Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Arch Virol ; 169(6): 120, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753261

RESUMEN

Gyroviruses are small single-stranded DNA (ssDNA) viruses that are largely associated with birds. Chicken anemia virus is the most extensively studied gyrovirus due to its disease impact on the poultry industry. However, we know much less about gyroviruses infecting other avian species. To investigate gyroviruses infecting waterfowl, we determined six complete genome sequences that fall into three gyrovirus groups, referred to as waterfowl gyrovirus 1 (n = 3), 2 (n = 2), and 3 (n = 1), in organs from hunter-harvested waterfowl from Arizona (USA). The waterfowl gyrovirus 1 variants were identified in multiple organs of a single American wigeon and represent a tentative new species. The waterfowl gyrovirus 2 variants were identified in the livers of two American wigeons and share >70% VP1 nucleotide sequence identity with gyrovirus 9, previously identified in the spleen of a Brazilian Pekin duck (MT318123) and a human fecal sample (KP742975). Waterfowl gyrovirus 3 was identified in a northern pintail spleen sample, and it shares >73% VP1 nucleotide sequence identity with two gyrovirus 13 sequences previously identified in Brazilian Pekin duck spleens (MT318125 and MT318127). These gyroviruses are the first to be identified in waterfowl in North America, as well as in American wigeons and northern pintails.


Asunto(s)
Enfermedades de las Aves , Infecciones por Circoviridae , Genoma Viral , Gyrovirus , Filogenia , Animales , Arizona , Genoma Viral/genética , Gyrovirus/genética , Gyrovirus/clasificación , Gyrovirus/aislamiento & purificación , Enfermedades de las Aves/virología , Infecciones por Circoviridae/virología , Infecciones por Circoviridae/veterinaria , Anseriformes/virología , Patos/virología , ADN Viral/genética
2.
Arch Virol ; 168(11): 277, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37864606

RESUMEN

The family Anelloviridae comprises negative single-stranded circular DNA viruses. Within this family, there are 30 established genera. Anelloviruses in the genus Gyrovirus have been identified infecting various avian species, whereas those in the remaining 29 genera have been found primarily infecting various mammal species. We renamed the 146 anellovirus species with binomial species names, as required by the International Committee on Taxonomy of Viruses (ICTV) using a "genus + freeform epithet" format.


Asunto(s)
Anelloviridae , Gyrovirus , Virus , Animales , Anelloviridae/genética , Mamíferos
3.
Arch Virol ; 167(5): 1349-1353, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35306591

RESUMEN

A novel gyrovirus was detected in an intestinal specimen of a common pheasant that died due to poult enteritis and mortality syndrome. The genome of the pheasant-associated gyrovirus (PAGyV) is 2353 nucleotides (nt) long and contains putative genes for the VP1, VP2, and VP3 proteins in an arrangement that is typical for gyroviruses. Gyrovirus-specific motifs were identified in both the coding region and the intergenic region of the PAGyV genome. The VP1 of PAGyV shares up to 67.6% pairwise nt sequence identity with reference sequences and forms a distinct branch in the phylogenetic tree. Thus, according to the recently described species demarcation criteria, PAGyV belongs to a novel species in the genus Gyrovirus, family Anelloviridae, for which we propose the name "Gyrovirus phaco 1".


Asunto(s)
Enteritis , Gyrovirus , Animales , Enteritis/veterinaria , Genoma Viral/genética , Filogenia , Codorniz , Análisis de Secuencia de ADN , Pavos
4.
BMC Vet Res ; 18(1): 231, 2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717195

RESUMEN

BACKGROUND: Gyrovirus homsa1 (GyH1) (also known as Gyrovirus 3, GyV3) is a non-enveloped, small, single-stranded DNA virus, which was first identified in children with acute diarrhea, and was subsequently detected in marketed chickens, broilers with transmissible viral proventriculitis (TVP), and mammals. GyH1 is a pathogenic virus in chickens, causing aplastic anemia, immunosuppression, and multisystem damage. However, the seroepidemiology of GyH1 infection in chickens remains unclear. Here, we investigated the seroprevalence of GyH1 in chickens by ELISA to reveal the endemic status of GyH1 in China. RESULTS: An indirect ELISA with high sensitivity and specificity was developed for investigation of seroepidemiology of GyH1 in chickens in China. The seropositive rate of GyH1 ranged from 0.6% to 7.7% in thirteen provinces, and ranged from 4.1% to 8.1% in eight species chickens. The seropositive rate of GyH1 in broiler breeders was significantly higher than that of in layers. There was a negative correlation between seropositive rate and age of chickens. The highest and lowest seropositive rate were present in chickens at 30-60 days and over 180 days, respectively. CONCLUSIONS: The seroepidemiological investigation results demonstrated that natural GyH1 infection is widespread in chickens in China. Different species showed different susceptibility for GyH1. Aged chickens showed obvious age-resistance to GyH1. GyH1 has shown a high risk to the poultry industry and should be highly concerned.


Asunto(s)
Gyrovirus , Enfermedades de las Aves de Corral , Animales , Pollos , China/epidemiología , Gyrovirus/genética , Mamíferos , Aves de Corral , Estudios Seroepidemiológicos
5.
BMC Vet Res ; 18(1): 253, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768837

RESUMEN

BACKGROUND: Transmissible viral proventriculitis (TVP) causes significant economic loss to the poultry industry. However, the exact causative agents are obscure. Here we examine the virome of proventriculus from specified pathogen free (SPF) chickens that reproduced by infection of proventricular homogenate from broiler chicken with TVP using long read sequencing of the Pacific Biosciences RSII platform. The normal SPF chickens were used as control. RESULTS: Our investigation reveals a virome of proventriculitis, including three Gyrovirus genera of the Aneloviridae: Gyrovirus homsa1 (GyH1) (also known as Gyrovirus 3, GyV3) (n = 2662), chicken anemia virus (CAV) (n = 482) and Gyrovirus galga1 (GyG1) (also known as avian Gyrovirus 2, AGV2) (n = 11); a plethora of novel CRESS viral genomes (n = 26) and a novel genomovirus. The 27 novel viruses were divided into three clusters. Phylogenetic analysis showed that the GyH1 strain was more closely related to the strains from chicken (MG366592) than mammalian (human and cat), the GyG1 strain was closely related to the strains from cat in China (MK089245) and from chicken in Brazil (HM590588), and the CAV strain was more closely related to the strains from Germany (AJ297684) and United Kingdom (U66304) than that previously found in China. CONCLUSION: In this study, we revealed that Gyrovirus virome showed high abundance in chickens with TVP, suggesting their potential role in TVP, especially GyH1. This study is expected to contribute to the knowledge of the etiology of TVP.


Asunto(s)
Virus de la Anemia del Pollo , Gyrovirus , Enfermedades de las Aves de Corral , Gastropatías , Animales , Virus de la Anemia del Pollo/genética , Pollos , Mamíferos , Filogenia , Proventrículo , Gastropatías/veterinaria , Viroma
6.
Vet Res ; 52(1): 120, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526128

RESUMEN

Gyrovirus 3 (GyV3), the third novel emerging species of the genus Gyrovirus of the Anelloviridae family, has been described in multiple hosts. Epidemiologically, there are suggestions that GyV3 is associated with diarrhea/proventriculitis, however, no direct causal evidence exists between GyV3 infection and specific clinical diseases. Herein, we infected special pathogen-free (SPF) chickens with GyV3, and then assessed the pathogenicity and tissue tropism. The results revealed that GyV3 induced persistent infection characterized by diarrhea, aplastic anemia, immunosuppression, and persistent systemic lymphocytic inflammation. Clinically, the infected chickens presented ruffled feathers, diarrhea, anemia, and weight loss. Aplastic anemia was characterized by progressive depletion of hematopoietic cells in the bone marrow, immunosuppression was associated with atrophy of the thymus, spleen, and bursa of Fabricious, progressive lymphocytic inflammations were characterized by proventriculitis, adrenalitis, pancreatitis, hepatitis, nephritis, and bronchitis. Viral loads of GyV3 in tissues exhibited "M", "N", "W" or "V" type dynamic changes. The highest level of viral loads was reported in bone marrow at 7dpi, followed by the adrenal gland at 2 dpi, the sciatic nerve at 7 dpi, and bile at 35 dpi. The bone marrow and kidney demonstrate the strongest immunostaining of GyV3-VP1 antigen and were suggested as the target tissues of GyV3. Collectively, GyV3 is an immunosuppressive pathogenic virus that targets the bone marrow and kidney in chickens. Exploring the pathogenicity and tissue tropism of GyV3 will guide the basic understanding of the biology of GyV3 and its pathogenesis in chickens.


Asunto(s)
Pollos , Infecciones por Circoviridae/veterinaria , Gyrovirus/fisiología , Gyrovirus/patogenicidad , Enfermedades de las Aves de Corral/virología , Tropismo Viral , Anemia Aplásica/inmunología , Anemia Aplásica/veterinaria , Anemia Aplásica/virología , Animales , Infecciones por Circoviridae/virología , Diarrea/inmunología , Diarrea/veterinaria , Diarrea/virología , Tolerancia Inmunológica , Inflamación/inmunología , Inflamación/veterinaria , Inflamación/virología , Cinética , Linfocitos/inmunología , Virulencia
7.
Arch Virol ; 166(10): 2937-2942, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34347169

RESUMEN

The genus Gyrovirus was assigned to the family Anelloviridae in 2017 with only one recognized species, Chicken anemia virus. Over the last decade, many diverse viruses related to chicken anemia virus have been identified but not classified. Here, we provide a framework for the classification of new species in the genus Gyrovirus and communicate the establishment of nine new species. We adopted the 'Genus + freeform epithet' binomial system for the naming of these species.


Asunto(s)
Gyrovirus/clasificación , Terminología como Asunto , Anelloviridae/clasificación , Anelloviridae/genética , Animales , Proteínas de la Cápside/genética , Virus de la Anemia del Pollo/clasificación , Virus de la Anemia del Pollo/genética , ADN Viral/genética , Bases de Datos Genéticas , Genoma Viral/genética , Gyrovirus/genética , Humanos , Filogenia , Análisis de Secuencia de ADN
8.
Arch Virol ; 162(5): 1447-1463, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28155197

RESUMEN

The family Circoviridae contains viruses with covalently closed, circular, single-stranded DNA (ssDNA) genomes, including the smallest known autonomously replicating, capsid-encoding animal pathogens. Members of this family are known to cause fatal diseases in birds and pigs and have been historically classified in one of two genera: Circovirus, which contains avian and porcine pathogens, and Gyrovirus, which includes a single species (Chicken anemia virus). However, over the course of the past six years, viral metagenomic approaches as well as degenerate PCR detection in unconventional hosts and environmental samples have elucidated a broader host range, including fish, a diversity of mammals, and invertebrates, for members of the family Circoviridae. Notably, these methods have uncovered a distinct group of viruses that are closely related to members of the genus Circovirus and comprise a new genus, Cyclovirus. The discovery of new viruses and a re-evaluation of genomic features that characterize members of the Circoviridae prompted a revision of the classification criteria used for this family of animal viruses. Here we provide details on an updated Circoviridae taxonomy ratified by the International Committee on the Taxonomy of Viruses in 2016, which establishes the genus Cyclovirus and reassigns the genus Gyrovirus to the family Anelloviridae, a separate lineage of animal viruses that also contains circular ssDNA genomes. In addition, we provide a new species demarcation threshold of 80% genome-wide pairwise identity for members of the family Circoviridae, based on pairwise identity distribution analysis, and list guidelines to distinguish between members of this family and other eukaryotic viruses with circular, ssDNA genomes.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Gyrovirus/clasificación , Gyrovirus/genética , Animales , Secuencia de Bases , Infecciones por Circoviridae/virología , ADN Viral/genética , Genoma Viral/genética
9.
Intervirology ; 58(1): 57-68, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25890989

RESUMEN

OBJECTIVE: To define the molecular epidemiology of respiratory viral infections in adult patients. METHODS: Nasal and throat swabs were collected from all adult patients with influenza-like illness (ILI), acute respiratory infection (ARI), or severe ARI (SARI) admitted to a tertiary hospital in Surakarta, Indonesia, between March 2010 and April 2011 and analyzed for 19 respiratory viruses and for torque teno virus (TTV) and human gyrovirus (HGyV). RESULTS: Respiratory viruses were detected in 61.3% of the subjects, most of whom had ARI (90.8%, OR = 11.39), were hospitalized (96.9%, OR = 22.31), had asthma exacerbation (90.9%, OR = 8.67), and/or had pneumonia (80%, OR = 4.0). Human rhinovirus (HRV) A43 predominated. Influenza A H3N2, human metapneumovirus (HMPV) subtypes A1 and A2, the influenza B virus, human adenovirus B, and human coronavirus OC43 were also detected. All respiratory viruses were detected in the transition month between the rainy and dry seasons. No mixed respiratory virus infection was found. Coinfections of the influenza A H3N2 virus with TTV, HMPV with TTV, HRV with TTV, and human parainfluenza virus-3 with TTV were found in 4.7, 2.8, 19.8, and 0.9% of the samples, respectively. CONCLUSIONS: This study highlights the need to perform routine detection of respiratory viruses in adults hospitalized with ARI, asthma exacerbation, and/or pneumonia.


Asunto(s)
Coinfección , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Virosis/epidemiología , Virosis/virología , Enfermedad Aguda/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Asma , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/virología , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/virología , Gyrovirus/aislamiento & purificación , Humanos , Indonesia/epidemiología , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/epidemiología , Gripe Humana/virología , Persona de Mediana Edad , Epidemiología Molecular , Filogenia , Rhinovirus/aislamiento & purificación , Estaciones del Año , Torque teno virus/aislamiento & purificación , Adulto Joven
10.
Arch Virol ; 160(8): 2105-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26036564

RESUMEN

We characterized the genome of a highly divergent gyrovirus (GyV8) in the spleen and uropygial gland tissues of a diseased northern fulmar (Fulmarus glacialis), a pelagic bird beached in San Francisco, California. No other exogenous viral sequences could be identified using viral metagenomics. The small circular DNA genome shared no significant nucleotide sequence identity, and only 38-42 % amino acid sequence identity in VP1, with any of the previously identified gyroviruses. GyV8 is the first member of the third major phylogenetic clade of this viral genus and the first gyrovirus detected in an avian species other than chicken.


Asunto(s)
Enfermedades de las Aves/virología , Infecciones por Circoviridae/veterinaria , Gyrovirus/aislamiento & purificación , Animales , Aves , Infecciones por Circoviridae/virología , Genoma Viral , Gyrovirus/clasificación , Gyrovirus/genética , Datos de Secuencia Molecular , Filogenia
11.
Virus Genes ; 51(1): 132-5, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26013257

RESUMEN

A novel gyrovirus genome found in the feces of an adult with diarrhea is described. The genome shows the three expected main ORFs encoding a structural protein (VP1), nonstructural protein (VP2), and Apoptin protein (VP3), which shared identities of 41, 42, and 38 % with those of the most closely related gyrovirus proteins, respectively. Given the high divergence in its genome, this gyrovirus may be considered the prototype for a new viral species (GyV9) in the Gyrovirus genus. Because the closest relatives of this gyrovirus infect chicken, a possible dietary origin for the presence of this virus in human feces is discussed.


Asunto(s)
Infecciones por Circoviridae/virología , Virus ADN/genética , Diarrea/virología , Heces/virología , Genoma Viral , Gyrovirus/clasificación , Gyrovirus/aislamiento & purificación , Adulto , Análisis por Conglomerados , Virus ADN/aislamiento & purificación , ADN Viral/química , ADN Viral/genética , Gyrovirus/genética , Humanos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
12.
Virus Genes ; 50(1): 137-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25319533

RESUMEN

The genomic sequence of a novel gyrovirus (GyV) 3 strain was detected from the fecal sample of a pet ferret. The length (2,359 nt) and the basic genomic structure of this strain was very similar to that of the single known GyV3 reference strain, whereas the genome sequence identity between the two strains was only 76 %. Similarly, moderate sequence homology was found within the predicted protein coding regions, VP1 (nt, 72 %; aa, 76 %), VP2 (nt, 84 %; aa, 85 %), and VP3 (nt, 85 %; aa, 73 %). Sequence identities were lower when comparing our strain with other GyV species (48-65 % genome-wide nt identity). Phylogenetic analysis of the coding regions clustered the ferret origin GyV3 strain within Clade A. Although the available whole genomic sequence of novel GyVs permits limited conclusions to be drawn regarding the classification of the Hungarian GyV3 strain, our data indicate that this novel strain may be considered as a new genotype within GyV3. Further investigations are needed to reveal the genetic diversity and biological properties of newly described members of the Gyrovirus genus.


Asunto(s)
Hurones/virología , Gyrovirus/clasificación , Gyrovirus/aislamiento & purificación , Animales , Análisis por Conglomerados , ADN Viral/química , ADN Viral/genética , Heces/virología , Genotipo , Gyrovirus/genética , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia , Proteínas Virales/genética
13.
Arch Virol ; 159(12): 3401-6, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25119678

RESUMEN

The recently described novel gyroviruses may infect chickens and/or humans; however, their pathogenic potential is unknown. In our metagenomic investigation, we detected many of the novel gyroviruses in the fecal viromes of ferrets with lymph node and organ enlargement. The complete genomic sequences of selected gyrovirus strains showed 90.7-99.4 % similarity to homologous reference gyrovirus strains. This study did not demonstrate an association between gyrovirus shedding from ferrets and the observed background disease; however, it provides evidence for genetic diversity among gyroviruses and raises the possibility that pet ferrets may transmit gyroviruses to heterologous hosts, e.g., humans.


Asunto(s)
Heces/virología , Hurones/virología , Gyrovirus/aislamiento & purificación , Animales , ADN Viral/química , ADN Viral/genética , Variación Genética , Genoma Viral , Gyrovirus/clasificación , Gyrovirus/genética , Análisis de Secuencia de ADN , Homología de Secuencia
14.
Biologicals ; 42(6): 346-50, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25439092

RESUMEN

This study focuses on the detection of chicken anemia virus (CAV) and avian gyrovirus 2 (AGV2) genomes in commercially available poultry vaccines. A duplex quantitative real-time PCR (dqPCR), capable of identifying genomes of both viruses in a single assay, was employed to determine the viral loads of these agents in commercially available vaccines. Thirty five vaccines from eight manufacturers (32 prepared with live and 3 with inactivated microorganisms) were examined. Genomes of CAV were detected as contaminants in 6/32 live vaccines and in 1/3 inactivated vaccines. The CAV genome loads ranged from 6.4 to 173.4 per 50 ng of vaccine DNA (equivalent to 0.07 to 0.69 genome copies per dose of vaccine). Likewise, AGV2 genomes were detected in 9/32 live vaccines, with viral loads ranging from 93 to 156,187 per 50 ng of vaccine DNA (equivalent to 0.28-9176 genome copies per dose of vaccine). These findings provide evidence for the possibility of contamination of poultry vaccines with CAV and AGV2 and they also emphasize the need of searching for these agents in vaccines in order to ensure the absence of such potential contaminants.


Asunto(s)
Virus de la Anemia del Pollo/inmunología , Infecciones por Circoviridae/inmunología , Contaminación de Medicamentos , Gyrovirus/inmunología , Vacunas/química , Secuencia de Aminoácidos , Animales , Pollos/virología , Clonación Molecular , ADN/química , ADN Viral/genética , Genoma Viral , Datos de Secuencia Molecular , Fenotipo , Reacción en Cadena de la Polimerasa/normas , Aves de Corral , Enfermedades de las Aves de Corral/virología , Control de Calidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Vacunas Atenuadas , Carga Viral
15.
Avian Dis ; 58(1): 90-4, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24758119

RESUMEN

A disease with severe neurologic symptoms caused 100% mortality in a small broiler operation in the Gauteng Province, South Africa in late March 2013. Routine diagnostic PCR testing failed to identify a possible cause of the outbreak; thus, samples were submitted for virus isolation, serology, and bacteriology. An avirulent Newcastle disease virus (NDV) strain isolated was identified as a V4-like genotype 1 strain, by DNA sequencing, with a cleavage site of 112GKQGR decrease L117. Real-time reverse transcription PCR identified NDV in the brain but not in cecal tonsils or pooled tracheas, spleens, lungs, and livers. A random amplification deep sequencing of a transcriptome library generated from pooled tissues produced 927,966 paired-end reads. A contig of 2,309 nucleotides was identified as a near-complete avian gyrovirus 2 (AGV2) genome. This is the first report on the African continent of AGV2, which has been reported in southern Brazil, The Netherlands, and Hong Kong thus far. A real-time PCR for AGV2 only detected the virus in the brain but not in cecal tonsils or pooled tracheas, spleens, lungs, and livers. Sequence reads also mapped to the genomes of mycoplasma, Escherichia coli, avian leukosis virus subtype J, and Marek's disease virus but excluded influenza A virus, Ornithobacterium rhinotracheale, avian rhinotracheitis virus, avian encephalomyelitis virus, and West Nile virus. Air sac swabs were positive on bacterial culture for E. coli. The possibility of a synergistic pathogenic effect between avirulent NDV and AGV2 requires further investigation.


Asunto(s)
Pollos , Infecciones por Circoviridae/veterinaria , Coinfección/veterinaria , Brotes de Enfermedades/veterinaria , Gyrovirus/aislamiento & purificación , Enfermedad de Newcastle/epidemiología , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/virología , Animales , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/virología , Coinfección/virología , ADN Viral/genética , ADN Viral/metabolismo , Enfermedad de Newcastle/virología , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Técnica del ADN Polimorfo Amplificado Aleatorio/veterinaria , Análisis de Secuencia de ADN/veterinaria , Sudáfrica/epidemiología , Cultivo de Virus/veterinaria
16.
Vet Q ; 44(1): 1-8, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38595267

RESUMEN

Gyrovirus galga1 (GyVg1), a member of the Anelloviridae family and Gyrovirus genus, has been detected in chicken and human tissue samples. In this study, the DNA of GyVg1-related gyroviruses in the sera of six dogs and three cats from Central and Eastern China was identified using PCR. Alignment analysis between the nine obtained and reference GyVg1 strains revealed that the genome identity ranged from 99.20% (DOG03 and DOG04 strains) to 96.17% (DOG01 and DOG06 strains). Six recombination events were predicted in multiple strains, including DOG01, DOG05, DOG06, CAT01, CAT02, and CAT03. The predicted major and minor parents of DOG05 came from Brazil. The DOG06 strain is potentially recombined from strains originating from humans and cats, whereas DOG01 is potentially recombined from G17 (ferret-originated) and Ave3 (chicken-originated), indicating that transmissions across species and regions may occur. Sixteen representative amino acid mutation sites were identified: nine in VP1 (12 R/H, 114S/N, 123I/M, 167 L/P, 231 P/S, 237 P/L, 243 R/W, 335 T/A, and 444S/N), four in VP2 (81 A/P, 103 R/H, 223 R/G, and 228 A/T), and three in VP3 (38 M/I, 61 A/T, and 65 V/A). These mutations were only harbored in strains identified in dogs and cats in this study. Whether this is related to host tropism needs further investigation. In this study, GyVg1 was identified in the sera of dogs and cats, and the molecular characteristics prompted the attention of public health.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Gyrovirus , Animales , Gatos , Perros , Humanos , Hurones , Gyrovirus/genética , Pollos , Filogenia
17.
Poult Sci ; 103(3): 103397, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295496

RESUMEN

Since 2011, the Gyrovirus galga 1 (GyVg1, previously recognized as avian gyrovirus 2) strain has extensively been detected worldwide. However, because there are no up-to-date reports of examining the distribution of GyVg1 in flocks in southern China, the epidemiology of this virus is unknown. To investigate the prevalence and genetic evolution of GyVg1, a total of 2,077 field samples collected from 113 chicken farms in 6 provinces in southern China during 2020 to 2022 were tested. Among them, 315 samples (315/2,077, 15.17%) were positive for GyVg1 by PCR. The positive rate of GyVg1 detection between different regions of southern China ranged from 11.69% (Guangdong) to 22.46% (Yunnan). The correlation between GyVg1 prevalence and sample source groups was analyzed, the results showing that the highest seroprevalence of GyVg1 was observed in visceral tissues (27.34%, 187/684), significantly higher (P < 0.05) than that of feather shafts (17.22%, 31/180), serums (8.85%, 78/881), and fecal (5.72%, 19/332). Additionally, the complete genomes of 10 GyVg1 strains were sequenced and analyzed, which showed nucleotide identities of 96.2 to 99.9%, 97.0 to 100.0%, 95.2 to 100.0%, and 95.7 to 99.8% in the complete genome, ORF1, ORF2, and ORF3, respectively, and 94.4 to 100.0%, 91.3 to 100.0%, and 98.7 to 100.0% amino acid similarity in the VP2, VP3, and VP1 proteins, respectively. Phylogenetic analysis of the whole genome showed that 10 GyVg1 strains belong to genotype I, and one strain belongs to genotype III. Sequence analysis showed several amino acid substitutions in both the VP1, VP2, and VP3 proteins. Our results enhance the understanding of the molecular characterization of GyVg1 infection in southern China. In conclusion, this study reveals the high prevalence and high genetic differentiation of GyVg1 in Chinese chickens and suggests that the potential impact of GyVg1 on the chicken industry may be of concern.


Asunto(s)
Gyrovirus , Animales , Gyrovirus/genética , Filogenia , Prevalencia , Estudios Seroepidemiológicos , Análisis de Secuencia de ADN/veterinaria , Pollos/genética , China/epidemiología
18.
Poult Sci ; 103(11): 104149, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39154608

RESUMEN

Gyrovirus galga1 (GyVg1), formerly known as AGV2, was initially identified in chickens in southern Brazil. The prevalence of GyVg1 from 2021 to 2024 in 28 out of the 63 poultry farms located in Jiangsu, Anhui, Henan, Hunan, Shandong, and Hubei provinces in eastern and central China was detected via PCR. The complete genomes of the 28 strains were sequenced and exhibited a full length of 2,376 bp. Similarity analysis of these strains did not suggest definite correlation with evolutionary branching and geographical distribution. Compared with the reference GyVg1 strains, HN2202 shared the highest similarity of 99.71% with HLJ1511 (chicken-originated) from northeastern China in 2015 to 2016. Recombination analysis revealed that AH2102 was a potential recombinant of peafowl-originated HN2019-PF1 and chicken-originated HLJ1506-2, whereas HN2304 was a recombinant of peafowl-originated HN2019-PF1 and the Hungarian ferret strain G13. Mutation site analysis of the capsid protein revealed that highly mutated regions occurred between sites 288 to 316 and 383 to 419. These results indicate that GyVg1 may have undergone an interspecies transmission, which involved complex mutations and recombination. This study may provide a reference for subsequent investigations targeting the molecular epidemiology and viral evolution of GyVg1.


Asunto(s)
Pollos , Infecciones por Circoviridae , Gyrovirus , Enfermedades de las Aves de Corral , Recombinación Genética , Animales , China/epidemiología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/virología , Infecciones por Circoviridae/epidemiología , Gyrovirus/genética , Heterogeneidad Genética , Genoma Viral , Filogenia
19.
Viruses ; 15(2)2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36851729

RESUMEN

Chicken anemia virus (CAV) and Gyrovirus homsa 1 (GyH1) are members of the Gyrovirus genus. The two viruses cause similar clinical manifestations in chickens, aplastic anemia and immunosuppression. Our previous investigation displays that CAV and GyH1 often co-infect chickens. However, whether they have synergistic pathogenicity in chickens remains elusive. Here, we established a co-infection model of CAV and GyH1 in specific pathogen-free (SPF) chickens to explore the synergy between CAV and GyH1. We discovered that CAV and GyH1 significantly inhibited weight gain, increased mortality, and hindered erythropoiesis in co-infected chickens. Co-infected chickens exhibited severe immune organ atrophy and lymphocyte exhaustion. The proventriculus and gizzard had severe hemorrhagic necrosis and inflammation. We also discovered that the viral loads and shedding levels were higher and lasted longer in CAV and GyH1 co-infected chickens than in mono-infected chickens. Our results demonstrate that CAV and GyH1 synergistically promote immunosuppression, pathogenicity, and viral replication in co-infected chicken, highlighting the interaction between CAV and GyH1 in the disease process and increasing potential health risk in the poultry breeding industry, and needs further attention.


Asunto(s)
Virus de la Anemia del Pollo , Coinfección , Gyrovirus , Animales , Pollos , Terapia de Inmunosupresión , Coinfección/veterinaria
20.
Virology ; 579: 75-83, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36608597

RESUMEN

Yellow-eyed penguins (Megadyptes antipodes), or hoiho in te reo Maori, are predicted to become extinct on mainland Aotearoa New Zealand in the next few decades, with infectious disease a significant contributor to their decline. A recent disease phenomenon termed respiratory distress syndrome (RDS) causing lung pathology has been identified in very young chicks. To date, no causative pathogens for RDS have been identified. In 2020 and 2021, the number of chick deaths from suspected RDS increased four- and five-fold, respectively, causing mass mortality with an estimated mortality rate of >90%. We aimed to identify possible pathogens responsible for RDS disease impacting these critically endangered yellow-eyed penguins. Total RNA was extracted from tissue samples collected during post-mortem of 43 dead chicks and subject to metatranscriptomic sequencing and histological examination. From these data we identified a novel and highly abundant gyrovirus (Anelloviridae) in 80% of tissue samples. This virus was most closely related to Gyrovirus 8 discovered in a diseased seabird, while other members of the genus Gyrovirus include Chicken anaemia virus, which causes severe disease in juvenile chickens. No other exogenous viral transcripts were identified in these tissues. Due to the high relative abundance of viral reads and its high prevalence in diseased animals, it is likely that this novel gyrovirus is associated with RDS in yellow-eyed penguin chicks.


Asunto(s)
Virus de la Anemia del Pollo , Gyrovirus , Spheniscidae , Animales , Pollos , Nueva Zelanda/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA