Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.158
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell ; 36(7): 2465-2490, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513609

RESUMEN

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.


Asunto(s)
Brassicaceae , Frutas , Regulación de la Expresión Génica de las Plantas , Germinación , Semillas , Temperatura , Germinación/genética , Germinación/fisiología , Semillas/genética , Semillas/fisiología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Brassicaceae/genética , Brassicaceae/fisiología , Brassicaceae/metabolismo , Frutas/genética , Frutas/fisiología , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma/genética , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Ácido Abscísico/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(14): e2321612121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530890

RESUMEN

To preserve germination ability, plant seeds must be protected from environmental stresses during the storage period. Here, we demonstrate that autophagy, an intracellular degradation system, maintains seed germination ability in Arabidopsis thaliana. The germination ability of long-term (>5 years) stored dry seeds of autophagy-defective (atg) mutant and wild-type (WT) plants was compared. Long-term stored (old) seeds of atg mutants showed lower germination ability than WT seeds, although short-term stored (new) seeds of atg mutants did not show such a phenotype. After removal of the seed coat and endosperm from old atg mutant seeds, the embryos developed into seedlings. Autophagic flux was maintained in endosperm cells during the storage period, and autophagy defect resulted in the accumulation of oxidized proteins and accelerated endosperm cell death. Consistent with these findings, the transcripts of genes, ENDO-ß-MANNANASE 7 and EXPANSIN 2, which are responsible for degradation/remodeling of the endosperm cell wall during germination, were reduced in old atg mutant seeds. We conclude that autophagy maintains endosperm quality during seed storage by suppressing aging-dependent oxidative damage and cell death, which allows the endosperm to perform optimal functions during germination, i.e., cell wall degradation/remodeling, even after long-term storage.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Endospermo/genética , Germinación/fisiología , Semillas/genética , Proteínas de Arabidopsis/metabolismo , Autofagia , Regulación de la Expresión Génica de las Plantas
3.
Plant J ; 118(2): 584-600, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38141174

RESUMEN

Phenotyping of model organisms grown on Petri plates is often carried out manually, despite the procedures being time-consuming and laborious. The main reason for this is the limited availability of automated phenotyping facilities, whereas constructing a custom automated solution can be a daunting task for biologists. Here, we describe SPIRO, the Smart Plate Imaging Robot, an automated platform that acquires time-lapse photographs of up to four vertically oriented Petri plates in a single experiment, corresponding to 192 seedlings for a typical root growth assay and up to 2500 seeds for a germination assay. SPIRO is catered specifically to biologists' needs, requiring no engineering or programming expertise for assembly and operation. Its small footprint is optimized for standard incubators, the inbuilt green LED enables imaging under dark conditions, and remote control provides access to the data without interfering with sample growth. SPIRO's excellent image quality is suitable for automated image processing, which we demonstrate on the example of seed germination and root growth assays. Furthermore, the robot can be easily customized for specific uses, as all information about SPIRO is released under open-source licenses. Importantly, uninterrupted imaging allows considerably more precise assessment of seed germination parameters and root growth rates compared with manual assays. Moreover, SPIRO enables previously technically challenging assays such as phenotyping in the dark. We illustrate the benefits of SPIRO in proof-of-concept experiments which yielded a novel insight on the interplay between autophagy, nitrogen sensing, and photoblastic response.


Asunto(s)
Germinación , Plantones , Fenotipo , Germinación/fisiología , Semillas , Procesamiento de Imagen Asistido por Computador
4.
Plant J ; 119(2): 998-1013, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761113

RESUMEN

The pollen viability directly affects the pollination process and the ultimate grain yield of rice. Here, we identified that the MORN motif-containing proteins, OsMORN1 and OsMORN2, had a crucial role in maintaining pollen fertility. Compared with the wild type (WT), the pollen viability of the osmorn1 and osmorn2 mutants was reduced, and pollen germination was abnormal, resulting in significantly lower spikelet fertility, seed-setting rate, and grain yield per plant. Further investigation revealed that OsMORN1 was localized to the Golgi apparatus and lipid droplets. Lipids associated with pollen viability underwent alterations in osmorn mutants, such as the diacylglyceride (18:3_18:3) was 5.1-fold higher and digalactosyldiacylglycerol (18:2_18:2) was 5.2-fold lower in osmorn1, while the triacylglycerol (TG) (16:0_18:2_18:3) was 8.3-fold higher and TG (16:0_18:1_18:3) was 8.5-fold lower in osmorn2 than those in WT. Furthermore, the OsMORN1/2 was found to be associated with rice cold tolerance, as osmorn1 and osmorn2 mutants were more sensitive to chilling stress than WT. The mutants displayed increased hydrogen peroxide accumulation, reduced antioxidant enzyme activities, elevated malondialdehyde content, and a significantly decreased seedling survival rate. Lipidomics analysis revealed distinct alterations in lipids under low temperature, highlighting significant changes in TG (18:2_18:3_18:3) and TG (18:4_18:2_18:2) in osmorn1, TG (16:0_18:2_18:2) and PI (17:2_18:3) in osmorn2 compared to the WT. Therefore, it suggested that OsMORN1 and OsMORN2 regulate both pollen viability and cold tolerance through maintaining lipid homeostasis.


Asunto(s)
Oryza , Proteínas de Plantas , Polen , Oryza/genética , Oryza/fisiología , Oryza/metabolismo , Polen/genética , Polen/fisiología , Polen/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Germinación/fisiología , Regulación de la Expresión Génica de las Plantas , Frío , Mutación , Gotas Lipídicas/metabolismo
5.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840053

RESUMEN

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Asunto(s)
Germinación , Lens (Planta) , Semillas , Temperatura , Germinación/fisiología , Semillas/fisiología , Semillas/crecimiento & desarrollo , Lens (Planta)/fisiología , Lens (Planta)/crecimiento & desarrollo , Agua/metabolismo , Modelos Biológicos , Presión Osmótica
6.
BMC Plant Biol ; 24(1): 486, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822268

RESUMEN

BACKGROUND: Horsfieldia hainanensis Merr., an indicator species of China's humid tropical rainforests, is endangered due to difficulties with population regeneration. In this study, the biological characteristics and germination adaptability of the seeds were studied for the first time, in order to provide a basis for analyzing the causes of endangerment and strategies for the artificial cultivation of H. hainanensis. The effects of biological characteristics (population, arils, seed coat, seed weight, seed moisture content) and environmental factors (temperature, light, drought, substrate, burial depth) on seed germination and seedling growth of H. hainanensis were studied. RESULTS AND DISCUSSION: The fruits were found to be capsules containing seeds wrapped in a pericarp and fleshy aril, which provide protection and assist in seed dispersal, but also pose risks to the seeds, as the peel and fleshy aril can become moldy under high temperature and humidity conditions. There were significant differences in fruit morphology and germination characteristics among different populations, and the seed quality of populations in Niandian village, Daxin County, Chongzuo City, Guangxi Zhuang Autonomous Region was better. The arils significantly inhibited seed germination, the germination of large seeds was better, and seedling growth from medium seeds was superior. H. hainanensis seeds were sensitive to dehydration, and intolerant to drought and low temperature, which is typical of recalcitrant seeds. The seeds are suitable for germination on a moist substrate surface with good water retention and breathability at 30-35℃.


Asunto(s)
Especies en Peligro de Extinción , Germinación , Semillas , Germinación/fisiología , Semillas/crecimiento & desarrollo , Semillas/fisiología , China , Frutas/crecimiento & desarrollo , Frutas/fisiología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Temperatura
7.
BMC Plant Biol ; 24(1): 530, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862888

RESUMEN

BACKGROUND: Seed aging, a natural and inevitable process occurring during storage. Oats, an annual herb belonging to the Gramineae family and pooideae. In addition to being a healthy food, oats serve as ecological pastures, combating soil salinization and desertification. They also play a role in promoting grassland agriculture and supplementing winter livestock feed. However, the high lipid and fat derivatives contents of oat seeds make them susceptible to deterioration, as fat derivatives are prone to rancidity, affecting oat seed production, storage, development, and germplasm resource utilization. Comparative studies on the effects of aging on physiology and cytological structure in covered and naked oat seeds are limited. Thus, our study aimed to determine the mechanism underlying seed deterioration in artificially aged 'LongYan No. 3' (A. sativa) and 'BaiYan No. 2' (A. nuda) seeds, providing a basis for the physiological evaluation of oat seed aging and serving as a reference for scientifically safe storage and efficient utilization of oats. RESULTS: In both oat varieties, superoxide dismutase and catalase activities in seeds showed increasing and decreasing trends, respectively. Variance analysis revealed significant differences and interaction in all measured indicators of oat seeds between the two varieties at different aging times. 'LongYan No. 3' seeds, aged for 24-96 h, exhibited a germination rate of < 30%, Conductivity, malondialdehyde, soluble sugar, and soluble protein levels increased more significantly than the 'BaiYan No. 2'. With prolonged aging leading to cell membrane degradation, reactive oxygen species accumulation, disrupted antioxidant enzyme system, evident embryo cell swelling, and disordered cell arrangement, blocking the nutrient supply route. Simultaneously, severely concentrated chromatin in the nucleus, damaged mitochondrial structure, and impaired energy metabolism were noted, resulting in the loss of 'LongYan No. 3' seed vitality and value. Conversely, 'BaiYan No. 2' seeds showed a germination rate of 73.33% after 96 h of aging, consistently higher antioxidant enzyme activity during aging, normal embryonic cell shape, and existence of the endoplasmic reticulum. CONCLUSIONS: ROS accumulation and antioxidant enzyme system damage in aged oat seeds, nuclear chromatin condensation, mitochondrial structure damage, nucleic acid metabolism and respiration weakened, oat seed vigor decreased. 'LongYan No. 3' seeds were more severely damaged under artificial aging than 'BaiYan No. 2' seeds, highlighting their heightened susceptibility to aging effects.


Asunto(s)
Avena , Semillas , Avena/fisiología , Avena/crecimiento & desarrollo , Semillas/fisiología , Semillas/crecimiento & desarrollo , Calor , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Germinación/fisiología , Antioxidantes/metabolismo
8.
BMC Plant Biol ; 24(1): 604, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926703

RESUMEN

BACKGROUND AND AIMS: Seed heteromorphism is a plant strategy that an individual plant produces two or more distinct types of diaspores, which have diverse morphology, dispersal ability, ecological functions and different effects on plant life history traits. The aim of this study was to test the effects of seasonal soil salinity and burial depth on the dynamics of dormancy/germination and persistence/depletion of buried trimorphic diaspores of a desert annual halophyte Atriplex centralasiatica. METHODS: We investigated the effects of salinity and seasonal fluctuations of temperature on germination, recovery of germination and mortality of types A, B, C diaspores of A. centralasiatica in the laboratory and buried diaspores in situ at four soil salinities and three depths. Diaspores were collected monthly from the seedbank from December 2016 to November 2018, and the number of viable diaspores remaining (not depleted) and their germinability were determined. RESULTS: Non-dormant type A diaspores were depleted in the low salinity "window" in the first year. Dormant diaspore types B and C germinated to high percentages at 0.3 and 0.1 mol L-1 soil salinity, respectively. High salinity and shallow burial delayed depletion of diaspore types B and C. High salinity delayed depletion time of the three diaspore types and delayed dormancy release of types B and C diaspores from autumn to spring. Soil salinity modified the response of diaspores in the seedbank by delaying seed dormancy release in autum and winter and by providing a low-salt concentration window for germination of non-dormant diaspores in spring and early summer. CONCLUSIONS: Buried trimorphic diaspores of annual desert halophyte A. centralasiatica exhibited diverse dormancy/germination behavior in respond to seasonal soil salinity fluctuation. Prolonging persistence of the seedbank and delaying depletion of diaspores under salt stress in situ primarily is due to inhibition of dormancy-break. The differences in dormancy/germination and seed persistence in the soil seedbank may be a bet-hadging strategy adapted to stressful temporal and spatial heterogeneity, and allows A. centralasiatica to persist in the unpredictable cold desert enevironment.


Asunto(s)
Atriplex , Germinación , Salinidad , Plantas Tolerantes a la Sal , Estaciones del Año , Semillas , Suelo , Germinación/fisiología , Plantas Tolerantes a la Sal/fisiología , Plantas Tolerantes a la Sal/crecimiento & desarrollo , China , Suelo/química , Semillas/fisiología , Semillas/crecimiento & desarrollo , Atriplex/fisiología , Atriplex/crecimiento & desarrollo , Banco de Semillas , Latencia en las Plantas/fisiología , Temperatura
9.
Plant Physiol ; 193(2): 1091-1108, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37418568

RESUMEN

FUSCA 3 (FUS3), a seed master regulator, plays critical role in seed dormancy and oil accumulation. However, its downstream regulation mechanisms remain poorly understood. Here, we explored the roles of AINTEGUMENTA-like 6 (AIL6), a seed transcription factor, in these processes. The activation of AIL6 by FUS3 was demonstrated by dual-LUC assay. Seeds of ail6 mutants showed alterations in fatty acid compositions, and both AtAIL6 (AIL6 from Arabidopsis thaliana) and BnaAIL6 (AIL6 from Brassica napus) rescued the phenotype. Over-expression (OE) of AIL6s reversed changes in seed fatty acid composition. Notably, OE lines showed low seed germination rates down to 12% compared to 100% of wild-type Col-0. Transcriptome analysis of the mutant and an OE line indicated widespread expression changes of genes involved in lipid metabolism and phytohormone pathways. In OE mature seeds, GA4 content decreased more than 15-fold, while abscisic acid and indole-3-acetic acid (IAA) contents clearly increased. Exogenous GA3 treatments did not effectively rescue the low germination rate. Nicking seed coats increased germination rates from 25% to nearly 80% while the wild-type rdr6-11 is 100% and 98% respectively, and elongation of storage time also improved seed germination. Furthermore, dormancy imposed by AIL6 was fully released in the della quintuple mutant. Together, our results indicate AIL6 acts as a manager downstream of FUS3 in seed dormancy and lipid metabolism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Latencia en las Plantas/genética , Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Metabolismo de los Lípidos/genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Germinación/fisiología , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo
10.
Plant Physiol ; 191(4): 2489-2505, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36659854

RESUMEN

Bud dormancy is an important trait in geophytes that largely affects their flowering process and vegetative growth after dormancy release. Compared with seed dormancy, the regulation of bud dormancy is still largely unclear. Abscisic acid (ABA) acts as the predominant hormone that regulates the whole dormancy process. In Gladiolus (Gladiolus hybridus), cold storage promotes corm dormancy release (CDR) by repressing ABA biosynthesis and signaling. However, the mechanisms governing ABA-related processes during CDR via epigenetics are poorly understood. Here, we show that class I BASIC PENTACYSTEINE2, (GhBPC2) directly binds to 9-CIS-EPOXYCAROTENOID DIOXYGENASE (GhNCED) and ABA INSENSITIVE5 (GhABI5) loci and down-regulates their expression to accelerate CDR. During CDR, histone modifications change dramatically at the GhBPC2-binding loci of GhABI5 with an increase in H3K27me3 and a decrease in H3K4me3. GhBPC2 is involved in both H3K27me3 and H3K4me3 and fine-tunes GhABI5 expression by recruiting polycomb repressive complex 2 (PRC2) and the chromatin remodeling factor EARLY BOLTING IN SHORT DAYS (GhEBS). These results show GhBPC2 epigenetically regulates CDR in Gladiolus by mediating GhABI5 expression with PRC2 and GhEBS.


Asunto(s)
Ácido Abscísico , Histonas , Histonas/metabolismo , Ácido Abscísico/metabolismo , Latencia en las Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo , Germinación/fisiología
11.
Plant Physiol ; 191(3): 1857-1870, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36493391

RESUMEN

There is a close regulatory relationship between the circadian clock and the abscisic acid (ABA) signaling pathway in regulating many developmental processes and stress responses. However, the exact feedback regulation mechanism between them is still poorly understood. Here, we identified the rice (Oryza sativa) clock component PSEUDO-RESPONSE REGULATOR 95 (OsPRR95) as a transcriptional regulator that accelerates seed germination and seedling growth by inhibiting ABA signaling. We also found that OsPRR95 binds to the ABA receptor gene REGULATORY COMPONENTS OF ABA RECEPTORS10 (OsRCAR10) DNA and inhibits its expression. Genetic analysis showed OsRCAR10 acts downstream of OsPRR95 in mediating ABA responses. In addition, the induction of OsPRR95 by ABA partly required a functional OsRCAR10, and the ABA-responsive element-binding factor ABSCISIC ACID INSENSITIVE5 (OsABI5) bound directly to the promoter of OsPRR95 and activated its expression, thus establishing a regulatory feedback loop between OsPRR95, OsRCAR10, and OsABI5. Taken together, our results demonstrated that the OsRCAR10-OsABI5-OsPRR95 feedback loop modulates ABA signaling to fine-tune seed germination and seedling growth, thus establishing the molecular link between ABA signaling and the circadian clock.


Asunto(s)
Arabidopsis , Relojes Circadianos , Oryza , Ácido Abscísico/metabolismo , Oryza/metabolismo , Relojes Circadianos/genética , Arabidopsis/genética , Germinación/fisiología , Plantones/metabolismo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
J Exp Bot ; 75(14): 4394-4399, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38597771

RESUMEN

Global climate change has already brought noticeable alterations to multiple regions of our planet, including increased CO2 concentrations and changes in temperature. Several important steps of plant growth and development, such as embryogenesis, can be affected by such environmental changes; for instance, they affect how stored nutrients are used during early stages of seed germination during the transition from heterotrophic to autotrophic metabolism-a critical period for the seedling's survival. In this article, we briefly describe relevant processes that occur during embryo maturation and account for nutrient accumulation, which are sensitive to environmental change. Most of the nutrients stored in the seed during its development-including carbohydrates, lipids, and proteins, depending on the species-accumulate during the seed maturation stage. It is also known that iron, a key micronutrient for various electron transfer processes in plant cells, accumulates during embryo maturation. The existing literature indicates that climate change can not only affect the quality of the seed, in terms of total nutritional content, but also affect seed production. We discuss the potential effects of temperature and CO2 increases from an embryo-autonomous point of view, in an attempt to separate the effects on the parent plant from those on the embryo.


Asunto(s)
Cambio Climático , Semillas , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Dióxido de Carbono/metabolismo , Germinación/fisiología , Temperatura
13.
J Exp Bot ; 75(19): 6047-6055, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622943

RESUMEN

Plant quiescence and seed dormancy can be triggered by reduced oxygen availability. Under water, oxygen depletion caused by flooding can culminate in a quiescent state, which is a plant strategy for energy preservation and survival. In adult plants, a quiescent state can be activated by sugar starvation, leading to metabolic depression. In seeds, secondary dormancy can be activated by reduced oxygen availability, which creates an unfavourable state for germination. The physical dormancy of some seeds and buds includes barriers to external conditions, which indirectly results in hypoxia. The molecular processes that support seed dormancy and plant survival through quiescence under hypoxia include the N-degron pathway, which enables the modulation of ethylene-responsive factors of group VII and downstream targets. This oxygen- and nitric oxide-dependent mechanism interacts with phytohormone-related pathways to control growth.


Asunto(s)
Latencia en las Plantas , Latencia en las Plantas/fisiología , Oxígeno/metabolismo , Semillas/crecimiento & desarrollo , Semillas/fisiología , Germinación/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo
14.
Ann Bot ; 133(7): 941-952, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38365444

RESUMEN

BACKGROUND AND AIMS: Orchid seeds are reputed to be short lived in dry, cold storage conditions, potentially limiting the use of conventional seed banks for long-term ex situ conservation. This work explores whether Cattleya seeds are long lived or not during conventional storage (predried to ~12 % relative humidity, then stored at -18 °C). METHODS: We explored the possible interaction of factors influencing seed lifespan in eight species of the genus Cattleya using physiological (germination and vigour), biochemical (gas chromatography), biophysical (differential scanning calorimetry) and morphometric methods. Seeds were desiccated to ~3 % moisture content and stored at -18 °C for more than a decade, and seed quality was measured via three in vitro germination techniques. Tetrazolium staining was also used to monitor seed viability during storage. The morphometric and germination data were subjected to ANOVA and cluster analysis, and seed lifespan was subjected to probit analysis. KEY RESULTS: Seeds of all Cattleya species were found to be desiccation tolerant, with predicted storage lifespans (P50y) of ~30 years for six species and much longer for two species. Cluster analysis showed that the three species with the longest-lived seeds had smaller (9-11 %) airspaces around the embryo. The post-storage germination method impacted the quality assessment; seeds equilibrated at room temperature for 24 h or in 10 % sucrose solution had improved germination, particularly for the seeds with the smallest embryos. Chromatography revealed that the seeds of all eight species were rich in linoleic acid, and differential scanning calorimetry identified a peak that might be auxiliary to selecting long-lived seeds. CONCLUSIONS: These findings show that not all orchids produce seeds that are short lived, and our trait analyses might help to strengthen prediction of seed longevity in diverse orchid species.


Asunto(s)
Germinación , Orchidaceae , Banco de Semillas , Semillas , Semillas/fisiología , Semillas/crecimiento & desarrollo , Orchidaceae/fisiología , Orchidaceae/crecimiento & desarrollo , Orchidaceae/anatomía & histología , Germinación/fisiología , Desecación , Rastreo Diferencial de Calorimetría
15.
Ann Bot ; 134(3): 485-490, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38809749

RESUMEN

BACKGROUND AND AIMS: Some plants germinate their seeds enclosed by a pericarp, whereas others lack the outer packaging. As a maternal tissue, the pericarp might impart seeds with different germination strategies. Plants in a community with different flowering times might separately disperse and germinate their seeds; therefore, flowering time can be considered as one manifestation of maternal effects on the offspring. The mass of the seed is another important factor influencing germination and represents the intrinsic resource of the seed that supports germination. Using seeds from a species-rich alpine meadow located in the Hengduan Mountains of China, a global biodiversity hotspot, we aimed to illustrate whether and how the type of seed (with or without a pericarp) modulates the interaction of flowering time and seed mass with germination. METHODS: Seeds were germinated in generally favourable conditions, and the speed of germination [estimated by mean germination time (MGT)] was calculated. We quantified the maternal conditions by separation of flowering time for 67 species in the meadow, of which 31 produced seeds with pericarps and 36 yielded seeds without pericarps. We also weighed 100 seeds of each species to assess their mass. KEY RESULTS: The MGT varied between the two types of seeds. For seeds with pericarps, MGT was associated with flowering time but not with seed mass. Plants with earlier flowering times in the meadow exhibited more rapid seed germination. For seeds without a pericarp, the MGT depended on seed mass, with smaller seeds germinating more rapidly than larger seeds. CONCLUSIONS: The distinct responses of germination to flowering time and seed mass observed in seeds with and without a pericarp suggest that germination strategies might be mother-reliant for seeds protected by pericarps but self-reliant for those without such protection. This new finding improves our understanding of seed germination by integrating ecologically mediated maternal conditions and inherent genetic properties.


Asunto(s)
Flores , Germinación , Semillas , Germinación/fisiología , Semillas/fisiología , Semillas/crecimiento & desarrollo , Flores/fisiología , Flores/crecimiento & desarrollo , Flores/anatomía & histología , China , Pradera
16.
Am J Bot ; 111(10): e16412, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39328075

RESUMEN

PREMISE: Seed germination involves risk; post-germination conditions might not allow survival and reproduction. Variable, stressful environments favor seeds with germination that avoids risk (e.g., germination in conditions predicting success), spreads risk (e.g., dormancy), or escapes risk (e.g., rapid germination). Germination studies often investigate trait correlations with climate features linked to variation in post-germination reproductive success. Rarely are long-term records of population reproductive success available. METHODS: Supported by demographic and climate monitoring, we analyzed germination in the California winter-annual Clarkia xantiana subsp. xantiana. Sowing seeds of 10 populations across controlled levels of water potential and temperature, we estimated temperature-specific base water potential for 20% germination, germination time weighted by water potential above base (hydrotime), and a dormancy index (frequency of viable, ungerminated seeds). Mixed-effects models analyzed responses to (1) temperature, (2) discrete variation in reproductive success (presence or absence of years with zero seed production by a population), and (3) climate covariates, mean winter precipitation and coefficient of variation (CV) of spring precipitation. For six populations, records enabled analysis with a continuous metric of variable reproduction, the CV of per-capita reproductive success. RESULTS: Populations with more variable reproductive success had higher base water potential and dormancy. Higher base water potential and faster germination occurred at warmer experimental temperatures and in seeds of populations with wetter winters. CONCLUSIONS: Geographic variation in seed germination in this species suggests local adaptation to demographic risk and rainfall. High base water potential and dormancy may concentrate germination in years likely to allow reproduction, while spreading risk among years.


Asunto(s)
Germinación , Lluvia , Estaciones del Año , Semillas , Germinación/fisiología , Semillas/crecimiento & desarrollo , Semillas/fisiología , Reproducción , California , Latencia en las Plantas/fisiología , Temperatura , Agua/fisiología , Clima
17.
J Pineal Res ; 76(1): e12937, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241678

RESUMEN

Seed germination (SG) is the first stage in a plant's life and has an immense importance in sustaining crop production. Abiotic stresses reduce SG by increasing the deterioration of seed quality, and reducing germination potential, and seed vigor. Thus, to achieve a sustainable level of crop yield, it is important to improve SG under abiotic stress conditions. Melatonin (MEL) is an important biomolecule that interplays in developmental processes and regulates many adaptive responses in plants, especially under abiotic stresses. Thus, this review specifically summarizes and discusses the mechanistic basis of MEL-mediated SG under abiotic stresses. MEL regulates SG by regulating some stress-specific responses and some common responses. For instance, MEL induced stress specific responses include the regulation of ionic homeostasis, and hydrolysis of storage proteins under salinity stress, regulation of C-repeat binding factors signaling under cold stress, starch metabolism under high temperature and heavy metal stress, and activation of aquaporins and accumulation of osmolytes under drought stress. On other hand, MEL mediated regulation of gibberellins biosynthesis and abscisic acid catabolism, redox homeostasis, and Ca2+ signaling are amongst the common responses. Nonetheless factors such as endogenous MEL contents, plant species, and growth conditions also influence above-mentioned responses. In conclusion, MEL regulates SG under abiotic stress conditions by interacting with different physiological mechanisms.


Asunto(s)
Germinación , Melatonina , Germinación/fisiología , Melatonina/farmacología , Semillas , Estrés Fisiológico , Plantas/metabolismo , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Physiol Plant ; 176(3): e14353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801018

RESUMEN

Environmental factors, such as temperature and moisture, and plant factors, such as seed position on the mother plant, can affect seed viability and germination. However, little is known about the viability and germination of seeds in different positions on the mother plant after burial in soil under natural environmental conditions. Here, diaspores from three positions on a compound spike and seeds from two/three positions in a diaspore of the invasive diaspore-heteromorphic annual grass Aegilops tauschii were buried at four depths for more than 2 years (1-26 months) under natural conditions and viability and germination monitored monthly. Viability of seeds in each diaspore/seed position decreased as burial depth and duration increased and was associated with changes in soil temperature and moisture. Germination was highest at 2 cm and lowest at 10 cm soil depths, with peaks and valleys in autumn/spring and winter/summer, respectively. Overall, seeds in distal diaspore and distal seed positions had higher germination percentages than those in basal diaspore and basal seed positions, but basal ones lived longer than distal ones. Chemical content of fresh diaspores/seeds was related to diaspore/seed position effects on seed germination and viability during burial. We conclude that seeds in distal diaspores/seed positions have a 'high risk' strategy and those in basal positions a 'low risk' strategy. The two risk strategies may act as a bet-hedging strategy that spreads risks of germination failure in the soil seed bank over time, thereby facilitating the survival and invasiveness of A. tauschii.


Asunto(s)
Germinación , Poaceae , Semillas , Suelo , Germinación/fisiología , Semillas/fisiología , Semillas/crecimiento & desarrollo , Poaceae/fisiología , Poaceae/crecimiento & desarrollo , Suelo/química , Especies Introducidas , Temperatura , Estaciones del Año , Ambiente
19.
Physiol Plant ; 176(5): e14546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39415749

RESUMEN

This experiment was carried out to provide a comprehensive insight into the protein activities involved in dormancy establishment in seeds of common cocklebur (Xanthium strumarium), an annual plant with two dimorphic seeds contained in one casing known as a burr. These consist of a smaller dormant seed and a larger non-dormant seed. The proteome profile was compared between developing dormant and non-dormant seeds of Xanthium strumarium at five consecutive stages including three, 10, 20, 30, and 45 days after burr emergence (stages 1 to 5). We identified 6524 proteins in total, and approximately 3.6% of these were differentially abundant proteins (DAPs) between the two seed types. Both seed types showed fundamental changes in developmental programs during the examined stages. More than 38% of all DAPs were observed at the first stage, supporting the importance of the early developmental stage in seed fate determination. The detected DAPs at stage 1 were mainly associated with the cell division phase, which showed a delay in the dormant seeds. Over-representation of proteins responsible for cell wall biosynthesis, cytokinesis, and seed development were detected for non-dormant seeds at the first stage, while dormancy-associated proteins showed less abundance. Stage 3 was the critical stage for switching processes toward seed maturation and abscisic acid (ABA) signaling. Interestingly, higher abundance proteins in the mature non-dormant seed were mainly involved in the facilitation of seed germination. Taken together, the temporal pattern of the accumulated proteins in developing dormant seeds demonstrated a delay in the initiation of active cell division, enriched response to ABA, and defects in seed maturation. Moreover, stored proteins in the mature dormant seed delay germination but not dormancy induction. Finally, our results suggest that dormancy may be established at a stage of seed development earlier than previously thought.


Asunto(s)
Latencia en las Plantas , Proteínas de Plantas , Proteómica , Semillas , Xanthium , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Xanthium/metabolismo , Xanthium/genética , Xanthium/crecimiento & desarrollo , Latencia en las Plantas/fisiología , Proteómica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteoma/metabolismo , Germinación/fisiología , Regulación de la Expresión Génica de las Plantas
20.
Biochem J ; 480(3): 177-196, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36749123

RESUMEN

In agriculture, seeds are the most basic and vital input on which croplands productivity depends. These implies a good starting material, good production lines and good storage options. High-quality seed lots must be free of pests and pathogens and contain a required degree of genetic purity. Seeds need also to be stored in good condition between harvest and later sowing, to insure later on the field a good plant density and higher crop yield. In general, these parameters are already widely accepted and considered in many countries where advanced technologies evaluate them. However, the more and more frequently devastating climate changes observed around the world has put seed quality under threat, and current seeds may not be adapted to hazardous and unpredictable conditions. Climate-related factors such as temperature and water availability directly affect seed development and later germination. For these reasons, investigating seed quality in response to climate changes is a step to propose new crop varieties and practices that will bring solutions for our future.


Asunto(s)
Germinación , Latencia en las Plantas , Latencia en las Plantas/fisiología , Germinación/fisiología , Temperatura , Semillas , Agricultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA