RESUMEN
Theiler's murine encephalomyelitis (TME) represents a versatile animal model for studying the pathogenesis of demyelinating diseases such as multiple sclerosis. Hallmarks of TME are demyelination, astrogliosis, as well as inflammation. Previous studies showed that matrix metalloproteinase 12 knockout (Mmp12-/-) mice display an ameliorated clinical course associated with reduced demyelination. The present study aims to elucidate the impact of MMP12 deficiency in TME with special emphasis on astrogliosis, macrophages infiltrating the central nervous system (CNS), and the phenotype of microglia/macrophages (M1 or M2). SJL wild-type and Mmp12-/- mice were infected with TME virus (TMEV) or vehicle (mock) and euthanized at 28 and 98 days post infection (dpi). Immunohistochemistry or immunofluorescence of cervical and thoracic spinal cord for detecting glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1), chemokine receptor 2 (CCR2), CD107b, CD16/32, and arginase I was performed and quantitatively evaluated. Statistical analyses included the Kruskalâ»Wallis test followed by Mannâ»Whitney U post hoc tests. TMEV-infected Mmp12-/- mice showed transiently reduced astrogliosis in association with a strong trend (p = 0.051) for a reduced density of activated/reactive microglia/macrophages compared with wild-type mice at 28 dpi. As astrocytes are an important source of cytokine production, including proinflammatory cytokines triggering or activating phagocytes, the origin of intralesional microglia/macrophages as well as their phenotype were determined. Only few phagocytes in wild-type and Mmp12-/- mice expressed CCR2, indicating that the majority of phagocytes are represented by microglia. In parallel to the reduced density of activated/reactive microglia at 98 dpi, TMEV-infected Mmp12-/- showed a trend (p = 0.073) for a reduced density of M1 (CD16/32- and CD107b-positive) microglia, while no difference regarding the density of M2 (arginase I- and CD107b-positive) cells was observed. However, a dominance of M1 cells was detected in the spinal cord of TMEV-infected mice at all time points. Reduced astrogliosis in Mmp12-/- mice was associated with a reduced density of activated/reactive microglia and a trend for a reduced density of M1 cells. This indicates that MMP12 plays an important role in microglia activation, polarization, and migration as well as astrogliosis and microglia/astrocyte interaction.
Asunto(s)
Astrocitos/patología , Infecciones por Cardiovirus/enzimología , Infecciones por Cardiovirus/virología , Gliosis/enzimología , Gliosis/virología , Metaloproteinasa 12 de la Matriz/deficiencia , Microglía/patología , Médula Espinal/patología , Animales , Movimiento Celular , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunofenotipificación , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones Noqueados , FenotipoRESUMEN
Human mesial temporal lobe epilepsy (MTLE) features subregion-specific hippocampal neurodegeneration and reactive astrogliosis, including up-regulation of the glial fibrillary acidic protein (GFAP) and down-regulation of glutamine synthetase (GS). However, the regional astrocytic expression pattern of GFAP and GS upon MTLE-associated neurodegeneration still remains elusive. We assessed GFAP and GS expression in strict correlation with the local neuronal number in cortical and hippocampal surgical specimens from 16 MTLE patients using immunohistochemistry, stereology and high-resolution image analysis for digital pathology and whole-slide imaging. In the cortex, GS-positive (GS+) astrocytes are dominant in all neuronal layers, with a neuron to GS+ cell ratio of 2:1. GFAP-positive (GFAP+) cells are widely spaced, with a GS+ to GFAP+ cell ratio of 3:1-5:1. White matter astrocytes, on the contrary, express mainly GFAP and, to a lesser extent, GS. In the hippocampus, the neuron to GS+ cell ratio is approximately 1:1. Hippocampal degeneration is associated with a reduction of GS+ astrocytes, which is proportional to the degree of neuronal loss and primarily present in the hilus. Up-regulation of GFAP as a classical hallmark of reactive astrogliosis does not follow the GS-pattern and is prominent in the CA1. Reactive alterations were proportional to the neuronal loss in the neuronal somatic layers (stratum pyramidale and hilus), while observed to a lesser extent in the axonal/dendritic layers (stratum radiatum, molecular layer). We conclude that astrocytic GS is expressed in the neuronal somatic layers and, upon neurodegeneration, is down-regulated proportionally to the degree of neuronal loss.
Asunto(s)
Astrocitos/enzimología , Corteza Cerebral/enzimología , Epilepsia del Lóbulo Temporal/enzimología , Glutamato-Amoníaco Ligasa/metabolismo , Neuronas/enzimología , Adulto , Astrocitos/patología , Muerte Celular/fisiología , Corteza Cerebral/patología , Epilepsia Refractaria/enzimología , Epilepsia Refractaria/patología , Epilepsia Refractaria/cirugía , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/cirugía , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/enzimología , Gliosis/patología , Humanos , Inmunohistoquímica , Masculino , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Sustancia Blanca/enzimología , Sustancia Blanca/patologíaRESUMEN
Citrullination is an important posttranslational modification that occurs during retinal gliosis. We examined the expression of peptidyl arginine deiminases (PADs) to identify the PADs that mediate citrullination in a model of alkali-induced retinal gliosis. Mouse corneas were exposed to 1.0 N NaOH and posterior eye tissue from injured and control uninjured eyes was evaluated for transcript levels of various PADs by reverse-transcription polymerase chain reaction (RT-PCR), and quantitative RT-PCR (qPCR). Retinas were also subjected to immunohistochemistry (IHC) for glial fibrillary acidic protein (GFAP), citrullinated species, PAD2, and PAD4 and tissue levels of GFAP, citrullinated species, and PAD4 were measured by western blots. In other experiments, the PAD4 inhibitor streptonigrin was injected intravitreally into injured eyes ex vivo to test inhibitory activity in an organ culture system. We found that uninjured retina and choroid expressed Pad2 and Pad4 transcripts. Pad4 transcript levels increased by day 7 post-injury (p < 0.05), whereas Pad2 levels did not change significantly (p > 0.05) by qPCR. By IHC, PAD2 was expressed in uninjured eyes along ganglion cell astrocytes, but in injured retina PAD2 was downregulated at 7 days. On the other hand, PAD4 showed increased staining in the retina upon injury revealing a pattern that overlapped with filamentous GFAP staining in Müller glial processes by 7 days. Injury-induced citrullination and soluble GFAP protein levels were reduced by PAD4 inhibition in western blot experiments of organ cultures. Together, our findings for the first time identify PAD4 as a novel injury-inducible druggable target for retinal gliosis.
Asunto(s)
Quemaduras Oculares/enzimología , Gliosis/enzimología , Hidrolasas/metabolismo , Retina/enzimología , Retina/lesiones , Enfermedades de la Retina/enzimología , Animales , Arginina/metabolismo , Quemaduras Químicas/enzimología , Citrulina/metabolismo , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/complicaciones , Femenino , Gliosis/inducido químicamente , Masculino , Ratones , Arginina Deiminasa Proteína-Tipo 4 , Enfermedades de la Retina/inducido químicamente , Enfermedades de la Retina/etiología , Hidróxido de SodioRESUMEN
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and causes severe cardiac and brain damage, leading to behavioral alterations in humans and animals. However, the mechanisms involved in memory impairment during T. cruzi infection remain unknown. It has long been recognized that the enzymatic activities of acetylcholinesterase (AChE) and Na+, K+-ATPase are linked with memory dysfunction during other trypanosomiasis. Thus, the aim of this study was to evaluate the involvement of cerebral AChE and Na+, K+-ATPase activities in the memory impairment during T. cruzi (Colombian strain) infection. A significant decrease on latency time during the inhibitory avoidance task was observed in animals infected by T. cruzi compared to uninfected animals, findings compatible to memory dysfunction. Moreover, the cerebral AChE activity increased, while the Na+, K+-ATPase decreased in T. cruzi infected compared to uninfected animals. Histopathology revealed mild to moderate multifocal gliosis in the cerebral cortex and light focal meningeal lymphoplasmacytic infiltrate, which may have contributed to memory loss. Based on these evidences, we can conclude that T. cruzi (Colombian strain) causes memory impairment in mice experimentally infected. Moreover, the changes in AChE and Na+, K+-ATPase activities may be considered a mechanism involved in disease pathogenesis.
Asunto(s)
Acetilcolinesterasa/metabolismo , Infecciones Protozoarias del Sistema Nervioso Central/enzimología , Corteza Cerebral/enzimología , Trastornos de la Memoria/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Trypanosoma cruzi/patogenicidad , Animales , Conducta Animal , Encéfalo/enzimología , Encéfalo/parasitología , Encéfalo/patología , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Infecciones Protozoarias del Sistema Nervioso Central/patología , Infecciones Protozoarias del Sistema Nervioso Central/psicología , Corteza Cerebral/parasitología , Corteza Cerebral/patología , Enfermedad de Chagas , Modelos Animales de Enfermedad , Femenino , Gliosis/enzimología , Gliosis/parasitología , Gliosis/patología , Corazón , Humanos , Trastornos de la Memoria/parasitología , Trastornos de la Memoria/patología , Trastornos de la Memoria/psicología , Ratones , Tripanosomiasis/parasitología , Tripanosomiasis/psicologíaRESUMEN
Microglial cells are the resident macrophages of the central nervous system. Their function is essential for neuronal tissue homeostasis. After inflammatory stimuli, microglial cells become activated changing from a resting and highly ramified cell shape to an amoeboid-like morphology. These morphological changes are associated with the release of proinflammatory cytokines and glutamate, as well as with high phagocytic activity. The acquisition of such phenotype has been associated with activation of cytoplasmic tyrosine kinases, including those of the Src family (SFKs). In this study, using both in vivo and in vitro inflammation models coupled to FRET-based time-lapse microscopy, lentiviruses-mediated shRNA delivery and genetic gain-of-function experiments, we demonstrate that among SFKs c-Src function is necessary and sufficient for triggering microglia proinflammatory signature, glutamate release, microglia-induced neuronal loss, and phagocytosis. c-Src inhibition in retinal neuroinflammation experimental paradigms consisting of intravitreal injection of LPS or ischemia-reperfusion injury significantly reduced microglia activation changing their morphology to a more resting phenotype and prevented neuronal apoptosis. Our data demonstrate an essential role for c-Src in microglial cell activation.
Asunto(s)
Microglía/enzimología , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Animales , Apoptosis/fisiología , Proteína Tirosina Quinasa CSK , Línea Celular , Células Cultivadas , Pollos , Gliosis/enzimología , Gliosis/patología , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Inflamación/enzimología , Inflamación/patología , Isquemia/enzimología , Isquemia/patología , Lipopolisacáridos , Masculino , Ratones , Microglía/patología , Neuronas/fisiología , Fagocitosis/fisiología , Ratas Wistar , Daño por Reperfusión/enzimología , Daño por Reperfusión/patología , Neuronas Retinianas/patología , Neuronas Retinianas/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Familia-src Quinasas/metabolismoRESUMEN
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness where vascular abnormality and retinal dysfunction are reported. We showed earlier that genetic deletion of aldose reductase (AR), the rate-limiting enzyme in the polyol pathway, reduced the neovascularization through attenuating oxidative stress induction in the mouse oxygen-induced retinopathy (OIR) modeling ROP. In this study, we further investigated the effects of AR deficiency on retinal neurons in the mouse OIR. Seven-day-old wild-type and AR-deficient mice were exposed to 75 % oxygen for 5 days and then returned to room air. Electroretinography was used to assess the neuronal function at postnatal day (P) 30. On P17 and P30, retinal cytoarchitecture was examined by morphometric analysis and immunohistochemistry for calbindin, protein kinase C alpha, calretinin, Tuj1, and glial fibrillary acidic protein. In OIR, attenuated amplitudes and delayed implicit time of a-wave, b-wave, and oscillatory potentials were observed in wild-type mice, but they were not significantly changed in AR-deficient mice. The morphological changes of horizontal, rod bipolar, and amacrine cells were shown in wild-type mice and these changes were partly preserved with AR deficiency. AR deficiency attenuated the Müller cell gliosis induced in OIR. Our observations demonstrated AR deficiency preserved retinal functions in OIR and AR deficiency could partly reduce the extent of retinal neuronal histopathology. These findings suggested a therapeutic potential of AR inhibition in ROP treatment with beneficial effects on the retinal neurons.
Asunto(s)
Aldehído Reductasa/deficiencia , Modelos Animales de Enfermedad , Gliosis/prevención & control , Neuronas Retinianas/enzimología , Retinopatía de la Prematuridad/prevención & control , Animales , Animales Recién Nacidos , Calbindina 2/metabolismo , Calbindinas/metabolismo , Electrorretinografía , Proteína Ácida Fibrilar de la Glía , Gliosis/enzimología , Inmunohistoquímica , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteína Quinasa C-alfa/metabolismo , Retina/fisiopatología , Retinopatía de la Prematuridad/enzimología , Tubulina (Proteína)/metabolismoRESUMEN
Kallikrein-related peptidase 6 (KLK6) is a trypsin-like serine protease upregulated at sites of central nervous system (CNS) injury, including de novo expression by reactive astrocytes, yet its physiological actions are largely undefined. Taken with recent evidence that KLK6 activates G-protein-coupled protease-activated receptors (PARs), we hypothesized that injury-induced elevations in KLK6 contribute to the development of astrogliosis and that this occurs in a PAR-dependent fashion. Using primary murine astrocytes and the Neu7 astrocyte cell line, we show that KLK6 causes astrocytes to transform from an epitheliod to a stellate morphology and to secrete interleukin 6 (IL-6). By contrast, KLK6 reduced expression of glial fibrillary acidic protein (GFAP). The stellation-promoting activities of KLK6 were shown to be dependent on activation of the thrombin receptor, PAR1, as a PAR1-specific inhibitor, SCH79797, blocked KLK6-induced morphological changes. The ability of KLK6 to promote astrocyte stellation was also shown to be linked to activation of protein kinase C (PKC). These studies indicate that KLK6 is positioned to serve as a molecular trigger of select physiological processes involved in the development of astrogliosis and that this is likely to occur at least in part by activation of the G-protein-coupled receptor, PAR1.
Asunto(s)
Gliosis/enzimología , Gliosis/patología , Calicreínas/metabolismo , Animales , Astrocitos/enzimología , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/enzimología , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Portadoras/metabolismo , Proliferación Celular , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Humanos , Hipertrofia , Interleucina-6/metabolismo , Ratones , Proteína Quinasa C/metabolismo , Receptor PAR-1/metabolismo , Médula Espinal/enzimología , Médula Espinal/metabolismo , Médula Espinal/patologíaRESUMEN
Dominant mutations in superoxide dismutase cause amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disease that is characterized by the loss of motor neurons. Using mice carrying a deletable mutant gene, diminished mutant expression in astrocytes did not affect onset, but delayed microglial activation and sharply slowed later disease progression. These findings demonstrate that mutant astrocytes are viable targets for therapies for slowing the progression of non-cell autonomous killing of motor neurons in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Astrocitos/enzimología , Gliosis/enzimología , Degeneración Nerviosa/enzimología , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Muerte Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Genes Dominantes , Terapia Genética/métodos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/genética , Gliosis/fisiopatología , Humanos , Integrasas/genética , Ratones , Ratones Transgénicos , Microglía/enzimología , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/genética , Médula Espinal/enzimología , Médula Espinal/patología , Médula Espinal/fisiopatología , Superóxido Dismutasa-1 , Tasa de SupervivenciaRESUMEN
Many Ca(2+)-regulated intracellular processes are involved in the development of neuroinflammation. However, the changes of Ca(2+) signaling in the brain under inflammatory conditions were hardly studied. ATP-induced Ca(2+) signaling is a central event of signal transmission in astrocytic networks. We investigated primary astrocytes after proinflammatory stimulation with lipopolysaccharide (LPS; 100 ng/ml) for 6-24 h. We reveal that Ca(2+) responses to purinergic ATP stimulation are significantly increased in amplitude and duration after stimulation with LPS. We detected that increased amplitudes of Ca(2+) responses to ATP in LPS-treated astrocytes can be explained by substantial increase of Ca(2+) load in stores in endoplasmic reticulum. The mechanism implies enhanced Ca(2+) store refilling due to the amplification of capacitative Ca(2+) entry. The reason for the increased duration of Ca(2+) responses in LPS-treated cells is also the amplified capacitative Ca(2+) entry. Next, we established that the molecular mechanism for the LPS-induced amplification of Ca(2+) responses in astrocytes is increased expression and activity of VIA phospholipase A(2) (VIA iPLA(2)). Indeed, both gene silencing with specific small interfering RNA and pharmacological inhibition of VIA iPLA(2) with S-bromoenol lactone reduced the load of the Ca(2+) stores and caused a decrease in the amplitudes of Ca(2+) responses in LPS-treated astrocytes to values, which were comparable with those in untreated cells. Our findings highlight a novel regulatory role of VIA iPLA(2) in development of inflammation in brain. We suggest that this enzyme might be a possible target for treatment of pathologies related to brain inflammation.
Asunto(s)
Astrocitos/enzimología , Señalización del Calcio/fisiología , Gliosis/enzimología , Fosfolipasas A2 Grupo VI/metabolismo , Mediadores de Inflamación/farmacología , Lipopolisacáridos/farmacología , Regulación hacia Arriba/fisiología , Animales , Animales Recién Nacidos , Calcio/fisiología , Células Cultivadas , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Regulación Enzimológica de la Expresión Génica/fisiología , Silenciador del Gen/fisiología , Gliosis/patología , Fosfolipasas A2 Grupo VI/antagonistas & inhibidores , Fosfolipasas A2 Grupo VI/genética , Ratas , Regulación hacia Arriba/genéticaRESUMEN
BACKGROUND: Neuropathic pain is one of the most challenging clinical problems due to a lack of understanding the mechanisms. Recent studies have suggested that activated microglia in spinal cord may play a vital role in nerve injury-induced neuropathic pain, but the exact mechanisms have not been fully determined. METHODS: First, we investigated the changes of dorsal horn GABA(B) receptor 1 (R1) expression in spinal nerve ligation rats. Second, we explored whether activated microglia contributed to such neuron changes by intrathecal administration of the p38 inhibitor, SB203580. RESULTS: In this study, we found a dynamic change of GABA(B)R1a protein expression after spinal nerve ligation, and the peripheral nerve injury-induced downregulation of GABA(B)R1a expression in the spinal dorsal horn could be prevented by intrathecal administration of a p38/MAPK inhibitor SB203580. CONCLUSIONS: Our results provide valuable information for a better understanding of neuropathic pain and may contribute to developing effective treatments in future studies.
Asunto(s)
Gliosis/metabolismo , Microglía/metabolismo , Enfermedades del Sistema Nervioso Periférico/enzimología , Células del Asta Posterior/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptores de GABA-B/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Gliosis/inducido químicamente , Gliosis/enzimología , Ligadura/métodos , Masculino , Microglía/efectos de los fármacos , Microglía/enzimología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Células del Asta Posterior/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Heterogeneity of glia in different CNS regions may contribute to the selective vulnerability of neuronal populations in neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). Here, we explored regional variations in the expression of heat shock protein 25 in glia under conditions of acute and chronic stress. Hsp27 (Hsp27; murine orthologue: Hsp25) fulfils a number of cytoprotective functions and may therefore be a possible therapeutic target in ALS. We identified a subpopulation of astrocytes in primary murine mixed glial cultures that expressed Hsp25. Under basal conditions, the proportion of Hsp25-positive astrocytes was twice as high in spinal cord cultures than in cortical cultures. To explore the physiological role of the elevated Hsp25 expression in spinal cord astrocytes, we exposed cortical and spinal cord glia to acute stress, using heat stress and pro-inflammatory stimuli. Surprisingly, we observed no stress-induced increase in Hsp25 expression in either cortical or spinal cord astrocytes. Similarly, exposure to endogenous stress, as modelled in glial cultures from SOD1 G93A-ALS mice, did not increase Hsp25 expression above that observed in astrocytes from wild-type mice. In vivo, Hsp25 expression was greater under conditions of chronic stress present in the spinal cord of SOD1 G93A mice than in wild-type mice, although this increase in expression is likely to be due to the extensive gliosis that occurs in this model. Together, these results show that there are differences in the expression of Hsp25 in astrocytes in different regions of the central nervous system, but Hsp25 expression is not upregulated under acute or chronic stress conditions.
Asunto(s)
Astrocitos/enzimología , Corteza Cerebral/enzimología , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Médula Espinal/enzimología , Superóxido Dismutasa-1/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Femenino , Regulación de la Expresión Génica , Gliosis/enzimología , Gliosis/patología , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Chaperonas Moleculares/genética , Fenotipo , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Superóxido Dismutasa-1/genética , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
Astrocytes play an active role in the central nervous system and are critically involved in astrogliosis, a homotypic response of these cells to disease, injury, and associated neuroinflammation. Among the numerous molecules involved in these processes are the matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, secreted or membrane-bound, that regulate by proteolytic cleavage the extracellular matrix, cytokines, chemokines, cell adhesion molecules, and plasma membrane receptors. MMP activity is tightly regulated by the tissue inhibitors of MMPs (TIMPs), a family of secreted multifunctional proteins. Astrogliosis in vivo and astrocyte reactivity induced in vitro by proinflammatory cues are associated with modulation of expression and/or activity of members of the MMP/TIMP system. However, nothing is known concerning the intracellular distribution and secretory pathways of MMPs and TIMPs in astrocytes. Using a combination of cell biology, biochemistry, fluorescence and electron microscopy approaches, we investigated in cultured reactive astrocytes the intracellular distribution, transport, and secretion of MMP-2, MMP-9, TIMP-1, and TIMP-2. MMP-2 and MMP-9 demonstrate nuclear localization, differential intracellular vesicular distribution relative to the myosin V and kinesin molecular motors, and LAMP-2-labeled lysosomal compartment, and we show vesicular secretion for MMP-2, MMP-9, and their inhibitors. Our results suggest that these proteinases and their inhibitors use different pathways for trafficking and secretion for distinct astrocytic functions.
Asunto(s)
Astrocitos/enzimología , Encefalitis/enzimología , Gliosis/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Vesículas Transportadoras/enzimología , Transporte Activo de Núcleo Celular/fisiología , Animales , Animales Recién Nacidos , Astrocitos/ultraestructura , Compartimento Celular/fisiología , Células Cultivadas , Encefalitis/fisiopatología , Gliosis/fisiopatología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Ratones , Proteínas Motoras Moleculares/metabolismo , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Vesículas Transportadoras/ultraestructuraRESUMEN
Microglial activation occurs early during the pathogenesis of amyotrophic lateral sclerosis (ALS). Recent evidence indicates that the expression of mutant Cu(2+)/Zn(2+) superoxide dismutase 1 (SOD1) in microglia contributes to the late disease progression of ALS. However, the mechanism by which microglia influence the neurodegenerative process and disease progression in ALS remains unclear. In this study, we revealed that activated microglia aggregated in the lumbar spinal cord of presymptomatic mutant SOD1(H46R) transgenic rats, an animal model of familial ALS. The aggregated microglia expressed a marker of proliferating cell, Ki67, and phagocytic marker proteins ED1 and major histocompatibility complex (MHC) class II. The motoneurons near the microglial aggregates showed weak choline acetyltransferase (ChAT) immunoreactivity and contained reduced granular endoplasmic reticulum and altered nucleus electron microscopically. Furthermore, immunopositive signals for tumor necrosis factor-alpha (TNFalpha) and monocyte chemoattractant protein-1 (MCP-1) were localized in the aggregated microglia. These results suggest that the activated and aggregated microglia represent phagocytic features in response to early changes in motoneurons and possibly play an important role in ALS disease progression during the presymptomatic stage.
Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Microglía/patología , Neuronas Motoras/patología , Fagocitosis/genética , Médula Espinal/patología , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Femenino , Gliosis/enzimología , Gliosis/genética , Gliosis/patología , Humanos , Masculino , Microglía/enzimología , Neuronas Motoras/enzimología , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Médula Espinal/enzimología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1RESUMEN
Microglial cells constitutively express Notch-1 and nuclear factor-kappaB/p65 (NF-kappaB/p65), and both pathways modulate production of inflammatory mediators. This study sought to determine whether a functional relationship exists between them and, if so, to investigate whether they synergistically regulate common microglial cell functions. By immunofluorescence labeling, real-time polymerase chain reaction (RT-PCR), flow cytometry, and Western blot, BV-2 cells exhibited Notch-1 and NF-kappaB/p65 expression, which was significantly up-regulated in cells challenged with lipopolysaccharide (LPS). This was coupled with an increase in expression of Hes-1, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). In BV-2 cells pretreated with N-[N-(3,5-difluorophenacetyl)-1-alany1]-S-phenyglycine t-butyl ester (DAPT), a gamma-secretase inhibitor, followed by LPS stimulation, Notch-1 expression level was enhanced but that of all other markers was suppressed. Additionally, Hes-1 expression and NF-kappaB nuclear translocation decreased as shown by flow cytometry. Notch-1's modulation of NF-kappaB/p65 was also evidenced in amoeboid microglial cells (AMC) in vivo. In 5-day-old rats given intraperitoneal injections of LPS, Notch-1, NF-kappaB/p65, TNF-alpha, and IL-1beta immunofluorescence in AMC was markedly enhanced. However, in rats given an intraperitoneal injection of DAPT prior to LPS, Notch-1 labeling was augmented, but that of TNF-alpha and IL-1beta was reduced. The results suggest that blocking of Notch-1 activation with DAPT would reduce the level of its downstream end product Hes-1 along with suppression of NF-kappaB/p65 translocation, resulting in suppressed production of proinflammatory cytokines. It is concluded that Notch-1 signaling can trans-activate NF-kappaB/p65 by amplifying NF-kappaB/p65-dependent proinflammatory functions in activated microglia.
Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Dipéptidos/farmacología , Microglía/metabolismo , Inhibidores de Proteasas/farmacología , Receptor Notch1/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción ReIA/metabolismo , Secretasas de la Proteína Precursora del Amiloide/fisiología , Animales , Animales Recién Nacidos , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Gliosis/enzimología , Gliosis/metabolismo , Gliosis/patología , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/fisiología , Ratones , Microglía/efectos de los fármacos , Microglía/enzimología , Ratas , Ratas Wistar , Receptor Notch1/genética , Receptor Notch1/fisiología , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/genéticaRESUMEN
Microglia express cyclooxygenase-2 (COX-2) and microsomal prostaglandin-E synthase (mPGES-1) but their localization in the amoeboid microglial cells (AMC), considered to be the nascent brain macrophages, in the developing brain has remained unexplored; furthermore, their interrelation and regulation have also remained to be fully elucidated. We show here that AMC in postnatal rat brain constitutively expressed COX-2 and mPGES-1 whose immunoexpression was upregulated in rats given lipopolysaccharide (LPS) injections. Reverse transcriptase-polymerase chain reaction and Western blot analysis of the callosal tissue rich in AMC revealed that COX-2 and mPGES-1 mRNA and protein expression was augmented following LPS injections. BV-2 cells also exhibited COX-2 and mPGES-1 expression which was enhanced by LPS. However, in cells treated with LPS coupled with COX-2 neutralization, the mRNA expression levels of COX-2, mPGES-1, tumor necrosis factor-alpha, interleukin-1beta and inducible nitric oxide synthase were significantly suppressed; production of prostaglandin E(2) and reactive oxygen species also decreased. Western blot analysis confirmed the changes of protein levels of the above mediators. Remarkably, COX-2 neutralization concomitantly suppressed the protein expression levels of nuclear factor-kappa B (NF-kappaB), phos-NF-kappaB and phos-IkappaB-alpha as well as translocation of NF-kappaB as determined by flow cytometry. In conclusion, AMC in the developing brain expressed COX-2 and mPGES-1 notably when stimulated by LPS. It is suggested that this may be involved in local inflammation during development. Our results have further shown that COX-2 neutralization may be effective in suppressing production of inflammatory mediators and hence its potential use in alleviating neuroinflammation.
Asunto(s)
Ciclooxigenasa 2/metabolismo , Encefalitis/enzimología , Gliosis/enzimología , Microglía/enzimología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Animales , Animales Recién Nacidos , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Ciclooxigenasa 2/efectos de los fármacos , Ciclooxigenasa 2/genética , Inhibidores de la Ciclooxigenasa 2/farmacología , Citocinas/metabolismo , Encefalitis/tratamiento farmacológico , Encefalitis/fisiopatología , Gliosis/tratamiento farmacológico , Gliosis/fisiopatología , Mediadores de Inflamación/farmacología , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Microglía/patología , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Prostaglandina-E Sintasas , Prostaglandina-Endoperóxido Sintasas/efectos de los fármacos , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandinas E/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismoRESUMEN
We investigated the biochemical alterations of the striatum of mice subjected to seven experimental schedules with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treatment. The mice were treated intraperitoneally (i.p.) with MPTP (20 mg/kg in saline) four times a day at 2-hr intervals showed severe and persistent depletions of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum, as compared with those (1) treated with MPTP (15 mg/kg in saline, i.p.) once a day for 14 consecutive days; (2)MPTP (30 mg/kg in saline, i.p.) twice a day for 5 consecutive days; (3) MPTP (10 mg/kg in saline, i.p.) four times a day at 1-hr intervals for 2 consecutive days; (4) MPTP (20 mg/kg in saline, i.p.) once a day for 4 consecutive days; (5) MPTP (20 mg/kg in saline, i.p.) twice a day for 2 consecutive days; (6) MPTP (20 mg/kg in saline, i.p.) twice a day for 4 consecutive days. In our Western blot analysis, furthermore, the mice that received MPTP (20 mg/kg in saline) four times a day at 2-hr intervals showed a severe decrease of the striatal tyrosine hydroxylase (TH) protein levels and a significant increase of the striatal glial fibrillary acidic protein (GFAP) levels. These results demonstrate that the model with acute MPTP treatment can cause severe neuronal damage in the mouse striatum, as compared to the model with continuous treatment with MPTP. Thus our findings may support the validity of acute MPTP treatment model for unraveling in the neurodegenerative processes in PD.
Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/administración & dosificación , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Trastornos Parkinsonianos/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Cuerpo Estriado/enzimología , Dopamina/metabolismo , Esquema de Medicación , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/inducido químicamente , Gliosis/enzimología , Gliosis/metabolismo , Ácido Homovanílico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neurotoxinas/farmacología , Trastornos Parkinsonianos/enzimología , Tirosina 3-Monooxigenasa/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
Glutaryl-CoA dehydrogenase deficiency or glutaric acidemia type I (GA I) is an inherited neurometabolic disorder biochemically characterized by tissue accumulation of predominantly glutaric (GA) and 3-hydroxyglutaric (3OHGA) acids and clinically by severe neurological symptoms and structural brain abnormalities, manifested as progressive cerebral atrophy and acute striatum degeneration following encephalopathic crises, whose pathophysiology is still in debate. Considering that reactive astrogliosis is a common finding in brain of GA I patients, in the present study we investigated the effects of GA and 3OHGA on glial activity determined by S100B release by rat C6-glioma cells. We also evaluated the effects of these organic acids on some parameters of oxidative stress in these astroglial cells. We observed that GA and 3OHGA significantly increased S100B secretion and thiobarbituric acid-reactive substances (lipid peroxidation), whereas GA markedly decreased reduced glutathione levels in these glioma cells. This is the first report demonstrating that the major metabolites accumulating in GA I activate S100B secretion in astroglial cells, indicating activation of these cells. We also showed that GA and 3OHGA induced oxidative stress in C6 lineage cells, confirming previous findings observed in brain fresh tissue. It is therefore presumed that reactive glial cells and oxidative damage may underlie at least in part the neuropathology of GA I.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Astrocitos/metabolismo , Encefalopatías Metabólicas/metabolismo , Glutaratos/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Factores de Crecimiento Nervioso/metabolismo , Proteínas S100/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Astrocitos/patología , Atrofia , Encefalopatías Metabólicas/enzimología , Encefalopatías Metabólicas/patología , Línea Celular Tumoral , Cuerpo Estriado/enzimología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Gliosis/enzimología , Gliosis/metabolismo , Gliosis/patología , Glutaratos/farmacología , Glutatión/antagonistas & inhibidores , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Subunidad beta de la Proteína de Unión al Calcio S100 , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismoRESUMEN
Reactive oxygen species (ROS) modulate intracellular signaling but are also responsible for neuronal damage in pathological states. Microglia, the resident CNS macrophages, are prominent sources of ROS through expression of the phagocyte oxidase which catalytic subunit Nox2 generates superoxide ion (O2(.-)). Here we show that microglia also express Nox1 and other components of nonphagocyte NADPH oxidases, including p22(phox), NOXO1, NOXA1, and Rac1/2. The subcellular distribution and functions of Nox1 were determined by blocking Nox activity with diphenylene iodonium or apocynin, and by silencing the Nox1 gene in microglia purified from wild-type (WT) or Nox2-KO mice. [Nox1-p22(phox)] dimers localized in intracellular compartments are recruited to phagosome membranes during microglial phagocytosis of zymosan, and Nox1 produces O2(.-) in zymosan-loaded phagosomes. In microglia activated with lipopolysaccharide (LPS), Nox1 produces O2(.-), which enhances cell expression of inducible nitric oxide synthase and secretion of interleukin-1beta. Comparisons of microglia purified from WT, Nox2-KO, or Nox1-KO mice indicate that both Nox1 and Nox2 are required to optimize microglial production of nitric oxide. By injecting LPS in the striatum of WT and Nox1-KO mice, we show that Nox1 also enhances microglial production of cytotoxic nitrite species and promotes loss of presynaptic proteins in striatal neurons. These results demonstrate the functional expression of Nox1 in resident CNS phagocytes, which can promote production of neurotoxic compounds during neuroinflammation. Our study also shows that Nox1- and Nox2-dependent oxidases play distinct roles in microglial activation and that Nox1 is a possible target for the treatment of neuroinflammatory states.
Asunto(s)
Encefalitis/enzimología , Gliosis/enzimología , Microglía/enzimología , NADH NADPH Oxidorreductasas/metabolismo , Estrés Oxidativo/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/enzimología , Cuerpo Estriado/fisiopatología , Grupo Citocromo b/genética , Grupo Citocromo b/metabolismo , Encefalitis/fisiopatología , Femenino , Gliosis/fisiopatología , Mediadores de Inflamación/farmacología , Lipopolisacáridos/farmacología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , NADH NADPH Oxidorreductasas/genética , NADPH Oxidasa 1 , NADPH Oxidasa 2 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Neurotoxinas/farmacología , Nitritos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas/genética , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Zimosan/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1RESUMEN
The mechanisms of neuronal apoptosis in Creutzfeldt-Jakob disease (CJD) and their relationship to accumulated prion protein (PrP) are unclear. A recent cell culture study showed that intracytoplasmic PrP may induce phosphorylated RNA-dependent protein kinase (PKR(p))-mediated cell stress. The double-stranded RNA protein kinase PKR is a proapoptotic and stress kinase that accumulates in degenerating neurons in Alzheimer disease. To determine whether neuronal apoptosis in human CJD is associated with activation of the PKR(p) signaling pathway, we assessed in situ end labeling and immunocytochemistry for PrP, glial fibrillary acidic protein, CD68, activated caspase 3, and phosphorylated PKR (Thr451) in samples of frontal, occipital, and temporal cortex, striatum, and cerebellum from 6 patients with sporadic CJD and 5 controls. Neuronal immunostaining for activated PKR was found in all CJD cases. The most staining was in nuclei and, in contrast to findings in Alzheimer disease, cytoplasmic labeling was not detected. Both the number and distribution of PKR(p)-positive neurons correlated closely with the extent of neuronal apoptosis, spongiosis, astrocytosis, and microglial activation and with the phenotype and disease severity. There was no correlation with the type, topography, or amount of extracellular PrP deposits. These findings suggest that neuronal apoptosis in human CJD may result from PKR(p)-mediated cell stress and are consistent with recent studies supporting a pathogenic role for intracellular or transmembrane PrP.
Asunto(s)
Encéfalo/enzimología , Síndrome de Creutzfeldt-Jakob/enzimología , Síndrome de Creutzfeldt-Jakob/genética , Neuronas/enzimología , Priones/metabolismo , eIF-2 Quinasa/metabolismo , Anciano , Anciano de 80 o más Años , Apoptosis/fisiología , Encéfalo/patología , Caspasa 3/análisis , Caspasa 3/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/patología , Síndrome de Creutzfeldt-Jakob/patología , Femenino , Proteína Ácida Fibrilar de la Glía/análisis , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/enzimología , Gliosis/etiología , Gliosis/patología , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Masculino , Persona de Mediana Edad , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/etiología , Degeneración Nerviosa/patología , Neuronas/patología , Fosforilación , Priones/análisis , Estrés Fisiológico/fisiologíaRESUMEN
In previous studies, we have shown that reactive oxygen species (ROS)-mediated inflammatory signaling is essential for microglial proinflammatory responses to Mycobacterium tuberculosis (Mtb). To further investigate the molecular mechanisms governing these processes, we sought to describe the role of phospholipase A(2) (PLA(2)) in Mtb-induced ROS generation and inflammatory mediator release by microglia. Inhibition of secretory PLA(2) (sPLA(2)), but not cytosolic PLA(2) (cPLA(2)), profoundly abrogated Mtb-mediated ROS release, the generation of various inflammatory mediators (tumor necrosis factor, interleukin-6, cyclooxygenase-2, inducible nitric oxide synthase, and matrix metalloproteinase-2 and -9), and the activation of nuclear factor (NF)-kappaB and MAPKs (ERK1/2, p38, and JNK/SAPK) by murine microglial BV-2 cells or primary mixed glial cells. Interruption of the Ras/Raf-1/MEK1/ERK1/2 pathway abolished Mtb-induced sPLA(2) activity, whereas the blockage of JNK/SAPK or p38 activity had no effect. Specific inhibition of sPLA(2), but not cPLA(2), suppressed the upregulation of ERK1/2 phosphorylation by Mtb stimulation, suggesting the existence of a mutual dependency between the ERK1/2 and sPLA(2) pathways. Moreover, examination of the protein kinase C (PKC) family revealed that classical PKCs are involved in Mtb-induced sPLA(2) activation by microglia. Taken together, our results demonstrate for the first time that sPLA(2), either through pathways comprising Ras/Raf-1/MEK1/ERK1/2 or the classical PKC family, plays an essential role in Mtb-mediated ROS generation and inflammatory mediator release by microglial cells.