Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.033
Filtrar
Más filtros

Colección CLAP
Intervalo de año de publicación
1.
Cell ; 187(6): 1476-1489.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38401541

RESUMEN

Attention filters sensory inputs to enhance task-relevant information. It is guided by an "attentional template" that represents the stimulus features that are currently relevant. To understand how the brain learns and uses templates, we trained monkeys to perform a visual search task that required them to repeatedly learn new attentional templates. Neural recordings found that templates were represented across the prefrontal and parietal cortex in a structured manner, such that perceptually neighboring templates had similar neural representations. When the task changed, a new attentional template was learned by incrementally shifting the template toward rewarded features. Finally, we found that attentional templates transformed stimulus features into a common value representation that allowed the same decision-making mechanisms to deploy attention, regardless of the identity of the template. Altogether, our results provide insight into the neural mechanisms by which the brain learns to control attention and how attention can be flexibly deployed across tasks.


Asunto(s)
Atención , Toma de Decisiones , Aprendizaje , Lóbulo Parietal , Recompensa , Animales , Haplorrinos
2.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949056

RESUMEN

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Asunto(s)
Células Madre Embrionarias , Ingeniería Genética , Haplorrinos , Animales , Femenino , Embarazo , Haplorrinos/genética , Nacimiento Vivo , Mamíferos , Células Madre Pluripotentes , Primates , Ingeniería Genética/métodos
3.
Cell ; 184(8): 1962-1963, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33861959

RESUMEN

In this issue of Cell, Tan et al. report the first injection of human stem cells into in vitro non-human primate blastocysts with significant survival of the human cells, raising new scientific possibilities but also important ethical issues.


Asunto(s)
Quimera , Embrión de Mamíferos , Animales , Blastocisto , Haplorrinos , Humanos , Células Madre
4.
Cell ; 184(4): 912-930.e20, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571430

RESUMEN

Electrical stimulation is a promising tool for modulating brain networks. However, it is unclear how stimulation interacts with neural patterns underlying behavior. Specifically, how might external stimulation that is not sensitive to the state of ongoing neural dynamics reliably augment neural processing and improve function? Here, we tested how low-frequency epidural alternating current stimulation (ACS) in non-human primates recovering from stroke interacted with task-related activity in perilesional cortex and affected grasping. We found that ACS increased co-firing within task-related ensembles and improved dexterity. Using a neural network model, we found that simulated ACS drove ensemble co-firing and enhanced propagation of neural activity through parts of the network with impaired connectivity, suggesting a mechanism to link increased co-firing to enhanced dexterity. Together, our results demonstrate that ACS restores neural processing in impaired networks and improves dexterity following stroke. More broadly, these results demonstrate approaches to optimize stimulation to target neural dynamics.


Asunto(s)
Potenciales de Acción/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Conducta Animal/fisiología , Fenómenos Biomecánicos/fisiología , Estimulación Eléctrica , Haplorrinos , Corteza Motora/fisiopatología , Redes Neurales de la Computación , Neuronas/fisiología , Análisis y Desempeño de Tareas , Factores de Tiempo
5.
Cell ; 184(16): 4203-4219.e32, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34242577

RESUMEN

SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Líquido del Lavado Bronquioalveolar/química , COVID-19/patología , COVID-19/virología , Citocinas/metabolismo , Femenino , Haplorrinos , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos , ARN Guía de Kinetoplastida/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Carga Viral , Replicación Viral
6.
Cell ; 181(1): 189-206, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32220311

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) infection persists despite years of antiretroviral therapy (ART). To remove the stigma and burden of chronic infection, approaches to eradicate or cure HIV infection are desired. Attempts to augment ART with therapies that reverse viral latency, paired with immunotherapies to clear infection, have advanced into the clinic, but the field is still in its infancy. We review foundational studies and highlight new insights in HIV cure research. Together with advances in ART delivery and HIV prevention strategies, future therapies that clear HIV infection may relieve society of the affliction of the HIV pandemic.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Enfermedad Crónica/terapia , Infecciones por VIH/terapia , VIH-1/efectos de los fármacos , Inmunoterapia/métodos , Latencia del Virus/efectos de los fármacos , Animales , Haplorrinos , Humanos
7.
Cell ; 172(4): 647-649, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29425487

RESUMEN

In this issue of Cell, Liu et al. (2018) report the birth of two healthy cloned macaque monkeys using fetal fibroblasts. By artificially enhancing the arsenal of epigenetic modifiers in the oocyte, the authors overcome the earliest roadblocks that take place during somatic cell nuclear transfer (SCNT).


Asunto(s)
Haplorrinos , Macaca , Animales , Clonación de Organismos , Fibroblastos , Técnicas de Transferencia Nuclear , Oocitos , Primates
8.
Cell ; 166(6): 1366-1368, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27610562

RESUMEN

The recent advent of technologies enabling cell-type-specific recording and manipulation of neuronal activity spurred tremendous progress in neuroscience. However, they have been largely limited to mice, which lack the richness in behavior of primates. Stauffer et al. now present a generalizable method for achieving cell-type specificity in monkeys.


Asunto(s)
Haplorrinos , Optogenética , Animales , Encéfalo , Neuronas , Neurociencias
9.
Nature ; 623(7988): 765-771, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938772

RESUMEN

Animals of the same species exhibit similar behaviours that are advantageously adapted to their body and environment. These behaviours are shaped at the species level by selection pressures over evolutionary timescales. Yet, it remains unclear how these common behavioural adaptations emerge from the idiosyncratic neural circuitry of each individual. The overall organization of neural circuits is preserved across individuals1 because of their common evolutionarily specified developmental programme2-4. Such organization at the circuit level may constrain neural activity5-8, leading to low-dimensional latent dynamics across the neural population9-11. Accordingly, here we suggested that the shared circuit-level constraints within a species would lead to suitably preserved latent dynamics across individuals. We analysed recordings of neural populations from monkey and mouse motor cortex to demonstrate that neural dynamics in individuals from the same species are surprisingly preserved when they perform similar behaviour. Neural population dynamics were also preserved when animals consciously planned future movements without overt behaviour12 and enabled the decoding of planned and ongoing movement across different individuals. Furthermore, we found that preserved neural dynamics extend beyond cortical regions to the dorsal striatum, an evolutionarily older structure13,14. Finally, we used neural network models to demonstrate that behavioural similarity is necessary but not sufficient for this preservation. We posit that these emergent dynamics result from evolutionary constraints on brain development and thus reflect fundamental properties of the neural basis of behaviour.


Asunto(s)
Evolución Biológica , Haplorrinos , Corteza Motora , Destreza Motora , Neuronas , Animales , Ratones , Haplorrinos/fisiología , Haplorrinos/psicología , Corteza Motora/citología , Corteza Motora/fisiología , Destreza Motora/fisiología , Movimiento/fisiología , Redes Neurales de la Computación , Neuronas/fisiología , Pensamiento/fisiología
10.
Immunity ; 50(3): 537-539, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893580

RESUMEN

Curing HIV infection has been impossible, with the exception of the "Berlin Patient." Martinez-Navio et al. (2019) in Miami herein present a rare monkey whose virus was controlled for >3 years after a single genetic intervention that led to persistent production of HIV-neutralizing antibodies in vivo.


Asunto(s)
Infecciones por VIH , VIH-1/inmunología , Animales , Anticuerpos Monoclonales , Berlin , Dependovirus , Anticuerpos Anti-VIH , Haplorrinos , Humanos
11.
PLoS Biol ; 22(2): e3002500, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38363801

RESUMEN

The frontopolar cortex (FPC) is, to date, one of the least understood regions of the prefrontal cortex. The current understanding of its function suggests that it plays a role in the control of exploratory behaviors by coordinating the activities of other prefrontal cortex areas involved in decision-making and exploiting actions based on their outcomes. Based on this hypothesis, FPC would drive fast-learning processes through a valuation of the different alternatives. In our study, we used a modified version of a well-known paradigm, the object-in-place (OIP) task, to test this hypothesis in electrophysiology. This paradigm is designed to maximize learning, enabling monkeys to learn in one trial, which is an ability specifically impaired after a lesion of the FPC. We showed that FPC neurons presented an extremely specific pattern of activity by representing the learning stage, exploration versus exploitation, and the goal of the action. However, our results do not support the hypothesis that neurons in the frontal pole compute an evaluation of different alternatives. Indeed, the position of the chosen target was strongly encoded at its acquisition, but the position of the unchosen target was not. Once learned, this representation was also found at the problem presentation, suggesting a monitoring activity of the synthetic goal preceding its acquisition. Our results highlight important features of FPC neurons in fast-learning processes without confirming their role in the disengagement of cognitive control from the current goals.


Asunto(s)
Objetivos , Haplorrinos , Aprendizaje , Corteza Cerebral , Conducta Exploratoria , Neuronas , Animales
12.
PLoS Biol ; 22(2): e3002520, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38364194

RESUMEN

Decision-making requires processing of sensory information, comparing the gathered evidence to make a judgment, and performing the action to communicate it. How neuronal representations transform during this cascade of representations remains a matter of debate. Here, we studied the succession of neuronal representations in the primate prefrontal cortex (PFC). We trained monkeys to judge whether a pair of sequentially presented displays had the same number of items. We used a combination of single neuron and population-level analyses and discovered a sequential transformation of represented information with trial progression. While numerical values were initially represented with high precision and in conjunction with detailed information such as order, the decision was encoded in a low-dimensional subspace of neural activity. This decision encoding was invariant to both retrospective numerical values and prospective motor plans, representing only the binary judgment of "same number" versus "different number," thus facilitating the generalization of decisions to novel number pairs. We conclude that this transformation of neuronal codes within the prefrontal cortex supports cognitive flexibility and generalizability of decisions to new conditions.


Asunto(s)
Corteza Prefrontal , Primates , Animales , Estudios Prospectivos , Estudios Retrospectivos , Corteza Prefrontal/fisiología , Haplorrinos , Neuronas/fisiología , Toma de Decisiones/fisiología
13.
Nat Immunol ; 15(4): 319-22, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24646598

RESUMEN

The search for a vaccine against human immunodeficiency virus type 1 (HIV-1) has many hurdles to overcome. Ideally, the stimulation of both broadly neutralizing antibodies and cell-mediated immune responses remains the best option, but no candidate in clinical trials at present has elicited such antibodies, and efficacy trials have not demonstrated any benefit for vaccines designed to stimulate immune responses of CD8(+) T cells. Findings obtained with the simian immunodeficiency virus (SIV) monkey model have provided new evidence that stimulating effective CD8(+) T cell immunity could provide protection, and in this Perspective we explore the path forward for optimizing such responses in humans.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Variación Antigénica/inmunología , Antígenos Virales/genética , Antígenos Virales/metabolismo , Ensayos Clínicos como Asunto , Citotoxicidad Inmunológica , Haplorrinos , Humanos , Inmunización , Epítopos Inmunodominantes/genética , Epítopos Inmunodominantes/metabolismo , Ingeniería de Proteínas , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Resultado del Tratamiento
14.
Proc Natl Acad Sci U S A ; 120(28): e2301338120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399374

RESUMEN

Recent fossil discoveries in Western Amazonia revealed that two distinct anthropoid primate clades of African origin colonized South America near the Eocene/Oligocene transition (ca. 34 Ma). Here, we describe a diminutive fossil primate from Brazilian Amazonia and suggest that, surprisingly, a third clade of anthropoids was involved in the Paleogene colonization of South America by primates. This new taxon, Ashaninkacebus simpsoni gen. et sp. nov., has strong dental affinities with Asian African stem anthropoids: the Eosimiiformes. Morphology-based phylogenetic analyses of early Old World anthropoids and extinct and extant New World monkeys (platyrrhines) support relationships of both Ashaninkacebus and Amamria (late middle Eocene, North Africa) to the South Asian Eosimiidae. Afro-Arabia, then a mega island, played the role of a biogeographic stopover between South Asia and South America for anthropoid primates and hystricognathous rodents. The earliest primates from South America bear little adaptive resemblance to later Oligocene-early Miocene platyrrhine monkeys, and the scarcity of available paleontological data precludes elucidating firmly their affinities with or within Platyrrhini. Nonetheless, these data shed light on some of their life history traits, revealing a particularly small body size and a diet consisting primarily of insects and possibly fruit, which would have increased their chances of survival on a natural floating island during this extraordinary over-water trip to South America from Africa. Divergence-time estimates between Old and New World taxa indicate that the transatlantic dispersal(s) could source in the intense flooding events associated with the late middle Eocene climatic optimum (ca. 40.5 Ma) in Western Africa.


Asunto(s)
Cebidae , Platirrinos , Animales , Filogenia , Brasil , Haplorrinos , Fósiles , Roedores , Evolución Biológica
15.
Proc Natl Acad Sci U S A ; 120(44): e2218778120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844214

RESUMEN

Pierolapithecus catalaunicus (~12 million years ago, northeastern Spain) is key to understanding the mosaic nature of hominid (great ape and human) evolution. Notably, its skeleton indicates that an orthograde (upright) body plan preceded suspensory adaptations in hominid evolution. However, there is ongoing debate about this species, partly because the sole known cranium, preserving a nearly complete face, suffers from taphonomic damage. We 1) carried out a micro computerized tomography (CT) based virtual reconstruction of the Pierolapithecus cranium, 2) assessed its morphological affinities using a series of two-dimensional (2D) and three-dimensional (3D) morphometric analyses, and 3) modeled the evolution of key aspects of ape face form. The reconstruction clarifies many aspects of the facial morphology of Pierolapithecus. Our results indicate that it is most similar to great apes (fossil and extant) in overall face shape and size and is morphologically distinct from other Middle Miocene apes. Crown great apes can be distinguished from other taxa in several facial metrics (e.g., low midfacial prognathism, relatively tall faces) and only some of these features are found in Pierolapithecus, which is most consistent with a stem (basal) hominid position. The inferred morphology at all ancestral nodes within the hominoid (ape and human) tree is closer to great apes than to hylobatids (gibbons and siamangs), which are convergent with other smaller anthropoids. Our analyses support a hominid ancestor that was distinct from all extant and fossil hominids in overall facial shape and shared many features with Pierolapithecus. This reconstructed ancestral morphotype represents a testable hypothesis that can be reevaluated as new fossils are discovered.


Asunto(s)
Hominidae , Hylobatidae , Animales , Humanos , Evolución Biológica , Hominidae/anatomía & histología , Cráneo/anatomía & histología , Fósiles , Haplorrinos , Hylobates , Filogenia
16.
Proc Natl Acad Sci U S A ; 120(9): e2210839120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812207

RESUMEN

During visual search, it is important to reduce the interference of distracting objects in the scene. The neuronal responses elicited by the search target stimulus are typically enhanced. However, it is equally important to suppress the representations of distracting stimuli, especially if they are salient and capture attention. We trained monkeys to make an eye movement to a unique "pop-out" shape stimulus among an array of distracting stimuli. One of these distractors had a salient color that varied across trials and differed from the color of the other stimuli, causing it to also pop-out. The monkeys were able to select the pop-out shape target with high accuracy and actively avoided the pop-out color distractor. This behavioral pattern was reflected in the activity of neurons in area V4. Responses to the shape targets were enhanced, while the activity evoked by the pop-out color distractor was only briefly enhanced, directly followed by a sustained period of pronounced suppression. These behavioral and neuronal results demonstrate a cortical selection mechanism that rapidly inverts a pop-out signal to "pop-in" for an entire feature dimension thereby facilitating goal-directed visual search in the presence of salient distractors.


Asunto(s)
Percepción de Color , Corteza Visual , Animales , Percepción de Color/fisiología , Haplorrinos , Atención/fisiología , Movimientos Oculares , Corteza Visual/fisiología , Tiempo de Reacción/fisiología , Percepción Visual/fisiología
17.
J Neurosci ; 44(12)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38290848

RESUMEN

The subthalamic nucleus (STN) receives cortical inputs via the hyperdirect and indirect pathways, projects to the output nuclei of the basal ganglia, and plays a critical role in the control of voluntary movements and movement disorders. STN neurons change their activity during execution of movements, while recent studies emphasize STN activity specific to cancelation of movements. To address the relationship between execution and cancelation functions, we examined STN activity in two Japanese monkeys (Macaca fuscata, both sexes) who performed a goal-directed reaching task with a delay that included Go, Cancel, and NoGo trials. We first examined responses to the stimulation of the forelimb regions in the primary motor cortex and/or supplementary motor area. STN neurons with motor cortical inputs were found in the dorsal somatomotor region of the STN. All these STN neurons showed activity changes in Go trials, suggesting their involvement in execution of movements. Part of them exhibited activity changes in Cancel trials and sustained activity during delay periods, suggesting their involvement in cancelation of planed movements and preparation of movements, respectively. The STN neurons rarely showed activity changes in NoGo trials. Go- and Cancel-related activity was selective to the direction of movements, and the selectivity was higher in Cancel trials than in Go trials. Changes in Go- and Cancel-related activity occurred early enough to initiate and cancel movements, respectively. These results suggest that the dorsal somatomotor region of the STN, which receives motor cortical inputs, is involved in preparation and execution of movements and cancelation of planned movements.


Asunto(s)
Corteza Motora , Núcleo Subtalámico , Masculino , Femenino , Animales , Haplorrinos , Núcleo Subtalámico/fisiología , Ganglios Basales , Corteza Motora/fisiología , Neuronas/fisiología
18.
EMBO J ; 40(21): e107711, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34524703

RESUMEN

RNA viruses induce the formation of subcellular organelles that provide microenvironments conducive to their replication. Here we show that replication factories of rotaviruses represent protein-RNA condensates that are formed via liquid-liquid phase separation of the viroplasm-forming proteins NSP5 and rotavirus RNA chaperone NSP2. Upon mixing, these proteins readily form condensates at physiologically relevant low micromolar concentrations achieved in the cytoplasm of virus-infected cells. Early infection stage condensates could be reversibly dissolved by 1,6-hexanediol, as well as propylene glycol that released rotavirus transcripts from these condensates. During the early stages of infection, propylene glycol treatments reduced viral replication and phosphorylation of the condensate-forming protein NSP5. During late infection, these condensates exhibited altered material properties and became resistant to propylene glycol, coinciding with hyperphosphorylation of NSP5. Some aspects of the assembly of cytoplasmic rotavirus replication factories mirror the formation of other ribonucleoprotein granules. Such viral RNA-rich condensates that support replication of multi-segmented genomes represent an attractive target for developing novel therapeutic approaches.


Asunto(s)
Gránulos de Ribonucleoproteínas Citoplasmáticas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/metabolismo , Rotavirus/genética , Proteínas no Estructurales Virales/metabolismo , Animales , Bovinos , Línea Celular , Gránulos de Ribonucleoproteínas Citoplasmáticas/efectos de los fármacos , Gránulos de Ribonucleoproteínas Citoplasmáticas/ultraestructura , Gránulos de Ribonucleoproteínas Citoplasmáticas/virología , Regulación Viral de la Expresión Génica , Genes Reporteros , Glicoles/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Haplorrinos , Interacciones Huésped-Patógeno/genética , Humanos , Concentración Osmolar , Fosforilación , Propilenglicol/farmacología , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Rotavirus/efectos de los fármacos , Rotavirus/crecimiento & desarrollo , Rotavirus/ultraestructura , Transducción de Señal , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Ensamble de Virus/efectos de los fármacos , Ensamble de Virus/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
19.
PLoS Comput Biol ; 20(1): e1011792, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38198504

RESUMEN

Geometric descriptions of deep neural networks (DNNs) have the potential to uncover core representational principles of computational models in neuroscience. Here we examined the geometry of DNN models of visual cortex by quantifying the latent dimensionality of their natural image representations. A popular view holds that optimal DNNs compress their representations onto low-dimensional subspaces to achieve invariance and robustness, which suggests that better models of visual cortex should have lower dimensional geometries. Surprisingly, we found a strong trend in the opposite direction-neural networks with high-dimensional image subspaces tended to have better generalization performance when predicting cortical responses to held-out stimuli in both monkey electrophysiology and human fMRI data. Moreover, we found that high dimensionality was associated with better performance when learning new categories of stimuli, suggesting that higher dimensional representations are better suited to generalize beyond their training domains. These findings suggest a general principle whereby high-dimensional geometry confers computational benefits to DNN models of visual cortex.


Asunto(s)
Neurociencias , Corteza Visual , Animales , Humanos , Redes Neurales de la Computación , Aprendizaje , Corteza Visual/fisiología , Imagen por Resonancia Magnética , Haplorrinos
20.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37955641

RESUMEN

We investigated whether neurons in monkey primary visual cortex (V1) exhibit mixed selectivity for sensory input and behavioral choice. Parallel multisite spiking activity was recorded from area V1 of awake monkeys performing a delayed match-to-sample task. The monkeys had to make a forced choice decision of whether the test stimulus matched the preceding sample stimulus. The population responses evoked by the test stimulus contained information about both the identity of the stimulus and with some delay but before the onset of the motor response the forthcoming choice. The results of subspace identification analysis indicate that stimulus-specific and decision-related information coexists in separate subspaces of the high-dimensional population activity, and latency considerations suggest that the decision-related information is conveyed by top-down projections.


Asunto(s)
Neuronas , Corteza Visual Primaria , Animales , Haplorrinos , Neuronas/fisiología , Estimulación Luminosa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA