RESUMEN
The phosphotransferase system (PTS) controls the use of sugars in bacteria. The PTS is ubiquitous in bacteria, but it does not occur in plants and animals; it modulates catabolite repression, intermediate metabolism, gene expression, and chemotaxis. Its uniqueness and pleiotropic function make the PTS an attractive target for new antibacterial drugs. The PTS is constituted of two general proteins, namely, enzyme I (EI) and the histidine phosphocarrier (HPr), and various sugar-specific permeases. EI has two domains: the N-terminal domain (EIN), which binds to HPr, and the C-terminal domain (EIC), which contains the dimerization interface. In this work, we determined the binding affinities of peptides derived from EIN of Streptomyces coelicolor (EIN(sc)) against HPr of the same organism (HPr(sc)), by using nuclear magnetic resonance and isothermal titration calorimetry techniques. Furthermore, we measured the affinity of EIN(sc) for (i) a peptide derived from HPr(sc), containing the active-site histidine, and (ii) other peptides identified previously by phage display and combinatorial chemistry in Escherichia coli [Mukhija, S. L., et al (1998) Eur. J. Biochem. 254, 433-438; Mukhija, S., and Erni, B. (1997) Mol. Microbiol. 25, 1159-1166]. The affinities were in the range of ~10 µM, being slightly higher for the binding of EIN(sc) with peptides derived from HPr(sc), phage display, or combinatorial chemistry (K(D) ~ 5 µM). Because the affinity of intact EIN(sc) for the whole HPr(sc) is 12 µM, we suggest that the assayed peptides might be considered as good hit compounds for inhibiting the interaction between HPr(sc) and EIN(sc).
Asunto(s)
Sistemas de Transporte de Aminoácidos/antagonistas & inhibidores , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Péptidos/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/antagonistas & inhibidores , Streptomyces coelicolor/enzimología , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas Químicas Combinatorias , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Péptidos/metabolismo , Péptidos/farmacología , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/metabolismo , Estructura Terciaria de Proteína , Streptomyces coelicolor/químicaRESUMEN
The phosphoenolpyruvate phosphotransferase system (PTS) is ubiquitous in eubacteria and absent from eukaryotes. The system consists of two phosphoryl carriers, enzyme I (EI) and the histidine-containing phosphoryl carrier protein (HPr), and several PTS transporters, catalyzing the concomitant uptake and phosphorylation of several carbohydrates. Since a deficiency of EI in bacterial mutants lead to severe growth defects, EI could be a drug target to develop antimicrobial agents. We used the 3D structure PDB 1ZYM of Escherichia coli EI as the target to virtually screen the potential tight binders from NPPEDIA (Natural Product Encyclopedia), ZINC and Super Natural databases. These databases were screened using the docking tools of Discovery Studio 2.0 and the Integrated Drug Design System IDDS. Among the many interesting hits, xanthone derivatives with reasonably high Dock scores received more attentions. Two of the xanthone derivatives were obtained to examine their capabilities to inhibit cell growth of both Gram-positive and Gram-negative bacterial strains. The results indicate that they may exert the inhibition effects by blocking the EI activities. We have demonstrated for the first time that the xanthone derivatives have high potential to be developed as future antibiotics.
Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/antagonistas & inhibidores , Xantonas/farmacología , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Bases de Datos Factuales , Diseño de Fármacos , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Xantonas/químicaRESUMEN
The phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) phosphorylates sugars and regulates cellular metabolic processes using a phosphoryl transfer chain including the general energy coupling proteins, Enzyme I (EI) and HPr as well as the sugar-specific Enzyme II complexes. Analysis of the Escherichia coli genome has revealed the presence of 5 paralogues of EI and 5 paralogues of HPr, most of unknown function. The ptsP gene encodes an EI paralogue designated Enzyme I(nitrogen) (EI(Ntr)), and two genes located in the rpoN operon encode PTS protein paralogues, NPr and IIA(Ntr), both implicated in the regulation of sigma(54) activity. The ptsP gene was polymerase chain reaction amplified from the E. coli chromosome and cloned into an overexpression vector allowing the overproduction and purification of EI(Ntr). EI(Ntr) was shown to phosphorylate NPr in vitro using either a [(32)P]PEP-dependent protein phosphorylation assay or a quantitative sugar phosphorylation assay. EI(Ntr) phosphorylated NPr but not HPr, whereas Enzyme I exhibited a strong preference for HPr. These two pairs of proteins (EI(Ntr)/NPr and EI/HPr) thus exhibit little cross-reactivity. Phosphoryl transfer from PEP to NPr catalyzed by EI(Ntr) has a pH optimum of 8.0, is dependent on Mg(2+), is stimulated by high ionic strength, and exhibits two K(m) values for NPr (2 and 10 microM) possibly because of negative cooperativity. The results suggest that E. coli possesses at least two distinct PTS phosphoryl transfer chains, EI(Ntr) --> NPr --> IIA(Ntr) and EI --> HPr --> IIA(sugar). Sequence comparisons allow prediction of residues likely to be important for specificity. This is the first report demonstrating specificity at the level of the energy coupling proteins of the PTS.
Asunto(s)
Escherichia coli/enzimología , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cationes Bivalentes , Cartilla de ADN , Inhibidores Enzimáticos/farmacología , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/antagonistas & inhibidores , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Homología de Secuencia de Aminoácido , Especificidad por SustratoRESUMEN
The synthesis of 10 new phosphoenolpyruvate (PEP) analogues with modifications in the phosphate and the carboxylate function is described. Included are two potential irreversible inhibitors of PEP-utilizing enzymes. One incorporates a reactive chloromethylphosphonate function replacing the phosphate group of PEP. The second contains a chloromethyl group substituting for the carboxylate function of PEP. An improved procedure for the preparation of the known (Z)- and (E)-3-chloro-PEP is also given. The isomers were obtained as a 4 : 1 mixture, resolved by anion-exchange chromatography after the last reaction step. The stereochemistry of the two isomers was unequivocally assigned from the (3)J(H-C) coupling constants between the carboxylate carbons and the vinyl protons. All of these and other known PEP-analogues were tested as reversible and irreversible inhibitors of Mg2+- and Mn2+- activated PEP-utilizing enzymes: enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), pyruvate kinase, PEP carboxylase and enolase. Without exception, the most potent inhibitors were those with substitution of a vinyl proton. Modification of the phosphate and the carboxylate groups resulted in less effective compounds. Enzyme I was the least tolerant to such modifications. Among the carboxylate-modified analogues, only those replaced by a negatively charged group inhibited pyruvate kinase and enolase. Remarkably, the activity of PEP carboxylase was stimulated by derivatives with neutral groups at this position in the presence of Mg2+, but not with Mn2+. For the irreversible inhibition of these enzymes, (Z)-3-Cl-PEP was found to be a very fast-acting and efficient suicide inhibitor of enzyme I (t(1/2) = 0.7 min).
Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/antagonistas & inhibidores , Fosfoenolpiruvato/química , Fosfoenolpiruvato/farmacología , Bioquímica/métodos , Evaluación Preclínica de Medicamentos , Activación Enzimática , Inhibidores Enzimáticos/metabolismo , Isomerismo , Fosfoenolpiruvato/análogos & derivados , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxilasa/antagonistas & inhibidores , Fosfoenolpiruvato Carboxilasa/metabolismo , Fosfopiruvato Hidratasa/antagonistas & inhibidores , Fosfopiruvato Hidratasa/metabolismo , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/antagonistas & inhibidores , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/metabolismo , Relación Estructura-ActividadRESUMEN
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) plays a key role in sugar uptake and metabolic regulation in bacteria. PTS proteins form a divergent phosphorylation cascade. Enzyme I (EI) is at the top of the cascade and mediates phosphoryl-transfer from phosphoenolpyruvate to the phosphoryl-carrier protein HPr, which then distributes the phosphoryl-groups to the different carbohydrate transporters. In addition, some PTS proteins have a regulatory function in catabolite repression, inducer exclusion and chemotaxis which is modulated by their degree of phosphorylation in response to the availability of substrates. Using as a reporter the IacZ gene under control of the bgl t2 transcriptional terminator and as an effector the transcriptional antiterminator LicT from B. subtilis, a two-plasmid reporter gene system was constructed in order to monitor PTS activity. LicT, when present at low concentration in E. coli, is inactivated by EI/HPr-dependent phosphorylation and conversely is active in a ptsl- mutant lacking El. Active LicT allows for transcriptional readthrough at bgl t2, resulting in a full-length lacZ transcript. Beta-galactosidase activities are increased 4-8-fold in a ptsl+ strain growing on PTS substrates relative to growth on non-PTS substrates and approximately 30-fold in a ptsl- mutant. This gain-of-function in response to dephosphorylation of El or lack of active El can be used to monitor changes of El activity caused by mutations and environmental factors and for screening and validation of inhibitors of the PTS as potentially novel antibacterial compounds.
Asunto(s)
Genes Reporteros , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/antagonistas & inhibidores , beta-Galactosidasa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genes Bacterianos , Ácidos Fosfóricos/metabolismo , Radioisótopos de Fósforo , Fosforilación , Plásmidos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Regiones Terminadoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta-Galactosidasa/genéticaRESUMEN
Four phosphoenolpyruvate (PEP) derivatives, carrying reactive or activable chemical functions in each of the three chemical regions of PEP, were assayed as alternative substrates of enzyme I (EI) of the Escherichia coli PEP:glucose phosphotransferase system. The Z- and E-isomers of 3-chlorophosphoenolpyruvate (3-Cl-PEP) were substrates, presenting K(m) values of 0.08 and 0.12 mm, respectively, very similar to the K(m) of 0.14 mm measured for PEP, and k(cat) of 40 and 4 min(-1), compared with 2,200 min(-1), for PEP. The low catalytic efficiency of these substrates permits the study of activity at in vivo EI concentrations. Z-Cl-PEP was a competitive inhibitor of PEP with a K(I) of 0.4 mm. E-Cl-PEP was not an inhibitor. Compounds 3 and 4, obtained by modification of the carboxylic and phosphate groups of PEP, were neither substrates nor inhibitors of EI, highlighting the importance of these functionalities for recognition by EI. Z-Cl-PEP is a suicide inhibitor. About 10-50 turnovers sufficed to inactivate EI completely. Such a property can be exploited to reveal and quantitate phosphoryl transfer from EI to other proteins at in vivo concentrations. Inactivation was saturatable in Z-Cl-PEP, with an apparent K(m)(inact) of 0.2-0.4 mm. The rate of inactivation increased with the concentration of EI, indicating a preferential or exclusive reaction with the dimeric form of EI. E-Cl-PEP inactivates EI much more slowly, and unlike PEP, it did not protect against inactivation by Z-Cl-PEP. This and the ineffectiveness of E-Cl-PEP as a competitive inhibitor have been related to the presence of two EI active species. Cys-502 of EI was identified by mass spectrometry as the reacting residue. The C502A EI mutant showed less than 0.06% wild-type activity. Sequence alignments and comparisons of x-ray structures of different PEP-utilizing enzymes indicate that Cys-502 might serve as a proton donor during catalysis.
Asunto(s)
Escherichia coli/enzimología , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/antagonistas & inhibidores , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Fosfotransferasas/química , Secuencia de Aminoácidos , Aminoácidos/química , Sitios de Unión , Unión Competitiva , Catálisis , Dominio Catalítico , Cisteína/química , Dimerización , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Cinética , Espectrometría de Masas , Modelos Químicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Fosfotransferasas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Factores de TiempoRESUMEN
The phosphoenolpyruvate(P-pyruvate)-dependent sugar phosphotransferase system (PTS) is a transport and signal-transduction system which is almost ubiquitous in bacteria but does not occur in eucaryotes. It catalyzes the uptake and phosphorylation of carbohydrates and is involved in signal transduction, e.g. catabolite repression, chemotaxis, and allosteric regulation of metabolic enzymes and transporters. EI (Enzyme I of the PTS) is the first and central component of the divergent PTS (P-pyruvate-dependent sugar phosphotransferase system) phosphorylation cascade. Using immobilized combinatorial peptide libraries and phosphorimaging, heptapeptides and octapeptides were identified which selectively inhibit EI in vitro. The IC50 of the best peptides is 30 microM which is close to the K(M) (6 microM) of EI for its natural substrate HPr (histidine containing phosphoryl carrier protein of the PTS). The affinity-selected peptides are better inhibitors than a peptide with the active-site sequence of HPr. The selected peptides contain several basic residues and one aromatic residue which do not occur in the active site of HPr. The large proportion of basic residues most likely reflects charge complementarity to the strongly acidic active-site pocket of EI. Guanidino groups might facilitate by complexation of the phosphoryl group the slow phosphorylation of the peptide.