Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 617
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(4): 731-743.e12, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29425491

RESUMEN

The noncanonical IKK family member TANK-binding kinase 1 (TBK1) is activated by pro-inflammatory cytokines, but its role in controlling metabolism remains unclear. Here, we report that the kinase uniquely controls energy metabolism. Tbk1 expression is increased in adipocytes of HFD-fed mice. Adipocyte-specific TBK1 knockout (ATKO) attenuates HFD-induced obesity by increasing energy expenditure; further studies show that TBK1 directly inhibits AMPK to repress respiration and increase energy storage. Conversely, activation of AMPK under catabolic conditions can increase TBK1 activity through phosphorylation, mediated by AMPK's downstream target ULK1. Surprisingly, ATKO also exaggerates adipose tissue inflammation and insulin resistance. TBK1 suppresses inflammation by phosphorylating and inducing the degradation of the IKK kinase NIK, thus attenuating NF-κB activity. Moreover, TBK1 mediates the negative impact of AMPK activity on NF-κB activation. These data implicate a unique role for TBK1 in mediating bidirectional crosstalk between energy sensing and inflammatory signaling pathways in both over- and undernutrition.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Metabolismo Energético , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/patología , Tejido Adiposo/patología , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Línea Celular Transformada , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Serina-Treonina Quinasas/genética , Quinasa de Factor Nuclear kappa B
2.
Annu Rev Biochem ; 86: 225-244, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301741

RESUMEN

Autophagy is the process of cellular self-eating by a double-membrane organelle, the autophagosome. A range of signaling processes converge on two protein complexes to initiate autophagy: the ULK1 (unc51-like autophagy activating kinase 1) protein kinase complex and the PI3KC3-C1 (class III phosphatidylinositol 3-kinase complex I) lipid kinase complex. Some 90% of the mass of these large protein complexes consists of noncatalytic domains and subunits, and the ULK1 complex has essential noncatalytic activities. Structural studies of these complexes have shed increasing light on the regulation of their catalytic and noncatalytic activities in autophagy initiation. The autophagosome is thought to nucleate from vesicles containing the integral membrane protein Atg9 (autophagy-related 9), COPII (coat protein complex II) vesicles, and possibly other sources. In the wake of reconstitution and super-resolution imaging studies, we are beginning to understand how the ULK1 and PI3KC3-C1 complexes might coordinate the nucleation and fusion of Atg9 and COPII vesicles at the start of autophagosome biogenesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fagosomas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/química , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/genética , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Expresión Génica , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Fagosomas/ultraestructura , Fosfatidilinositol 3-Quinasa/química , Fosfatidilinositol 3-Quinasa/genética , Unión Proteica , Multimerización de Proteína , Transducción de Señal
3.
Mol Cell ; 81(18): 3820-3832.e7, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34233158

RESUMEN

A metabolic imbalance between lipid synthesis and degradation can lead to hepatic lipid accumulation, a characteristic of patients with non-alcoholic fatty liver disease (NAFLD). Here, we report that high-fat-diet-induced sterol regulatory element-binding protein (SREBP)-1c, a key transcription factor that regulates lipid biosynthesis, impairs autophagic lipid catabolism via altered H2S signaling. SREBP-1c reduced cystathionine gamma-lyase (CSE) via miR-216a, which in turn decreased hepatic H2S levels and sulfhydration-dependent activation of Unc-51-like autophagy-activating kinase 1 (ULK1). Furthermore, Cys951Ser mutation of ULK1 decreased autolysosome formation and promoted hepatic lipid accumulation in mice, suggesting that the loss of ULK1 sulfhydration was directly associated with the pathogenesis of NAFLD. Moreover, silencing of CSE in SREBP-1c knockout mice increased liver triglycerides, confirming the connection between CSE, autophagy, and SREBP-1c. Overall, our results uncover a 2-fold mechanism for SREBP-1c-driven hepatic lipid accumulation through reciprocal activation and inhibition of hepatic lipid biosynthesis and degradation, respectively.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Hígado Graso/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/fisiología , Línea Celular Tumoral , Dieta Alta en Grasa/efectos adversos , Hígado Graso/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Lipogénesis , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología , Triglicéridos/metabolismo
4.
Trends Biochem Sci ; 49(6): 494-505, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565496

RESUMEN

Autophagy - a highly regulated intracellular degradation process - is pivotal in maintaining cellular homeostasis. Liquid-liquid phase separation (LLPS) is a fundamental mechanism regulating the formation and function of membrane-less compartments. Recent research has unveiled connections between LLPS and autophagy, suggesting that phase separation events may orchestrate the spatiotemporal organization of autophagic machinery and cargo sequestration. The Unc-51-like kinase (ULK)/autophagy-related 1 (Atg1) family of proteins is best known for its regulatory role in initiating autophagy, but there is growing evidence that the functional spectrum of ULK/Atg1 extends beyond autophagy regulation. In this review, we explore the spatial and temporal regulation of the ULK/Atg1 family of kinases, focusing on their recruitment to LLPS-driven compartments, and highlighting their multifaceted functions beyond their traditional role.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Humanos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química
5.
EMBO J ; 42(14): e113349, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37306101

RESUMEN

NRF2 is a transcription factor responsible for antioxidant stress responses that is usually regulated in a redox-dependent manner. p62 bodies formed by liquid-liquid phase separation contain Ser349-phosphorylated p62, which participates in the redox-independent activation of NRF2. However, the regulatory mechanism and physiological significance of p62 phosphorylation remain unclear. Here, we identify ULK1 as a kinase responsible for the phosphorylation of p62. ULK1 colocalizes with p62 bodies, directly interacting with p62. ULK1-dependent phosphorylation of p62 allows KEAP1 to be retained within p62 bodies, thus activating NRF2. p62S351E/+ mice are phosphomimetic knock-in mice in which Ser351, corresponding to human Ser349, is replaced by Glu. These mice, but not their phosphodefective p62S351A/S351A counterparts, exhibit NRF2 hyperactivation and growth retardation. This retardation is caused by malnutrition and dehydration due to obstruction of the esophagus and forestomach secondary to hyperkeratosis, a phenotype also observed in systemic Keap1-knockout mice. Our results expand our understanding of the physiological importance of the redox-independent NRF2 activation pathway and provide new insights into the role of phase separation in this process.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Humanos , Animales , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Fosforilación , Proteína Sequestosoma-1/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
6.
Mol Cell ; 76(1): 11-26.e7, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31400850

RESUMEN

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in aggressive cancers. We show that the disruption of RAD51-associated protein 1 (RAD51AP1) in ALT+ cancer cells leads to generational telomere shortening. This is due to RAD51AP1's involvement in RAD51-dependent homologous recombination (HR) and RAD52-POLD3-dependent break induced DNA synthesis. RAD51AP1 KO ALT+ cells exhibit telomere dysfunction and cytosolic telomeric DNA fragments that are sensed by cGAS. Intriguingly, they activate ULK1-ATG7-dependent autophagy as a survival mechanism to mitigate DNA damage and apoptosis. Importantly, RAD51AP1 protein levels are elevated in ALT+ cells due to MMS21 associated SUMOylation. Mutation of a single SUMO-targeted lysine residue perturbs telomere dynamics. These findings indicate that RAD51AP1 is an essential mediator of the ALT mechanism and is co-opted by post-translational mechanisms to maintain telomere length and ensure proliferation of ALT+ cancer cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neoplasias/metabolismo , Proteínas de Unión al ARN/metabolismo , Homeostasis del Telómero , Telómero/metabolismo , Autofagia , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proliferación Celular , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Recombinación Homóloga , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligasas/genética , Ligasas/metabolismo , Lisina , Neoplasias/genética , Neoplasias/patología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Estabilidad Proteica , Proteínas de Unión al ARN/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Transducción de Señal , Sumoilación , Telómero/genética , Telómero/patología
7.
Proc Natl Acad Sci U S A ; 121(39): e2400531121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39292746

RESUMEN

It is well established that DNA Damage Regulated Autophagy Modulator 1 (DRAM1), a lysosomal protein and a target of p53, participates in autophagy. The cellular functions of DRAM1 beyond autophagy remain elusive. Here, we show p53-dependent upregulation of DRAM1 in mitochondrial damage-induced Parkinson's disease (PD) models and exacerbation of disease phenotypes by DRAM1. We find that the lysosomal location of DRAM1 relies on its intact structure including the cytosol-facing C-terminal domain. Excess DRAM1 disrupts endoplasmic reticulum (ER) structure, triggers ER stress, and induces protective ER-phagy. Mechanistically, DRAM1 interacts with stromal interacting molecule 1 (STIM1) to tether lysosomes to the ER and perturb STIM1 function in maintaining intracellular calcium homeostasis. STIM1 overexpression promotes cellular health by restoring calcium homeostasis, ER stress response, ER-phagy, and AMP-activated protein kinase (AMPK)-Unc-51 like autophagy activating kinase 1 (ULK1) signaling in cells with excess DRAM1. Thus, by promoting organelle contact between lysosomes and the ER, DRAM1 modulates ER structure and function and cell survival under stress. Our results suggest that DRAM1 as a lysosomal protein performs diverse roles in cellular homeostasis and stress response. These findings may have significant implications for our understanding of the role of the p53/DRAM1 axis in human diseases, from cancer to neurodegenerative diseases.


Asunto(s)
Calcio , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Homeostasis , Lisosomas , Proteínas de la Membrana , Molécula de Interacción Estromal 1 , Proteína p53 Supresora de Tumor , Lisosomas/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 1/genética , Humanos , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Estrés del Retículo Endoplásmico/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Ratones , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología
8.
EMBO Rep ; 25(9): 3789-3811, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39152217

RESUMEN

One of the key events in autophagy is the formation of a double-membrane phagophore, and many regulatory mechanisms underpinning this remain under investigation. WIPI2b is among the first proteins to be recruited to the phagophore and is essential for stimulating autophagy flux by recruiting the ATG12-ATG5-ATG16L1 complex, driving LC3 and GABARAP lipidation. Here, we set out to investigate how WIPI2b function is regulated by phosphorylation. We studied two phosphorylation sites on WIPI2b, S68 and S284. Phosphorylation at these sites plays distinct roles, regulating WIPI2b's association with ATG16L1 and the phagophore, respectively. We confirm WIPI2b is a novel ULK1 substrate, validated by the detection of endogenous phosphorylation at S284. Notably, S284 is situated within an 18-amino acid stretch, which, when in contact with liposomes, forms an amphipathic helix. Phosphorylation at S284 disrupts the formation of the amphipathic helix, hindering the association of WIPI2b with membranes and autophagosome formation. Understanding these intricacies in the regulatory mechanisms governing WIPI2b's association with its interacting partners and membranes, holds the potential to shed light on these complex processes, integral to phagophore biogenesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Autofagia , Proteínas de la Membrana , Humanos , Autofagosomas/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Portadoras/metabolismo , Células HEK293 , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Unión Proteica
9.
Proc Natl Acad Sci U S A ; 120(29): e2301002120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428930

RESUMEN

Autophagy is a major means for the elimination of protein inclusions in neurons in neurodegenerative diseases such as Parkinson's disease (PD). Yet, the mechanism of autophagy in the other brain cell type, glia, is less well characterized and remains largely unknown. Here, we present evidence that the PD risk factor, Cyclin-G-associated kinase (GAK)/Drosophila homolog Auxilin (dAux), is a component in glial autophagy. The lack of GAK/dAux increases the autophagosome number and size in adult fly glia and mouse microglia, and generally up-regulates levels of components in the initiation and PI3K class III complexes. GAK/dAux interacts with the master initiation regulator UNC-51like autophagy activating kinase 1/Atg1 via its uncoating domain and regulates the trafficking of Atg1 and Atg9 to autophagosomes, hence controlling the onset of glial autophagy. On the other hand, lack of GAK/dAux impairs the autophagic flux and blocks substrate degradation, suggesting that GAK/dAux might play additional roles. Importantly, dAux contributes to PD-like symptoms including dopaminergic neurodegeneration and locomotor function in flies. Our findings identify an autophagy factor in glia; considering the pivotal role of glia under pathological conditions, targeting glial autophagy is potentially a therapeutic strategy for PD.


Asunto(s)
Proteínas de Drosophila , Enfermedad de Parkinson , Animales , Ratones , Drosophila/metabolismo , Auxilinas/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Ciclinas/metabolismo , Neuroglía/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo
10.
Trends Biochem Sci ; 46(8): 687-700, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33593593

RESUMEN

Autophagy is the primary catabolic program of the cell that promotes survival in response to metabolic stress. It is tightly regulated by a suite of kinases responsive to nutrient status, including mammalian target of rapamycin complex 1 (mTORC1), AMP-activated protein kinase (AMPK), protein kinase C-α (PKCα), MAPK-activated protein kinases 2/3 (MAPKAPK2/3), Rho kinase 1 (ROCK1), c-Jun N-terminal kinase 1 (JNK), and Casein kinase 2 (CSNK2). Here, we highlight recently uncovered mechanisms linking amino acid, glucose, and oxygen levels to autophagy regulation through mTORC1 and AMPK. In addition, we describe new pathways governing the autophagic machinery, including the Unc-51-like (ULK1), vacuolar protein sorting 34 (VPS34), and autophagy related 16 like 1 (ATG16L1) enzyme complexes. Novel downstream targets of ULK1 protein kinase are also discussed, such as the ATG16L1 subunit of the microtubule-associated protein 1 light chain 3 (LC3)-lipidating enzyme and the ATG14 subunit of the VPS34 complex. Collectively, we describe the complexities of the autophagy pathway and its role in maintaining cellular nutrient homeostasis during times of starvation.


Asunto(s)
Autofagia , Serina-Treonina Quinasas TOR , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Nutrientes , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
11.
EMBO J ; 40(14): e105985, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34121209

RESUMEN

Autophagy is a process through which intracellular cargoes are catabolised inside lysosomes. It involves the formation of autophagosomes initiated by the serine/threonine kinase ULK and class III PI3 kinase VPS34 complexes. Here, unbiased phosphoproteomics screens in mouse embryonic fibroblasts deleted for Ulk1/2 reveal that ULK loss significantly alters the phosphoproteome, with novel high confidence substrates identified including VPS34 complex member VPS15 and AMPK complex subunit PRKAG2. We identify six ULK-dependent phosphorylation sites on VPS15, mutation of which reduces autophagosome formation in cells and VPS34 activity in vitro. Mutation of serine 861, the major VPS15 phosphosite, decreases both autophagy initiation and autophagic flux. Analysis of VPS15 knockout cells reveals two novel ULK-dependent phenotypes downstream of VPS15 removal that can be partially recapitulated by chronic VPS34 inhibition, starvation-independent accumulation of ULK substrates and kinase activity-regulated recruitment of autophagy proteins to ubiquitin-positive structures.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Proteómica/métodos
12.
EMBO J ; 40(10): e103563, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33932238

RESUMEN

The early secretory pathway and autophagy are two essential and evolutionarily conserved endomembrane processes that are finely interlinked. Although growing evidence suggests that intracellular trafficking is important for autophagosome biogenesis, the molecular regulatory network involved is still not fully defined. In this study, we demonstrate a crucial effect of the COPII vesicle-related protein TFG (Trk-fused gene) on ULK1 puncta number and localization during autophagy induction. This, in turn, affects formation of the isolation membrane, as well as the correct dynamics of association between LC3B and early ATG proteins, leading to the proper formation of both omegasomes and autophagosomes. Consistently, fibroblasts derived from a hereditary spastic paraparesis (HSP) patient carrying mutated TFG (R106C) show defects in both autophagy and ULK1 puncta accumulation. In addition, we demonstrate that TFG activity in autophagy depends on its interaction with the ATG8 protein LC3C through a canonical LIR motif, thereby favouring LC3C-ULK1 binding. Altogether, our results uncover a link between TFG and autophagy and identify TFG as a molecular scaffold linking the early secretion pathway to autophagy.


Asunto(s)
Autofagosomas/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Western Blotting , Técnica del Anticuerpo Fluorescente , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/genética , Proteínas/genética , Interferencia de ARN
13.
J Cell Sci ; 136(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36644903

RESUMEN

Autophagy is a catabolic process during which cytosolic material is enwrapped in a newly formed double-membrane structure called the autophagosome, and subsequently targeted for degradation in the lytic compartment of the cell. The fusion of autophagosomes with the lytic compartment is a tightly regulated step and involves membrane-bound SNARE proteins. These play a crucial role as they promote lipid mixing and fusion of the opposing membranes. Among the SNARE proteins implicated in autophagy, the essential SNARE protein YKT6 is the only SNARE protein that is evolutionarily conserved from yeast to humans. Here, we show that alterations in YKT6 function, in both mammalian cells and nematodes, produce early and late autophagy defects that result in reduced survival. Moreover, mammalian autophagosomal YKT6 is phospho-regulated by the ULK1 kinase, preventing premature bundling with the lysosomal SNARE proteins and thereby inhibiting autophagosome-lysosome fusion. Together, our findings reveal that timely regulation of the YKT6 phosphorylation status is crucial throughout autophagy progression and cell survival.


Asunto(s)
Autofagia , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Proteínas R-SNARE/metabolismo , Fosforilación , Autofagia/genética , Autofagosomas/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Fusión de Membrana/fisiología , Saccharomyces cerevisiae/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Blood ; 142(10): 918-932, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37339583

RESUMEN

Most cells can eliminate unstable or misfolded proteins through quality control mechanisms. In the inherited red blood cell disorder ß-thalassemia, mutations in the ß-globin gene (HBB) lead to a reduction in the corresponding protein and the accumulation of cytotoxic free α-globin, which causes maturation arrest and apoptosis of erythroid precursors and reductions in the lifespan of circulating red blood cells. We showed previously that excess α-globin is eliminated by Unc-51-like autophagy activating kinase 1 (ULK1)-dependent autophagy and that stimulating this pathway by systemic mammalian target of rapamycin complex 1 (mTORC1) inhibition alleviates ß-thalassemia pathologies. We show here that disrupting the bicistronic microRNA gene miR-144/451 alleviates ß-thalassemia by reducing mTORC1 activity and stimulating ULK1-mediated autophagy of free α-globin through 2 mechanisms. Loss of miR-451 upregulated its target messenger RNA, Cab39, which encodes a cofactor for LKB1, a serine-threonine kinase that phosphorylates and activates the central metabolic sensor adenosine monophosphate-activated protein kinase (AMPK). The resultant enhancement of LKB1 activity stimulated AMPK and its downstream effects, including repression of mTORC1 and direct activation of ULK1. In addition, loss of miR-144/451 inhibited the expression of erythroblast transferrin receptor 1, causing intracellular iron restriction, which has been shown to inhibit mTORC1, reduce free α-globin precipitates, and improve hematological indices in ß-thalassemia. The beneficial effects of miR-144/451 loss in ß-thalassemia were inhibited by the disruption of Cab39 or Ulk1 genes. Together, our findings link the severity of ß-thalassemia to a highly expressed erythroid microRNA locus and a fundamental, metabolically regulated protein quality control pathway that is amenable to therapeutic manipulation.


Asunto(s)
MicroARNs , Talasemia beta , Humanos , Talasemia beta/terapia , Proteínas Quinasas Activadas por AMP/metabolismo , Globinas alfa , Autofagia/genética , MicroARNs/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
15.
FASEB J ; 38(20): e70118, 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39439252

RESUMEN

Ischemia reperfusion (I/R) was considered as one of main causes of acute kidney injury (AKI). However, the exact mechanism remains unclear. Here, this study aimed to investigate the role and mechanism of the m6A demethylase fat mass and obesity-associated (FTO) protein in I/R-induced AKI. HK-2 cells and SD rats were utilized to establish hypoxia/reoxygenation (H/R) or I/R induced AKI models. The changes of RNAs and proteins were quantified using RT-qPCR, western blot, and immunofluorescence assays, respectively. Cell proliferation and apoptosis were assessed by CCK-8 and flow cytometry. Interactions between molecules were investigated using RIP, ChIP, Co-IP, RNA pull-down, and dual luciferase reporter assays. Global m6A quantification was evaluated by kits. TUNEL and HE staining were employed for histopathological examinations. Oxidative stress-related indicators and renal function were determined using ELISA assays. The FTO expression was downregulated in H/R-induced HK-2 cells and renal tissues from I/R-induced rats. Overexpression of FTO improved the cell viability but repressed apoptosis and oxidative stress in H/R-treated HK-2 cells, as well as enhanced renal function and alleviated kidney injury in I/R rats. Notably, the FTO overexpression significantly increased autophagy-related LC3 and ULK1 levels. When autophagy was inhibited, the protective effects of FTO in AKI were diminished. Notably, Ambra1, a crucial regulator of autophagy, was repressed in H/R-induced HK-2 cells. However, the FTO overexpression restored the Ambra1 expression by reducing m6A modification of its mRNA. SP1, acting as an upstream transcription factor, directly interacts with the FTO promoter to enhance FTO expression. Knockdown of SP1 or Ambra1 suppressed the beneficial effects of FTO upregulation on autophagy and oxidative stress injury in H/R-stimulated cells. FTO, transcriptionally activated by SP1, promoted autophagy by upregulating Ambra1/ULK1 signaling, thereby inhibiting oxidative stress and kidney injury. These findings may provide some novel insights for AKI treatment.


Asunto(s)
Lesión Renal Aguda , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Ratas , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Masculino , Humanos , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular , Apoptosis , Estrés Oxidativo , Péptidos y Proteínas de Señalización Intracelular
16.
FASEB J ; 38(19): e70059, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39331575

RESUMEN

White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. Genome-wide association studies identified TRIM47 at the 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found highly expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we predicted a highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription, and vacuole formation. Together, we demonstrate that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation.


Asunto(s)
Autofagia , Encéfalo , Células Endoteliales , Animales , Ratones , Humanos , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Factores de Riesgo , Masculino , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Ratones Endogámicos C57BL , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
17.
EMBO Rep ; 24(11): e56850, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37846507

RESUMEN

The remodeling and stiffening of the extracellular matrix (ECM) is a well-recognized modulator of breast cancer progression. How changes in the mechanical properties of the ECM are converted into biochemical signals that direct tumor cell migration and metastasis remain poorly characterized. Here, we describe a new role for the autophagy-inducing serine/threonine kinases ULK1 and ULK2 in mechanotransduction. We show that ULK1/2 activity inhibits the assembly of actin stress fibers and focal adhesions (FAs) and as a consequence impedes cell contraction and migration, independent of its role in autophagy. Mechanistically, we identify PXN/paxillin, a key component of the mechanotransducing machinery, as a direct binding partner and substrate of ULK1/2. ULK-mediated phosphorylation of PXN at S32 and S119 weakens homotypic interactions and liquid-liquid phase separation of PXN, impairing FA assembly, which in turn alters the mechanical properties of breast cancer cells and their response to mechanical stimuli. ULK1/2 and the well-characterized PXN regulator, FAK/Src, have opposing functions on mechanotransduction and compete for phosphorylation of adjacent serine and tyrosine residues. Taken together, our study reveals ULK1/2 as important regulator of PXN-dependent mechanotransduction.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Paxillin/metabolismo , Mecanotransducción Celular , Fosforilación , Movimiento Celular , Serina/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
18.
Nature ; 570(7761): 380-384, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31092924

RESUMEN

Mitochondria contain their own genomes that, unlike nuclear genomes, are inherited only in the maternal line. Owing to a high mutation rate and low levels of recombination of mitrochondrial DNA (mtDNA), special selection mechanisms exist in the female germline to prevent the accumulation of deleterious mutations1-5. However, the molecular mechanisms that underpin selection are poorly understood6. Here we visualize germline selection in Drosophila using an allele-specific fluorescent in situ-hybridization approach to distinguish wild-type from mutant mtDNA. Selection first manifests in the early stages of Drosophila oogenesis, triggered by reduction of the pro-fusion protein Mitofusin. This leads to the physical separation of mitochondrial genomes into different mitochondrial fragments, which prevents the mixing of genomes and their products and thereby reduces complementation. Once fragmented, mitochondria that contain mutant genomes are less able to produce ATP, which marks them for selection through a process that requires the mitophagy proteins Atg1 and BNIP3. A reduction in Atg1 or BNIP3 decreases the amount of wild-type mtDNA, which suggests a link between mitochondrial turnover and mtDNA replication. Fragmentation is not only necessary for selection in germline tissues, but is also sufficient to induce selection in somatic tissues in which selection is normally absent. We postulate that there is a generalizable mechanism for selection against deleterious mtDNA mutations, which may enable the development of strategies for the treatment of mtDNA disorders.


Asunto(s)
ADN Mitocondrial/genética , Drosophila/citología , Drosophila/genética , Células Germinativas/metabolismo , Mitocondrias/genética , Mitofagia , Adenosina Trifosfato/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , ADN Mitocondrial/aislamiento & purificación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación
19.
Nature ; 567(7747): 262-266, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842662

RESUMEN

Cyclic GMP-AMP (cGAMP) synthase (cGAS) detects infections or tissue damage by binding to microbial or self DNA in the cytoplasm1. Upon binding DNA, cGAS produces cGAMP that binds to and activates the adaptor protein STING, which then activates the kinases IKK and TBK1 to induce interferons and other cytokines2-6. Here we report that STING also activates autophagy through a mechanism that is independent of TBK1 activation and interferon induction. Upon binding cGAMP, STING translocates to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and the Golgi in a process that is dependent on the COP-II complex and ARF GTPases. STING-containing ERGIC serves as a membrane source for LC3 lipidation, which is a key step in autophagosome biogenesis. cGAMP induced LC3 lipidation through a pathway that is dependent on WIPI2 and ATG5 but independent of the ULK and VPS34-beclin kinase complexes. Furthermore, we show that cGAMP-induced autophagy is important for the clearance of DNA and viruses in the cytosol. Interestingly, STING from the sea anemone Nematostella vectensis induces autophagy but not interferons in response to stimulation by cGAMP, which suggests that induction of autophagy is a primordial function of the cGAS-STING pathway.


Asunto(s)
Autofagia , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Animales , Autofagosomas/metabolismo , Proteína 5 Relacionada con la Autofagia/deficiencia , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Beclina-1/deficiencia , Beclina-1/genética , Beclina-1/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Citosol/virología , Virus ADN/genética , Virus ADN/metabolismo , ADN Viral/metabolismo , Retículo Endoplásmico/metabolismo , Evolución Molecular , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Interferones/biosíntesis , Interferones/inmunología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Nucleótidos Cíclicos/inmunología , Nucleótidos Cíclicos/metabolismo , Proteínas de Unión a Fosfato , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Anémonas de Mar , Proteínas de Transporte Vesicular/metabolismo
20.
Mol Cell ; 67(6): 974-989.e6, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28890335

RESUMEN

During autophagosome formation in mammalian cells, isolation membranes (IMs; autophagosome precursors) dynamically contact the ER. Here, we demonstrated that the ER-localized metazoan-specific autophagy protein EPG-3/VMP1 controls ER-IM contacts. Loss of VMP1 causes stable association of IMs with the ER, thus blocking autophagosome formation. Interaction of WIPI2 with the ULK1/FIP200 complex and PI(3)P contributes to the formation of ER-IM contacts, and these interactions are enhanced by VMP1 depletion. VMP1 controls contact formation by promoting SERCA (sarco[endo]plasmic reticulum calcium ATPase) activity. VMP1 interacts with SERCA and prevents formation of the SERCA/PLN/SLN inhibitory complex. VMP1 also modulates ER contacts with lipid droplets, mitochondria, and endosomes. These ER contacts are greatly elevated by the SERCA inhibitor thapsigargin. Calmodulin acts as a sensor/effector to modulate the ER contacts mediated by VMP1/SERCA. Our study provides mechanistic insights into the establishment and disassociation of ER-IM contacts and reveals that VMP1 modulates SERCA activity to control ER contacts.


Asunto(s)
Autofagosomas/enzimología , Retículo Endoplásmico/enzimología , Membranas Intracelulares/enzimología , Proteínas de la Membrana/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Animales Modificados Genéticamente , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia , Células COS , Sistemas CRISPR-Cas , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/metabolismo , Chlorocebus aethiops , Genotipo , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de la Membrana/genética , Proteínas Musculares/metabolismo , Fenotipo , Fosfatos de Fosfatidilinositol/metabolismo , Proteolípidos/metabolismo , Interferencia de ARN , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA