA with the ER on OSP metabolism. In order to increase the steady state level of truncated DLO while allowing formation of mature DLO (Glc3Man9GlcNAc2-PP-dolichol), dolichyl-P-mannose Man7GlcNAc2-PP-dolichol mannosyltransferase was partially downregulated in HepG2 cells. We show that BFA provokes GA endomannosidase trimming of Glc3Man9GlcNAc2-PP-dolichol to yield a Man8GlcNAc2-PP-dolichol structure that does not give rise to cytoplasmic Man8GlcNAc2-P. BFA also strikingly increased OSP derived from mature DLO within the endomembrane system without affecting levels of Man7GlcNAc2-PP-dolichol or cytoplasmic Man7GlcNAc2-P. The BFA-provoked increase in endomembrane-situated OSP is sensitive to nocodazole, and BFA causes partial redistribution of DLODP activity from GA- to ER-containing regions of density gradients. These findings are consistent with BFA-provoked microtubule-dependent GA-to-ER transport of a previously reported DLODP that acts to generate a novel endomembrane-situated OSP population.


Asunto(s)
Brefeldino A/farmacología , Dolicoles/análogos & derivados , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Oligosacáridos/metabolismo , Animales , Células CHO , Cricetulus , Fosfatos de Dolicol/metabolismo , Dolicoles/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Células Hep G2 , Humanos , Fosfatos/metabolismo
11.
Plant J ; 81(2): 292-303, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25406445

RESUMEN

Dolichol phosphate (Dol-P) serves as a carrier of complex polysaccharides during protein glycosylation. Dol-P is synthesized by the phosphorylation of dolichol or the monodephosphorylation of dolichol pyrophosphate (Dol-PP); however, the enzymes that catalyze these reactions remain unidentified in Arabidopsis thaliana. We performed a genome-wide search for cytidylyltransferase motif-containing proteins in Arabidopsis, and found that At3g45040 encodes a protein homologous with Sec59p, a dolichol kinase (DOK) in Saccharomyces cerevisiae. At3g45040, designated AtDOK1, complemented defects in the growth and N-linked glycosylation of the S. cerevisiae sec59 mutant, suggesting that AtDOK1 encodes a functional DOK. To characterize the physiological roles of AtDOK1 in planta, we isolated two independent lines of T-DNA-tagged AtDOK1 mutants, dok1-1 and dok1-2. The heterozygous plants showed developmental defects in male and female gametophytes, including an aberrant pollen structure, low pollen viability, and short siliques. Additionally, the mutations had incomplete penetrance. These results suggest that AtDOK1 is a functional DOK required for reproductive processes in Arabidopsis.


Asunto(s)
Arabidopsis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Arabidopsis/genética , Fosfatos de Dolicol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Reproducción/fisiología
12.
EMBO J ; 30(12): 2490-500, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21572394

RESUMEN

Dolichol monophosphate (Dol-P) functions as an obligate glycosyl carrier lipid in protein glycosylation reactions. Dol-P is synthesized by the successive condensation of isopentenyl diphosphate (IPP), with farnesyl diphosphate catalysed by a cis-isoprenyltransferase (cis-IPTase) activity. Despite the recognition of cis-IPTase activity 40 years ago and the molecular cloning of the human cDNA encoding the mammalian enzyme, the molecular machinery responsible for regulating this activity remains incompletely understood. Here, we identify Nogo-B receptor (NgBR) as an essential component of the Dol-P biosynthetic machinery. Loss of NgBR results in a robust deficit in cis-IPTase activity and Dol-P production, leading to diminished levels of dolichol-linked oligosaccharides and a broad reduction in protein N-glycosylation. NgBR interacts with the previously identified cis-IPTase hCIT, enhances hCIT protein stability, and promotes Dol-P production. Identification of NgBR as a component of the cis-IPTase machinery yields insights into the regulation of dolichol biosynthesis.


Asunto(s)
Dolicoles/biosíntesis , Receptores de Superficie Celular/fisiología , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/deficiencia , Transferasas Alquil y Aril/metabolismo , Animales , Células COS , Proteínas Portadoras/metabolismo , Chlorocebus aethiops , Fosfatos de Dolicol/biosíntesis , Fosfatos de Dolicol/deficiencia , Dolicoles/deficiencia , Activación Enzimática/genética , Glicoproteínas/metabolismo , Humanos , Conformación Proteica , Receptores de Superficie Celular/química , Receptores de Superficie Celular/deficiencia , Proteínas de Transporte Vesicular
13.
Proc Natl Acad Sci U S A ; 109(12): 4568-73, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22396595

RESUMEN

The mevalonate pathway is highly conserved and mediates the production of isoprenoids, which feed into biosynthetic pathways for sterols, dolichol, ubiquinone, heme, isopentenyl adenine, and prenylated proteins. We found that in Caenorhabditis elegans, the nonsterol biosynthetic outputs of the mevalonate pathway are required for the activity of microRNAs (miRNAs) in silencing their target mRNAs. Inactivation of genes that mediate multiple steps of the mevalonate pathway causes derepression of several miRNA target genes, with no disruption of the miRNA levels, suggesting a role in miRNA-induced silencing complex activity. Dolichol phosphate, synthesized from the mevalonate pathway, functions as a lipid carrier of the oligosaccharide moiety destined for protein N-linked glycosylation. Inhibition of the dolichol pathway of protein N-glycosylation also causes derepression of miRNA target mRNAs. The proteins that mediate miRNA repression are therefore likely to be regulated by N-glycosylation. Conversely, drugs such as statins, which inhibit the mevalonate pathway, may compromise miRNA repression as well as the more commonly considered cholesterol biosynthesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Ácido Mevalónico/metabolismo , MicroARNs/metabolismo , Animales , Caenorhabditis elegans , Colesterol/química , Fosfatos de Dolicol/metabolismo , Silenciador del Gen , Glicosilación , Hidroximetilglutaril-CoA Sintasa/metabolismo , Lípidos/química , Modelos Biológicos , Oligosacáridos/química , Fenotipo
14.
J Cell Biochem ; 115(4): 754-62, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24243557

RESUMEN

Deficiency in N-linked protein glycosylation is a long-known characteristic of alcoholic liver disease and congenital disorders of glycosylation. Previous investigations of ethanol-induced glycosylation deficiency demonstrated perturbations in the early steps of substrate synthesis and in the final steps of capping N-linked glycans in the Golgi. The significance of the biosynthesis of N-glycan precursors in the endoplasmic reticulum, however, has not yet been addressed in alcoholic liver disease. Ethanol-metabolizing hepatoma cells were treated with increasing concentrations of ethanol. Transcript analysis of genes involved in the biosynthesis of N-glycans, activity assays of related enzymes, dolichol-phosphate quantification, and analysis of dolichol-linked oligosaccharides were performed. Upon treatment of cells with ethanol, we found a decrease in the final N-glycan precursor Dol-PP-GlcNAc(2) Man(9) Glc(3) and in C95- and C100-dolichol-phosphate levels. Transcript analysis of genes involved in N-glycosylation showed a 17% decrease in expression levels of DPM1, a subunit of the dolichol-phosphate-mannose synthase, and an 8% increase in RPN2, a subunit of the oligosaccharyl transferase. Ethanol treatment decreases the biosynthesis of dolichol-phosphate. Consequently, the formation of N-glycan precursors is affected, resulting in an aberrant precursor assembly. Messenger RNA levels of genes involved in N-glycan biosynthesis are slightly affected by ethanol treatment, indicating that the assembly of N-glycan precursors is not regulated at the transcriptional level. This study confirms that ethanol impairs N-linked glycosylation by affecting dolichol biosynthesis leading to impaired dolichol-linked oligosaccharide assembly. Together our data help to explain the underglycosylation phenotype observed in alcoholic liver disease and congenital disorders of glycosylation.


Asunto(s)
Dolicoles/biosíntesis , Etanol/farmacología , Glicosilación/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Conformación de Carbohidratos , Células Cultivadas , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Fosfatos de Dolicol/metabolismo , Dolicoles/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hexosiltransferasas , Humanos , Inactivación Metabólica , Manosiltransferasas/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transferrina/metabolismo
15.
PLoS Genet ; 7(12): e1002427, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22242004

RESUMEN

Genetic causes for autosomal recessive forms of dilated cardiomyopathy (DCM) are only rarely identified, although they are thought to contribute considerably to sudden cardiac death and heart failure, especially in young children. Here, we describe 11 young patients (5-13 years) with a predominant presentation of dilated cardiomyopathy (DCM). Metabolic investigations showed deficient protein N-glycosylation, leading to a diagnosis of Congenital Disorders of Glycosylation (CDG). Homozygosity mapping in the consanguineous families showed a locus with two known genes in the N-glycosylation pathway. In all individuals, pathogenic mutations were identified in DOLK, encoding the dolichol kinase responsible for formation of dolichol-phosphate. Enzyme analysis in patients' fibroblasts confirmed a dolichol kinase deficiency in all families. In comparison with the generally multisystem presentation in CDG, the nonsyndromic DCM in several individuals was remarkable. Investigation of other dolichol-phosphate dependent glycosylation pathways in biopsied heart tissue indicated reduced O-mannosylation of alpha-dystroglycan with concomitant functional loss of its laminin-binding capacity, which has been linked to DCM. We thus identified a combined deficiency of protein N-glycosylation and alpha-dystroglycan O-mannosylation in patients with nonsyndromic DCM due to autosomal recessive DOLK mutations.


Asunto(s)
Cardiomiopatía Dilatada/genética , Distroglicanos/metabolismo , Genes Recesivos , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adolescente , Cardiomiopatía Dilatada/metabolismo , Niño , Preescolar , Fosfatos de Dolicol/metabolismo , Femenino , Expresión Génica , Glicosilación , Haplotipos , Homocigoto , Humanos , Masculino , Linaje , Saccharomyces cerevisiae/genética , Sarcolema/metabolismo
16.
Nat Commun ; 15(1): 5157, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886340

RESUMEN

The eukaryotic asparagine (N)-linked glycan is pre-assembled as a fourteen-sugar oligosaccharide on a lipid carrier in the endoplasmic reticulum (ER). Seven sugars are first added to dolichol pyrophosphate (PP-Dol) on the cytoplasmic face of the ER, generating Man5GlcNAc2-PP-Dol (M5GN2-PP-Dol). M5GN2-PP-Dol is then flipped across the bilayer into the lumen by an ER translocator. Genetic studies identified Rft1 as the M5GN2-PP-Dol flippase in vivo but are at odds with biochemical data suggesting Rft1 is dispensable for flipping in vitro. Thus, the question of whether Rft1 plays a direct or an indirect role during M5GN2-PP-Dol translocation has been controversial for over two decades. We describe a completely reconstituted in vitro assay for M5GN2-PP-Dol translocation and demonstrate that purified Rft1 catalyzes the translocation of M5GN2-PP-Dol across the lipid bilayer. These data, combined with in vitro results demonstrating substrate selectivity and rft1∆ phenotypes, confirm the molecular identity of Rft1 as the M5GN2-PP-Dol ER flippase.


Asunto(s)
Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transporte Biológico , Oligosacáridos/metabolismo , Fosfatos de Dolicol/metabolismo , Fosfatos de Dolicol/genética , Membrana Dobles de Lípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Membranas Intracelulares/metabolismo , Lipopolisacáridos
17.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1833-1844, 2024 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-38914494

RESUMEN

Protein folding and quality control processes primarily occur in the endoplasmic reticulum (ER). ER-resident molecular chaperones play a crucial role in guiding nascent polypeptides towards their correct tertiary structures. Some of these chaperones specifically recognize glucosylated N-glycan moieties on peptide. It is of great significance to study the N-glycan biosynthetic pathway and glycoprotein quality control system by analyzing the sugar donor of ER luminal glucosyltransferases, known as dolichol phosphate glucose (Dol-P-Glc), or its analogues in vitro. In this study, we investigated a range of dolichol analogues to synthesize lipid phosphate glucose, which served as substrates for dolichyl-phosphate ß-glucosyltransferase E (Alg5E) derived from Trichomonas vaginalis. The results demonstrated that the recombinant Alg5E, expressed in Escherichia coli, exhibited strong catalytic activity and the ability to recognize lipid phosphate glucose with varying chain lengths. Interestingly, the enzyme's catalytic reaction was found to be faster with longer carbon chains in the substrate. Additionally, Alg5E showed a preference for branched chain methyl groups in the lipid structure. Furthermore, our study confirmed the importance of divalent metal ions in the binding of the crucial DXD motif, which is essential for the enzyme's catalytic function. These findings lay the groundwork for future research on glucosyltransferases Alg6, Alg8, and Alg10 in the synthesis pathway of dolichol-linked oligosaccharide (DLO).


Asunto(s)
Glucosiltransferasas , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Especificidad por Sustrato , Escherichia coli/genética , Escherichia coli/metabolismo , Trichomonas vaginalis/enzimología , Trichomonas vaginalis/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Fosfatos de Dolicol/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/enzimología
18.
Biochim Biophys Acta ; 1821(6): 923-33, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22469971

RESUMEN

In N-glycosylation in both Eukarya and Archaea, N-linked oligosaccharides are assembled on dolichol phosphate prior to transfer of the glycan to the protein target. However, whereas only the α-position isoprene subunit is saturated in eukaryal dolichol phosphate, both the α- and ω-position isoprene subunits are reduced in the archaeal lipid. The agents responsible for dolichol phosphate saturation remain largely unknown. The present study sought to identify dolichol phosphate reductases in the halophilic archaeon, Haloferax volcanii. Homology-based searches recognize HVO_1799 as a geranylgeranyl reductase. Mass spectrometry revealed that cells deleted of HVO_1799 fail to fully reduce the isoprene chains of H. volcanii membrane phospholipids and glycolipids. Likewise, the absence of HVO_1799 led to a loss of saturation of the ω-position isoprene subunit of C(55) and C(60) dolichol phosphate, with the effect of HVO_1799 deletion being more pronounced with C(60) dolichol phosphate than with C(55) dolichol phosphate. Glycosylation of dolichol phosphate in the deletion strain occurred preferentially on that version of the lipid saturated at both the α- and ω-position isoprene subunits.


Asunto(s)
Proteínas Arqueales/metabolismo , Fosfatos de Dolicol/metabolismo , Haloferax volcanii/metabolismo , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Butadienos/química , Butadienos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Cromatografía Liquida , Fosfatos de Dolicol/química , Eliminación de Gen , Glucolípidos/química , Glucolípidos/metabolismo , Haloferax volcanii/enzimología , Haloferax volcanii/genética , Hemiterpenos/química , Hemiterpenos/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Datos de Secuencia Molecular , Oxidorreductasas/genética , Pentanos/química , Pentanos/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
19.
Glycoconj J ; 30(1): 51-6, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22717794

RESUMEN

In the majority of congenital disorders of glycosylation, the assembly of the glycan precursor GlcNAc(2)Man(9)Glc(3) on the polyprenol carrier dolichyl-pyrophosphate is compromised. Because N-linked glycosylation is essential to life, most types of congenital disorders of glycosylation represent partial losses of enzymatic activity. Consequently, increased availability of substrates along the glycosylation pathway can be beneficial to increase product formation by the compromised enzymes. Recently, we showed that increased dolichol availability and improved N-linked glycosylation can be achieved by inhibition of squalene biosynthesis. This review summarizes the current knowledge on the biosynthesis of dolichol-linked glycans with respect to deficiencies in N-linked glycosylation. Additionally, perspectives on therapeutic treatments targeting dolichol and dolichol-linked glycan biosynthesis are examined.


Asunto(s)
Trastornos Congénitos de Glicosilación , Dolicoles , Polisacáridos/metabolismo , Secuencia de Carbohidratos/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Fosfatos de Dolicol/metabolismo , Dolicoles/genética , Dolicoles/metabolismo , Glicosilación , Humanos , Polisacáridos/genética
20.
Biochim Biophys Acta ; 1811(10): 607-16, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21745590

RESUMEN

Polyprenoids, polymers containing varied numbers of isoprene subunits, serve numerous roles in biology. In Eukarya, dolichyl phosphate, a phosphorylated polyprenol bearing a saturated α-end isoprene subunit, serves as the glycan carrier during N-glycosylation, namely that post-translational modification whereby glycans are covalently linked to select asparagine residues of a target protein. As in Eukarya, N-glycosylation in Archaea also relies on phosphorylated dolichol. In this report, LC-ESI/MS/MS was employed to identify a novel dolichyl phosphate (DolP) in the thermoacidophilic archaeon, Sulfolobus acidocaldarius. The unusually short S. acidocaldarius DolP presents a degree of saturation not previously reported. S. acidocaldarius DolP contains not only the saturated α- and ω-end isoprene subunits observed in other archaeal DolPs, but also up to five saturated intra-chain isoprene subunits. The corresponding dolichol and hexose-charged DolP species were also detected. The results of the present study offer valuable information on the biogenesis and potential properties of this unique DolP. Furthermore, elucidation of the mechanism of α-isoprene unit reduction in S. acidocaldarius dolichol may facilitate the identification of the alternative, as yet unknown polyprenol reductase in Eukarya.


Asunto(s)
Fosfatos de Dolicol/metabolismo , Sulfolobus acidocaldarius/metabolismo , Fosfatos de Dolicol/química , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA