Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.302
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Biol ; 22(6): e3002693, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38905306

RESUMEN

Candida albicans is a commensal of the human microbiota that can form biofilms on implanted medical devices. These biofilms are tolerant to antifungals and to the host immune system. To identify novel genes modulating C. albicans biofilm formation, we performed a large-scale screen with 2,454 C. albicans doxycycline-dependent overexpression strains and identified 16 genes whose overexpression significantly hampered biofilm formation. Among those, overexpression of the ZCF15 and ZCF26 paralogs that encode transcription factors and have orthologs only in biofilm-forming species of the Candida clade, caused impaired biofilm formation both in vitro and in vivo. Interestingly, overexpression of ZCF15 impeded biofilm formation without any defect in hyphal growth. Transcript profiling, transcription factor binding, and phenotypic microarray analyses conducted upon overexpression of ZCF15 and ZCF26 demonstrated their role in reprogramming cellular metabolism by regulating central metabolism including glyoxylate and tricarboxylic acid cycle genes. Taken together, this study has identified a new set of biofilm regulators, including ZCF15 and ZCF26, that appear to control biofilm development through their specific role in metabolic remodeling.


Asunto(s)
Biopelículas , Candida albicans , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Factores de Transcripción , Biopelículas/crecimiento & desarrollo , Candida albicans/genética , Candida albicans/metabolismo , Candida albicans/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Animales , Plancton/metabolismo , Glioxilatos/metabolismo , Perfilación de la Expresión Génica/métodos , Ratones , Ciclo del Ácido Cítrico , Hifa/metabolismo , Hifa/crecimiento & desarrollo , Hifa/genética , Candidiasis/microbiología , Reprogramación Metabólica
2.
Plant J ; 119(4): 2033-2044, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38949911

RESUMEN

Plant fungal parasites manipulate host metabolism to support their own survival. Among the many central metabolic pathways altered during infection, the glyoxylate cycle is frequently upregulated in both fungi and their host plants. Here, we examined the response of the glyoxylate cycle in bread wheat (Triticum aestivum) to infection by the obligate biotrophic fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Gene expression analysis revealed that wheat genes encoding the two unique enzymes of the glyoxylate cycle, isocitrate lyase (TaICL) and malate synthase, diverged in their expression between susceptible and resistant Pst interactions. Focusing on TaICL, we determined that the TaICL B homoeolog is specifically upregulated during early stages of a successful Pst infection. Furthermore, disruption of the B homoeolog alone was sufficient to significantly perturb Pst disease progression. Indeed, Pst infection of the TaICL-B disruption mutant (TaICL-BY400*) was inhibited early during initial penetration, with the TaICL-BY400* line also accumulating high levels of malic acid, citric acid, and aconitic acid. Exogenous application of malic acid or aconitic acid also suppressed Pst infection, with trans-aconitic acid treatment having the most pronounced effect by decreasing fungal biomass 15-fold. Thus, enhanced TaICL-B expression during Pst infection may lower accumulation of malic acid and aconitic acid to promote Pst proliferation. As exogenous application of aconitic acid and malic acid has previously been shown to inhibit other critical pests and pathogens, we propose TaICL as a potential target for disruption in resistance breeding that could have wide-reaching protective benefits for wheat and beyond.


Asunto(s)
Glioxilatos , Isocitratoliasa , Malato Sintasa , Enfermedades de las Plantas , Puccinia , Triticum , Triticum/microbiología , Triticum/genética , Triticum/metabolismo , Triticum/enzimología , Isocitratoliasa/metabolismo , Isocitratoliasa/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Glioxilatos/metabolismo , Malato Sintasa/metabolismo , Malato Sintasa/genética , Puccinia/fisiología , Puccinia/patogenicidad , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Nature ; 569(7754): 104-107, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31043728

RESUMEN

Life builds its molecules from carbon dioxide (CO2) and breaks them back down again through the intermediacy of just five metabolites, which are the universal hubs of biochemistry1. However, it is unclear how core biological metabolism began and why it uses the intermediates, reactions and pathways that it does. Here we describe a purely chemical reaction network promoted by ferrous iron, in which aqueous pyruvate and glyoxylate-two products of abiotic CO2 reduction2-4-build up 9 of the 11 intermediates of the biological Krebs (or tricarboxylic acid) cycle, including all 5 universal metabolic precursors. The intermediates simultaneously break down to CO2 in a life-like regime that resembles biological anabolism and catabolism5. Adding hydroxylamine6-8 and metallic iron into the system produces four biological amino acids in a manner that parallels biosynthesis. The observed network overlaps substantially with the Krebs and glyoxylate cycles9,10, and may represent a prebiotic precursor to these core metabolic pathways.


Asunto(s)
Compuestos Ferrosos/metabolismo , Hierro/metabolismo , Redes y Vías Metabólicas , Dióxido de Carbono/metabolismo , Ciclo del Ácido Cítrico , Glioxilatos/metabolismo , Hidroxilamina/metabolismo , Ácido Pirúvico/metabolismo
4.
Nature ; 569(7757): 581-585, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31043749

RESUMEN

Methylation of cytosine to 5-methylcytosine (5mC) is a prevalent DNA modification found in many organisms. Sequential oxidation of 5mC by ten-eleven translocation (TET) dioxygenases results in a cascade of additional epigenetic marks and promotes demethylation of DNA in mammals1,2. However, the enzymatic activity and function of TET homologues in other eukaryotes remains largely unexplored. Here we show that the green alga Chlamydomonas reinhardtii contains a 5mC-modifying enzyme (CMD1) that is a TET homologue and catalyses the conjugation of a glyceryl moiety to the methyl group of 5mC through a carbon-carbon bond, resulting in two stereoisomeric nucleobase products. The catalytic activity of CMD1 requires Fe(II) and the integrity of its binding motif His-X-Asp, which is conserved in Fe-dependent dioxygenases3. However, unlike previously described TET enzymes, which use 2-oxoglutarate as a co-substrate4, CMD1 uses L-ascorbic acid (vitamin C) as an essential co-substrate. Vitamin C donates the glyceryl moiety to 5mC with concurrent formation of glyoxylic acid and CO2. The vitamin-C-derived DNA modification is present in the genome of wild-type C. reinhardtii but at a substantially lower level in a CMD1 mutant strain. The fitness of CMD1 mutant cells during exposure to high light levels is reduced. LHCSR3, a gene that is critical for the protection of C. reinhardtii from photo-oxidative damage under high light conditions, is hypermethylated and downregulated in CMD1 mutant cells compared to wild-type cells, causing a reduced capacity for photoprotective non-photochemical quenching. Our study thus identifies a eukaryotic DNA base modification that is catalysed by a divergent TET homologue and unexpectedly derived from vitamin C, and describes its role as a potential epigenetic mark that may counteract DNA methylation in the regulation of photosynthesis.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas Algáceas/metabolismo , Ácido Ascórbico/metabolismo , Biocatálisis , Chlamydomonas reinhardtii/enzimología , ADN/química , ADN/metabolismo , 5-Metilcitosina/química , Dióxido de Carbono/metabolismo , Metilación de ADN , Glioxilatos/metabolismo , Nucleósidos/química , Nucleósidos/metabolismo , Fotosíntesis
5.
Nature ; 575(7783): 500-504, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723261

RESUMEN

One of the most abundant sources of organic carbon in the ocean is glycolate, the secretion of which by marine phytoplankton results in an estimated annual flux of one petagram of glycolate in marine environments1. Although it is generally accepted that glycolate is oxidized to glyoxylate by marine bacteria2-4, the further fate of this C2 metabolite is not well understood. Here we show that ubiquitous marine Proteobacteria are able to assimilate glyoxylate via the ß-hydroxyaspartate cycle (BHAC) that was originally proposed 56 years ago5. We elucidate the biochemistry of the BHAC and describe the structure of its key enzymes, including a previously unknown primary imine reductase. Overall, the BHAC enables the direct production of oxaloacetate from glyoxylate through only four enzymatic steps, representing-to our knowledge-the most efficient glyoxylate assimilation route described to date. Analysis of marine metagenomes shows that the BHAC is globally distributed and on average 20-fold more abundant than the glycerate pathway, the only other known pathway for net glyoxylate assimilation. In a field study of a phytoplankton bloom, we show that glycolate is present in high nanomolar concentrations and taken up by prokaryotes at rates that allow a full turnover of the glycolate pool within one week. During the bloom, genes that encode BHAC key enzymes are present in up to 1.5% of the bacterial community and actively transcribed, supporting the role of the BHAC in glycolate assimilation and suggesting a previously undescribed trophic interaction between autotrophic phytoplankton and heterotrophic bacterioplankton.


Asunto(s)
Organismos Acuáticos/metabolismo , Ácido Aspártico/análogos & derivados , Glicolatos/metabolismo , Redes y Vías Metabólicas , Proteobacteria/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Aldehído-Liasas/metabolismo , Organismos Acuáticos/enzimología , Ácido Aspártico/metabolismo , Biocatálisis , Glioxilatos/metabolismo , Hidroliasas/metabolismo , Cinética , Oxidorreductasas/metabolismo , Fitoplancton/enzimología , Fitoplancton/metabolismo , Proteobacteria/enzimología , Transaminasas/metabolismo
6.
Appl Environ Microbiol ; 90(7): e0041624, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38837369

RESUMEN

Ethylene glycol (EG) is a widely used industrial chemical with manifold applications and also generated in the degradation of plastics such as polyethylene terephthalate. Rhodococcus jostii RHA1 (RHA1), a potential biocatalytic chassis, grows on EG. Transcriptomic analyses revealed four clusters of genes potentially involved in EG catabolism: the mad locus, predicted to encode mycofactocin-dependent alcohol degradation, including the catabolism of EG to glycolate; two GCL clusters, predicted to encode glycolate and glyoxylate catabolism; and the mft genes, predicted to specify mycofactocin biosynthesis. Bioinformatic analyses further revealed that the mad and mft genes are widely distributed in mycolic acid-producing bacteria such as RHA1. Neither ΔmadA nor ΔmftC RHA1 mutant strains grew on EG but grew on acetate. In resting cell assays, the ΔmadA mutant depleted glycolaldehyde but not EG from culture media. These results indicate that madA encodes a mycofactocin-dependent alcohol dehydrogenase that initiates EG catabolism. In contrast to some mycobacterial strains, the mad genes did not appear to enable RHA1 to grow on methanol as sole substrate. Finally, a strain of RHA1 adapted to grow ~3× faster on EG contained an overexpressed gene, aldA2, predicted to encode an aldehyde dehydrogenase. When incubated with EG, this strain accumulated lower concentrations of glycolaldehyde than RHA1. Moreover, ecotopically expressed aldA2 increased RHA1's tolerance for EG further suggesting that glycolaldehyde accumulation limits growth of RHA1 on EG. Overall, this study provides insights into the bacterial catabolism of small alcohols and aldehydes and facilitates the engineering of Rhodococcus for the upgrading of plastic waste streams.IMPORTANCEEthylene glycol (EG), a two-carbon (C2) alcohol, is produced in high volumes for use in a wide variety of applications. There is burgeoning interest in understanding and engineering the bacterial catabolism of EG, in part to establish circular economic routes for its use. This study identifies an EG catabolic pathway in Rhodococcus, a genus of bacteria well suited for biocatalysis. This pathway is responsible for the catabolism of methanol, a C1 feedstock, in related bacteria. Finally, we describe strategies to increase the rate of degradation of EG by increasing the transformation of glycolaldehyde, a toxic metabolic intermediate. This work advances the development of biocatalytic strategies to transform C2 feedstocks.


Asunto(s)
Proteínas Bacterianas , Glicol de Etileno , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/genética , Glicol de Etileno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Glicolatos/metabolismo , Glioxilatos/metabolismo , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/genética , Péptidos
7.
Curr Opin Nephrol Hypertens ; 33(4): 398-404, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602143

RESUMEN

PURPOSE OF REVIEW: Primary hyperoxalurias (PHs) are rare disorders caused by the deficit of liver enzymes involved in glyoxylate metabolism. Their main hallmark is the increased excretion of oxalate leading to the deposition of calcium oxalate stones in the urinary tract. This review describes the molecular aspects of PHs and their relevance for the clinical management of patients. RECENT FINDINGS: Recently, the study of PHs pathogenesis has received great attention. The development of novel in vitro and in vivo models has allowed to elucidate how inherited mutations lead to enzyme deficit, as well as to confirm the pathogenicity of newly-identified mutations. In addition, a better knowledge of the metabolic consequences in disorders of liver glyoxylate detoxification has been crucial to identify the key players in liver oxalate production, thus leading to the identification and validation of new drug targets. SUMMARY: The research on PHs at basic, translational and clinical level has improved our knowledge on the critical factors that modulate disease severity and the response to the available treatments, leading to the development of new drugs, either in preclinical stage or, very recently, approved for patient treatment.


Asunto(s)
Hiperoxaluria Primaria , Mutación , Humanos , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/terapia , Hiperoxaluria Primaria/metabolismo , Animales , Hígado/metabolismo , Hígado/patología , Glioxilatos/metabolismo , Predisposición Genética a la Enfermedad , Fenotipo , Oxalatos/metabolismo
8.
BMC Microbiol ; 24(1): 128, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641593

RESUMEN

BACKGROUND: Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS: Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS: The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.


Asunto(s)
Candida glabrata , Ácido Oléico , Candida glabrata/genética , Candida glabrata/metabolismo , Ácido Oléico/metabolismo , Carbono/metabolismo , Glicerol , Antifúngicos/metabolismo , Estrés Oxidativo , Biopelículas , Glucosa/metabolismo , Glioxilatos/metabolismo
9.
J Inherit Metab Dis ; 47(2): 280-288, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38200664

RESUMEN

Glyoxylate is a key metabolite generated from various precursor substrates in different subcellular compartments including mitochondria, peroxisomes, and the cytosol. The fact that glyoxylate is a good substrate for the ubiquitously expressed enzyme lactate dehydrogenase (LDH) requires the presence of efficient glyoxylate detoxification systems to avoid the formation of oxalate. Furthermore, this detoxification needs to be compartment-specific since LDH is actively present in multiple subcellular compartments including peroxisomes, mitochondria, and the cytosol. Whereas the identity of these protection systems has been established for both peroxisomes and the cytosol as concluded from the deficiency of alanine glyoxylate aminotransferase (AGT) in primary hyperoxaluria type 1 (PH1) and glyoxylate reductase (GR) in PH2, the glyoxylate protection system in mitochondria has remained less well defined. In this manuscript, we show that the enzyme glyoxylate reductase has a bimodal distribution in human embryonic kidney (HEK293), hepatocellular carcinoma (HepG2), and cervical carcinoma (HeLa) cells and more importantly, in human liver, and is actively present in both the mitochondrial and cytosolic compartments. We conclude that the metabolism of glyoxylate in humans requires the complicated interaction between different subcellular compartments within the cell and discuss the implications for the different primary hyperoxalurias.


Asunto(s)
Oxidorreductasas de Alcohol , Mitocondrias Hepáticas , Transaminasas , Humanos , Mitocondrias Hepáticas/metabolismo , Células HEK293 , Oxalatos/metabolismo , Hígado/metabolismo , Glioxilatos/metabolismo
10.
Transpl Int ; 37: 13218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100754

RESUMEN

Delayed graft function (DGF) after kidney transplantation heralds a worse prognosis. In patients with hyperoxaluria, the incidence of DGF is high. Oxalic acid is a waste product that accumulates when kidney function decreases. We hypothesize that residual diuresis and accumulated waste products influence the DGF incidence. Patients transplanted between 2018-2022 participated in the prospective cohort study. Pre-transplant concentrations of oxalic acid and its precursors were determined. Data on residual diuresis and other recipient, donor or transplant related variables were collected. 496 patients were included, 154 were not on dialysis. Oxalic acid, and glyoxylic acid, were above upper normal concentrations in 98.8%, and 100% of patients. Residual diuresis was ≤150 mL/min in 24% of patients. DGF occurred in 157 patients. Multivariable binary logistic regression analysis demonstrated a significant influence of dialysis type, recipient BMI, donor type, age, and serum creatinine on the DGF risk. Residual diuresis and glycolic acid concentration were inversely proportionally related to this risk, glyoxylic acid directly proportionally. Results in the dialysis population showed the same results, but glyoxylic acid lacked significance. In conclusion, low residual diuresis is associated with increased DGF incidence. Possibly accumulated waste products also play a role. Pre-emptive transplantation may decrease the incidence of DGF.


Asunto(s)
Funcionamiento Retardado del Injerto , Diuresis , Glioxilatos , Trasplante de Riñón , Ácido Oxálico , Humanos , Trasplante de Riñón/efectos adversos , Femenino , Masculino , Persona de Mediana Edad , Funcionamiento Retardado del Injerto/etiología , Funcionamiento Retardado del Injerto/epidemiología , Adulto , Estudios Prospectivos , Anciano , Diálisis Renal , Glicolatos , Hiperoxaluria/etiología , Factores de Riesgo , Incidencia
11.
Biosci Biotechnol Biochem ; 88(9): 1069-1072, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38871868

RESUMEN

Gluconobacter oxydans succinic semialdehyde reductase (GoxSSAR) and Acetobacter aceti glyoxylate reductase (AacGR) represent a novel class in the ß-hydroxyacid dehydrogenases superfamily. Kinetic analyses revealed GoxSSAR's activity with both glyoxylate and succinic semialdehyde, while AacGR is glyoxylate specific. GoxSSAR K167A lost activity with succinic semialdehyde but retained some with glyoxylate, whereas AacGR K175A lost activity. These findings elucidate differences between these homologous enzymes.


Asunto(s)
Acetobacter , Oxidorreductasas de Alcohol , Gluconobacter oxydans , Glioxilatos , Especificidad por Sustrato , Gluconobacter oxydans/enzimología , Gluconobacter oxydans/metabolismo , Acetobacter/enzimología , Acetobacter/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/química , Cinética , Glioxilatos/metabolismo , Succionato-Semialdehído Deshidrogenasa/metabolismo , Succionato-Semialdehído Deshidrogenasa/química , Succionato-Semialdehído Deshidrogenasa/genética , Ácido gamma-Aminobutírico/análogos & derivados
12.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611747

RESUMEN

In this study, the effect of various immobilization methods on the biochemical properties of phospholipase C (PLC) from Bacillus cereus obtained from the oily soil located in Sfax, Tunisia, was described. Different supports were checked: octyl sepharose, glyoxyl agarose in the presence of N-acetyl cysteine, and Q-sepharose. In the immobilization by hydrophobic adsorption, a hyperactivation of the PLCBc was obtained with a fold of around 2 times. The recovery activity after immobilization on Q-sepharose and glyoxyl agarose in the presence of N-acetyl cysteine was 80% and 58%, respectively. Furthermore, the biochemical characterization showed an important improvement in the three immobilized enzymes. The performance of the various immobilized PLCBc was compared with the soluble enzyme. The derivatives acquired using Q-sepharose, octyl sepharose, and glyoxyl agarose were stable at 50 °C, 60 °C, and 70 °C. Nevertheless, the three derivatives were more stable in a large range of pH than the soluble enzyme. The three derivatives and the free enzyme were stable in 50% (v/v) ethanol, hexane, methanol, and acetone. The glyoxyl agarose derivative showed high long-term storage at 4 °C, with an activity of 60% after 19 days. These results suggest the sustainable biotechnological application of the developed immobilized enzyme.


Asunto(s)
Acetilcisteína , Bacillus cereus , Glioxilatos , Sefarosa , Enzimas Inmovilizadas , Fosfolipasas de Tipo C
13.
World J Microbiol Biotechnol ; 40(10): 297, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126539

RESUMEN

Vancomycin is a clinically important glycopeptide antibiotic against Gram-positive pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus. In the mutant strain of Amycolatopsis keratiniphila HCCB10007 Δeco-cds4-27, the production of ECO-0501 was disrupted, but enhanced vancomycin yield by 55% was observed compared with the original strain of A. keratiniphila HCCB10007. To gain insights into the mechanism of the enhanced production of vancomycin in the mutant strain, comparative metabolomics analyses were performed between the mutant strain and the original strain, A. keratiniphila HCCB10007 via GC-TOF-MS and UPLC-HRMS. The results of PCA and OPLS-DA revealed a significant distinction of the intracellular metabolites between the two strains during the fermentation process. 64 intracellular metabolites, which involved in amino acids, fatty acids and central carbon metabolism, were identified as differential metabolites. The high-yield mutant strain maintained high levels of glucose-1-phosphate and glucose-6-phosphate and they declined with the increases of vancomycin production. Particularly, a strong association of fatty acids accumulation as well as 3,5-dihydroxyphenylacetic acid and non-proteinogenic amino acid 3,5-dihydroxyphenylglycine (Dpg) with enhancement of vancomycin production was observed in the high-yield mutant strain, indicating that the consumption of fatty acid pools might be beneficial for giving rise to 3,5-dihydroxyphenylacetic acid and Dpg which further lead to improve vancomycin production. In addition, the lower levels of glyoxylic acid and lactic acid and the higher levels of sulfur amino acids might be beneficial for improving vancomycin production. These findings proposed more advanced elucidation of metabolomic characteristics in the high-yield strain for vancomycin production and could provide potential strategies to enhance the vancomycin production.


Asunto(s)
Amycolatopsis , Antibacterianos , Fermentación , Metabolómica , Vancomicina , Vancomicina/farmacología , Vancomicina/metabolismo , Metabolómica/métodos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Amycolatopsis/metabolismo , Amycolatopsis/genética , Redes y Vías Metabólicas , Metaboloma , Mutación , Ácidos Grasos/metabolismo , Glioxilatos/metabolismo , Aminoácidos/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Staphylococcus aureus Resistente a Meticilina/genética
14.
Biochem Biophys Res Commun ; 645: 118-123, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36682331

RESUMEN

Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal disease caused by mutations in AGXT that lead to the deficiency of alanine:glyoxylate aminotransferase (AGT). AGT is a liver pyridoxal 5'-phosphate (PLP)-dependent enzyme that detoxifies glyoxylate inside peroxisomes. The lack of AGT activity results in a build-up of glyoxylate that is oxidized to oxalate, then culminating in hyperoxaluria often leading to kidney failure. Most pathogenic mutations reduce AGT specific activity because of catalytic defects, improper folding, mistargeting to mitochondria, reduced intracellular stability, dimerization, and/or aggregation. Administration of pyridoxine (PN), a precursor of PLP, is a therapeutic option available for PH1 patients carrying responsive genotypes through the ability of the coenzyme to behave as a chaperone. Here, we report the clinical and biochemical characterization of the novel mutation c.1093G > T (p.Gly365Cys) identified in a Japanese patient. In silico studies predict that the p.Gly365Cys mutation causes a steric clash resulting in a local rearrangement of the region surrounding the active site, thus possibly affecting PLP binding and catalysis. Indeed, the purified p.Gly365Cys mutant displays proper folding but shows an extensive decrease of catalytic efficiency due to an altered PLP-binding. When expressed in AGXT1-KO HepG2 cells the variant shows reduced specific activity and protein levels in comparison with wild type AGT that cannot be rescued by PN treatment. Overall, our data indicate that the mutation of Gly365 induces a conformational change at the AGT active site translating into a functional and structural defect and allow to predict that the patients will not be responsive to vitamin B6, thus supporting the usefulness of preclinical studies to guide therapeutic decisions in the era of precision medicine.


Asunto(s)
Hiperoxaluria Primaria , Mutación Missense , Humanos , Hiperoxaluria Primaria/genética , Fosfato de Piridoxal/metabolismo , Mutación , Glioxilatos/metabolismo , Transaminasas/metabolismo
15.
Yeast ; 40(7): 265-275, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37170862

RESUMEN

Debaryomyces hansenii is a halotolerant/halophilic yeast usually found in salty environments. The yeast accumulated sodium at high concentrations, which improved growth in salty media. In contrast, lithium was toxic even at low concentrations and its presence prevented cell proliferation. To analyse the responses to both cations, metabolite levels, enzymatic activities and gene expression were determined, showing that NaCl and LiCl trigger different cellular responses. At high concentrations of NaCl (0.5 or 1.5 M) cells accumulated higher amounts of the intermediate metabolites glyoxylate and malate and, at the same time, the levels of intracellular oxoglutarate decreased. Additionally, 0.5 M NaCl increased the activity of the enzymes isocitrate lyase and malate synthase involved in the synthesis of glyoxylate and malate respectively and decreased the activity of isocitrate dehydrogenase. Moreover, transcription of the genes coding for isocitrate lyase and malate synthase was activated by NaCl. Also, cells accumulated phosphate upon NaCl exposure. None of these effects was provoked when LiCl (0.1 or 0.3 M) was used instead of NaCl. Lithium induced accumulation of higher amounts of oxoglutarate and decreased the concentrations of glyoxylate and malate to non-detectable levels. Cells incubated with lithium also showed higher activity of the isocitrate dehydrogenase and neither increased isocitrate lyase and malate synthase activities nor the transcription of the corresponding genes. In summary, we show that sodium, but not lithium, up regulates the shunt of the glyoxylic acid in D. hansenii and we propose that this is an important metabolic adaptation to thrive in salty environments.


Asunto(s)
Debaryomyces , Sodio , Cloruro de Sodio/farmacología , Malato Sintasa/genética , Malato Sintasa/metabolismo , Isocitratoliasa/genética , Isocitratoliasa/metabolismo , Malatos , Debaryomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Isocitrato Deshidrogenasa/genética , Carbono , Ácidos Cetoglutáricos , Glioxilatos/metabolismo
16.
Appl Environ Microbiol ; 89(7): e0023823, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37318336

RESUMEN

Metabolic degeneracy describes the phenomenon that cells can use one substrate through different metabolic routes, while metabolic plasticity, refers to the ability of an organism to dynamically rewire its metabolism in response to changing physiological needs. A prime example for both phenomena is the dynamic switch between two alternative and seemingly degenerate acetyl-CoA assimilation routes in the alphaproteobacterium Paracoccus denitrificans Pd1222: the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). The EMCP and the GC each tightly control the balance between catabolism and anabolism by shifting flux away from the oxidation of acetyl-CoA in the tricarboxylic acid (TCA) cycle toward biomass formation. However, the simultaneous presence of both the EMCP and GC in P. denitrificans Pd1222 raises the question of how this apparent functional degeneracy is globally coordinated during growth. Here, we show that RamB, a transcription factor of the ScfR family, controls expression of the GC in P. denitrificans Pd1222. Combining genetic, molecular biological and biochemical approaches, we identify the binding motif of RamB and demonstrate that CoA-thioester intermediates of the EMCP directly bind to the protein. Overall, our study shows that the EMCP and the GC are metabolically and genetically linked with each other, demonstrating a thus far undescribed bacterial strategy to achieve metabolic plasticity, in which one seemingly degenerate metabolic pathway directly drives expression of the other. IMPORTANCE Carbon metabolism provides organisms with energy and building blocks for cellular functions and growth. The tight regulation between degradation and assimilation of carbon substrates is central for optimal growth. Understanding the underlying mechanisms of metabolic control in bacteria is of importance for applications in health (e.g., targeting of metabolic pathways with new antibiotics, development of resistances) and biotechnology (e.g., metabolic engineering, introduction of new-to-nature pathways). In this study, we use the alphaproteobacterium P. denitrificans as model organism to study functional degeneracy, a well-known phenomenon of bacteria to use the same carbon source through two different (competing) metabolic routes. We demonstrate that two seemingly degenerate central carbon metabolic pathways are metabolically and genetically linked with each other, which allows the organism to control the switch between them in a coordinated manner during growth. Our study elucidates the molecular basis of metabolic plasticity in central carbon metabolism, which improves our understanding of how bacterial metabolism is able to partition fluxes between anabolism and catabolism.


Asunto(s)
Paracoccus denitrificans , Acetilcoenzima A/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
17.
Plant Physiol ; 189(4): 2072-2090, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35512197

RESUMEN

We present a methodology to survey central metabolism in 13CO2-labeled Arabidopsis (Arabidopsis thaliana) rosettes by ammonia positive chemical ionization-gas chromatography-mass spectrometry. This technique preserves the molecular ion cluster of methyloxime/trimethylsilyl-derivatized analytes up to 1 kDa, providing unambiguous nominal mass assignment of >200 central metabolites and 13C incorporation rates into a subset of 111 from the tricarboxylic acid (TCA) cycle, photorespiratory pathway, amino acid metabolism, shikimate pathway, and lipid and sugar metabolism. In short-term labeling assays, we observed plateau labeling of ∼35% for intermediates of the photorespiratory cycle except for glyoxylate, which reached only ∼4% labeling and was also present at molar concentrations several fold lower than other photorespiratory intermediates. This suggests photorespiratory flux may involve alternate intermediate pools besides the generally accepted route through glyoxylate. Untargeted scans showed that in illuminated leaves, noncyclic TCA cycle flux and citrate export to the cytosol revert to a cyclic flux mode following methyl jasmonate (MJ) treatment. MJ also caused a block in the photorespiratory transamination of glyoxylate to glycine. Salicylic acid treatment induced the opposite effects in both cases, indicating the antagonistic relationship of these defense signaling hormones is preserved at the metabolome level. We provide complete chemical ionization spectra for 203 Arabidopsis metabolites from central metabolism, which uniformly feature the unfragmented pseudomolecular ion as the base peak. This unbiased, soft ionization technique is a powerful screening tool to identify adaptive metabolic trends in photosynthetic tissue and represents an important advance in methodology to measure plant metabolic flux.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Glioxilatos/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo
18.
Annu Rev Microbiol ; 72: 309-330, 2018 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-30200852

RESUMEN

2017 marks the 60th anniversary of Krebs' seminal paper on the glyoxylate shunt (and coincidentally, also the 80th anniversary of his discovery of the citric acid cycle). Sixty years on, we have witnessed substantial developments in our understanding of how flux is partitioned between the glyoxylate shunt and the oxidative decarboxylation steps of the citric acid cycle. The last decade has shown us that the beautifully elegant textbook mechanism that regulates carbon flux through the shunt in E. coli is an oversimplification of the situation in many other bacteria. The aim of this review is to assess how this new knowledge is impacting our understanding of flux control at the TCA cycle/glyoxylate shunt branch point in a wider range of genera, and to summarize recent findings implicating a role for the glyoxylate shunt in cellular functions other than metabolism.


Asunto(s)
Escherichia coli/metabolismo , Glioxilatos/metabolismo , Redes y Vías Metabólicas , Carbono/metabolismo , Análisis de Flujos Metabólicos
19.
Inflamm Res ; 72(12): 2111-2126, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924395

RESUMEN

OBJECTIVE AND DESIGN: Kidney stones commonly occur with a 50% recurrence rate within 5 years, and can elevate the risk of chronic kidney disease. Macrophage-to-myofibroblast transition (MMT) is a newly discovered mechanism that leads to progressive fibrosis in different forms of kidney disease. In this study, we aimed to investigate the role of MMT in renal fibrosis in glyoxylate-induced kidney stone mice and the mechanism by which signal transducer and activator of transcription 6 (STAT6) regulates MMT. METHODS: We collected non-functioning kidneys from patients with stones, established glyoxylate-induced calcium oxalate stone mice model and treated AS1517499 every other day in the treatment group, and constructed a STAT6-knockout RAW264.7 cell line. We first screened the enrichment pathway of the model by transcriptome sequencing; detected renal injury and fibrosis by hematoxylin eosin staining, Von Kossa staining and Sirius red staining; detected MMT levels by multiplexed immunofluorescence and flow cytometry; and verified the binding site of STAT6 at the PPARα promoter by chromatin immunoprecipitation. Fatty acid oxidation (FAO) and fibrosis-related genes were detected by western blot and real-time quantitative polymerase chain reaction. RESULTS: In this study, we found that FAO was downregulated, macrophages converted to myofibroblasts, and STAT6 expression was elevated in stone patients and glyoxylate-induced kidney stone mice. The promotion of FAO in macrophages attenuated MMT and upregulated fibrosis-related genes induced by calcium oxalate treatment. Further, inhibition of peroxisome proliferator-activated receptor-α (PPARα) eliminated the effect of STAT6 deletion on FAO and fibrosis-associated protein expression. Pharmacological inhibition of STAT6 also prevented the development of renal injury, lipid accumulation, MMT, and renal fibrosis. Mechanistically, STAT6 transcriptionally represses PPARα and FAO through cis-inducible elements located in the promoter region of the gene, thereby promoting MMT and renal fibrosis. CONCLUSIONS: These findings establish a role for STAT6 in kidney stone injury-induced renal fibrosis, and suggest that STAT6 may be a therapeutic target for progressive renal fibrosis in patients with nephrolithiasis.


Asunto(s)
Cálculos Renales , Miofibroblastos , Animales , Humanos , Ratones , Oxalato de Calcio/metabolismo , Oxalato de Calcio/farmacología , Ácidos Grasos/metabolismo , Fibrosis , Glioxilatos/metabolismo , Glioxilatos/farmacología , Riñón/patología , Cálculos Renales/metabolismo , Cálculos Renales/patología , Macrófagos/metabolismo , Miofibroblastos/patología , Oxalatos/metabolismo , Oxalatos/farmacología , PPAR alfa/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
20.
Mol Divers ; 27(1): 167-175, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35298765

RESUMEN

Glycine derivatives such as ethyl 2-(4-aminophenyl)-2-(phenylamino) acetate is an exciting and essential non-proteinogenic class of amino acids. Herein, we report an efficient and novel route to synthesize glycine derivatives using ethyl glyoxylate, aniline, and its derivatives catalyzed by bismuth salts. In our scheme, mild, non-toxic, and commercially viable reagents were utilized. The synthesized moieties were characterized by ESI-MASS, 1H-NMR, 13C-NMR, and XRD techniques. The target glycine derivatives were successfully obtained with a maximum yield of 87%. Moreover, the reaction is very green as water is the only byproduct.


Asunto(s)
Bismuto , Glicina , Bismuto/química , Glicina/química , Compuestos de Anilina/química , Glioxilatos , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA