Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 478: 89-101, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34048735

RESUMEN

Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in de novo guanine nucleotide biosynthesis. Its activity is negatively regulated by the binding of GTP. IMPDH can form a membraneless subcellular structure termed the cytoophidium in response to certain changes in the metabolic status of the cell. The polymeric form of IMPDH, which is the subunit of the cytoophidium, has been shown to be more resistant to the inhibition by GTP at physiological concentrations, implying a functional correlation between cytoophidium formation and the upregulation of GTP biosynthesis. Herein we demonstrate that zebrafish IMPDH1b and IMPDH2 isoforms can assemble abundant cytoophidium in most of cultured cells under stimuli, while zebrafish IMPDH1a shows distinctive properties of forming the cytoophidium in different cell types. Point mutations that disrupt cytoophidium structure in mammalian models also prevent the aggregation of zebrafish IMPDHs. In addition, we discover the presence of the IMPDH cytoophidium in various tissues of larval and adult fish under normal growth conditions. Our results reveal that polymerization and cytoophidium assembly of IMPDH can be a regulatory machinery conserved among vertebrates, and with specific physiological purposes.


Asunto(s)
Estructuras Citoplasmáticas/ultraestructura , IMP Deshidrogenasa/química , Proteínas de Pez Cebra/química , Pez Cebra/metabolismo , Animales , Línea Celular , Estructuras Citoplasmáticas/química , Expresión Génica , Guanosina Trifosfato/biosíntesis , Guanosina Trifosfato/metabolismo , Humanos , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Isoenzimas/química , Isoenzimas/genética , Mutación Puntual , Regulación hacia Arriba , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
J Biol Chem ; 294(40): 14768-14775, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31416831

RESUMEN

IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the rate-limiting step in the de novo guanine nucleotide biosynthetic pathway. Because of its involvement in the control of cell division and proliferation, IMPDH represents a therapeutic for managing several diseases, including microbial infections and cancer. IMPDH must be tightly regulated, but the molecular mechanisms responsible for its physiological regulation remain unknown. To this end, we recently reported an important role of adenine and guanine mononucleotides that bind to the regulatory Bateman domain to allosterically modulate the catalytic activity of eukaryotic IMPDHs. Here, we have used enzyme kinetics, X-ray crystallography, and small-angle X-ray scattering (SAXS) methodologies to demonstrate that adenine/guanine dinucleoside polyphosphates bind to the Bateman domain of IMPDH from the fungus Ashbya gossypii with submicromolar affinities. We found that these dinucleoside polyphosphates modulate the catalytic activity of IMPDHs in vitro by efficiently competing with the adenine/guanine mononucleotides for the allosteric sites. These results suggest that dinucleoside polyphosphates play important physiological roles in the allosteric regulation of IMPDHs by adding an additional mechanism for fine-tuning the activities of these enzymes. We propose that these findings may have important implications for the design of therapeutic strategies to inhibit IMPDHs.


Asunto(s)
Fosfatos de Dinucleósidos/química , IMP Deshidrogenasa/química , Conformación Proteica , Dominios Proteicos/genética , Regulación Alostérica/genética , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Sitios de Unión/genética , Catálisis , Cristalografía por Rayos X , Fosfatos de Dinucleósidos/genética , Eremothecium/genética , Nucleótidos de Guanina , Humanos , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/ultraestructura , Modelos Moleculares , Neoplasias/genética , Dispersión del Ángulo Pequeño , Difracción de Rayos X
3.
J Biol Chem ; 294(39): 14454-14466, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31337707

RESUMEN

Members of a large family of Ankyrin Repeat Domain (ANKRD) proteins regulate numerous cellular processes by binding to specific protein targets and modulating their activity, stability, and other properties. The same ANKRD protein may interact with different targets and regulate distinct cellular pathways. The mechanisms responsible for switches in the ANKRDs' behavior are often unknown. We show that cells' metabolic state can markedly alter interactions of an ANKRD protein with its target and the functional outcomes of this interaction. ANKRD9 facilitates degradation of inosine monophosphate dehydrogenase 2 (IMPDH2), the rate-limiting enzyme in GTP biosynthesis. Under basal conditions ANKRD9 is largely segregated from the cytosolic IMPDH2 in vesicle-like structures. Upon nutrient limitation, ANKRD9 loses its vesicular pattern and assembles with IMPDH2 into rodlike filaments, in which IMPDH2 is stable. Inhibition of IMPDH2 activity with ribavirin favors ANKRD9 binding to IMPDH2 rods. The formation of ANKRD9/IMPDH2 rods is reversed by guanosine, which restores ANKRD9 associations with the vesicle-like structures. The conserved Cys109Cys110 motif in ANKRD9 is required for the vesicle-to-rods transition as well as binding and regulation of IMPDH2. Oppositely to overexpression, ANKRD9 knockdown increases IMPDH2 levels and prevents formation of IMPDH2 rods upon nutrient limitation. Taken together, the results suggest that a guanosine-dependent metabolic switch determines the mode of ANKRD9 action toward IMPDH2.


Asunto(s)
IMP Deshidrogenasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Sitios de Unión , Vesículas Citoplasmáticas/metabolismo , Guanosina/metabolismo , Células HEK293 , Células HeLa , Humanos , IMP Deshidrogenasa/química , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Nutrientes/metabolismo , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
4.
Mol Cell Biochem ; 465(1-2): 155-164, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31838626

RESUMEN

Mutations in the retinal inosine monophosphate dehydrogenase1 (IMPDH1) gene is believed to be one cause of retinitis pigmentosa (RP). The main structural difference between the mutation-susceptible retinal isoforms with canonical one resides in the C- and N-terminal extensions. There are limited studies on the structure and function of terminal peptide extensions of the IMPDH1 retinal isoforms. Using recombinant murine IMPDH1 (mH1), we evaluated the kinetics of the retinal isoforms along with inhibition by some of the purine nucleotides. Molecular modeling tools were also applied to study the probable effect(s) of the terminal peptide tails on the function of the retinal isoforms. Molecular dynamic simulations indicated the possible impact of the end-terminal segments on the enzyme function through interactions with the enzyme's finger domain, affecting its critical pseudo barrel structure. The higher experimentally-determined Km and Ki values of the retinal mIMPDH1 (546) and mIMPDH1 (603) relative to that of the canonical isoform, mIMPDH1 (514), might clearly be due to these interactions. Furthermore and despite of the canonical isoform, the retinal isoforms of mH1 exhibited no NAD+ substrate inhibition. The resent data would certainly provide the ground for future evaluation of the physiological significance of these variations.


Asunto(s)
IMP Deshidrogenasa/química , Modelos Moleculares , Retina/enzimología , Animales , IMP Deshidrogenasa/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Ratones
5.
Proc Natl Acad Sci U S A ; 114(29): E5986-E5994, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28674004

RESUMEN

Inosine monophosphate dehydrogenase (IMPDH) of human is an attractive target for immunosuppressive agents. Currently, small-molecule inhibitors do not show good selectivity for different IMPDH isoforms (IMPDH1 and IMPDH2), resulting in some adverse effects, which limit their use. Herein, we used a small-molecule probe specifically targeting IMPDH2 and identified Cysteine residue 140 (Cys140) as a selective druggable site. On covalently binding to Cys140, the probe exerts an allosteric regulation to block the catalytic pocket of IMPDH2 and further induces IMPDH2 inactivation, leading to an effective suppression of neuroinflammatory responses. However, the probe does not covalently bind to IMPDH1. Taken together, our study shows Cys140 as a druggable site for selectively inhibiting IMPDH2, which provides great potential for development of therapy agents for autoimmune and neuroinflammatory diseases with less unfavorable tolerability profile.


Asunto(s)
Inhibidores Enzimáticos/farmacología , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/metabolismo , Inflamación/tratamiento farmacológico , Isoflavonas/farmacología , Regulación Alostérica , Sustitución de Aminoácidos , Animales , Antiinflamatorios no Esteroideos/farmacología , Sitios de Unión , Dominio Catalítico , Línea Celular , Cisteína/metabolismo , Humanos , IMP Deshidrogenasa/química , IMP Deshidrogenasa/genética , Inflamación/metabolismo , Isoflavonas/química , Ratones Endogámicos BALB C , Microglía/efectos de los fármacos , Microglía/patología , Terapia Molecular Dirigida/métodos , Relación Estructura-Actividad
6.
Molecules ; 25(10)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32423116

RESUMEN

Citrus huanglongbing (HLB) is a destructive disease that causes significant damage to many citrus producing areas worldwide. To date, no strategy against this disease has been established. Inosine 5'-monophosphate dehydrogenase (IMPDH) plays crucial roles in the de novo synthesis of guanine nucleotides. This enzyme is used as a potential target to treat bacterial infection. In this study, the crystal structure of a deletion mutant of CLas IMPDHΔ98-201 in the apo form was determined. Eight known bioactive compounds were used as ligands for molecular docking. The results showed that bronopol and disulfiram bound to CLas IMPDHΔ98-201 with high affinity. These compounds were tested for their inhibition against CLas IMPDHΔ98-201 activity. Bronopol and disulfiram showed high inhibition at nanomolar concentrations, and bronopol was found to be the most potent molecule (Ki = 234 nM). The Ki value of disulfiram was 616 nM. These results suggest that bronopol and disulfiram can be considered potential candidate agents for the development of CLas inhibitors.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Disulfiram/química , Inhibidores Enzimáticos/química , IMP Deshidrogenasa/química , Glicoles de Propileno/química , Antibacterianos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Citrus/efectos de los fármacos , Citrus/microbiología , Clonación Molecular , Cristalografía por Rayos X , Disulfiram/metabolismo , Inhibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/metabolismo , Cinética , Liberibacter/enzimología , Liberibacter/genética , Liberibacter/patogenicidad , Ligandos , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/terapia , Glicoles de Propileno/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Termodinámica
7.
Biochemistry (Mosc) ; 82(10): 1079-1087, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29037129

RESUMEN

Cystathionine ß-synthase (CBS) domains discovered 20 years ago can bind different adenosine derivatives (AMP, ADP, ATP, S-adenosylmethionine, NAD, diadenosine polyphosphates) and thus regulate the activities of numerous proteins. Mutations in CBS domains of enzymes and membrane transporters are associated with several hereditary diseases. The regulatory unit is a quartet of CBS domains that belong to one or two polypeptides and usually form a conserved disk-like structure. CBS domains function as "internal inhibitors" in enzymes, and their bound ligands either amplify or attenuate the inhibitory effect. Recent studies have opened a way to understanding the structural basis of enzyme regulation via CBS domains and widened the list of their bound ligands.


Asunto(s)
Cistationina betasintasa/metabolismo , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cistationina betasintasa/química , Humanos , IMP Deshidrogenasa/química , IMP Deshidrogenasa/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína
8.
J Biol Chem ; 290(9): 5893-911, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25572472

RESUMEN

The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization.


Asunto(s)
Antiinfecciosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , IMP Deshidrogenasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Antiinfecciosos/química , Bacillus anthracis/efectos de los fármacos , Bacillus anthracis/enzimología , Bacillus anthracis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/enzimología , Campylobacter jejuni/genética , Clostridium perfringens/efectos de los fármacos , Clostridium perfringens/enzimología , Clostridium perfringens/genética , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , IMP Deshidrogenasa/química , IMP Deshidrogenasa/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
9.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 9): 1890-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26327379

RESUMEN

Inosine-5'-monophosphate dehydrogenases (IMPDHs), which are the rate-limiting enzymes in guanosine-nucleotide biosynthesis, are important therapeutic targets. Despite in-depth functional and structural characterizations of various IMPDHs, the role of the Bateman domain containing two CBS motifs remains controversial. Their involvement in the allosteric regulation of Pseudomonas aeruginosa IMPDH by Mg-ATP has recently been reported. To better understand the function of IMPDH and the importance of the CBS motifs, the structure of a variant devoid of these modules (ΔCBS) was solved at high resolution in the apo form and in complex with IMP. In addition, a single amino-acid substitution variant, D199N, was also structurally characterized: the mutation corresponds to the autosomal dominant mutant D226N of human IMPDH1, which is responsible for the onset of the retinopathy adRP10. These new structures shed light onto the possible mechanism of regulation of the IMPDH enzymatic activity. In particular, three conserved loops seem to be key players in this regulation as they connect the tetramer-tetramer interface with the active site and show significant modification upon substrate binding.


Asunto(s)
IMP Deshidrogenasa/química , Pseudomonas aeruginosa/enzimología , Regulación Alostérica , Secuencia de Aminoácidos , Cristalografía por Rayos X , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1604-14, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26249342

RESUMEN

A coordinate-based method is presented to detect peptide bonds that need correction either by a peptide-plane flip or by a trans-cis inversion of the peptide bond. When applied to the whole Protein Data Bank, the method predicts 4617 trans-cis flips and many thousands of hitherto unknown peptide-plane flips. A few examples are highlighted for which a correction of the peptide-plane geometry leads to a correction of the understanding of the structure-function relation. All data, including 1088 manually validated cases, are freely available and the method is available from a web server, a web-service interface and through WHAT_CHECK.


Asunto(s)
Péptidos/química , Proteínas/química , Animales , Cristalografía por Rayos X , Bases de Datos de Proteínas , Humanos , IMP Deshidrogenasa/química , Modelos Moleculares , Conformación Proteica , Proteínas de Unión al GTP rab4/química
11.
Bioorg Med Chem ; 23(10): 2562-7, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25865131

RESUMEN

A series of open-chain analogs of cyclic peptides was designed and synthesized using sansalvamide A as a model compound. All compounds exhibited low antitumor activity. Furthermore, the evaluation of their inhibitory potency toward IMPDH, SHP2, ACHE, proteasome, MAGL, and cathepsin B showed that all of the compounds were potent against protein tyrosine phosphatase Shp2. Specifically, compounds 1a, 1d, 2b, and 2f were found to inhibit SHP2 with IC50 values in the low micromolar range and good selectivity. Based on the molecular docking results, the binding modes of the chain cyclic peptides in the active center of SHP2 were discussed.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Péptidos Cíclicos/síntesis química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Acetilcolinesterasa/química , Dominio Catalítico , Catepsina B/antagonistas & inhibidores , Catepsina B/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Pruebas de Enzimas , Inhibidores Enzimáticos/farmacología , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/química , Expresión Génica , Células HeLa , Humanos , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/química , Cinética , Simulación del Acoplamiento Molecular , Péptidos Cíclicos/farmacología , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Relación Estructura-Actividad
12.
Crit Rev Biochem Mol Biol ; 47(3): 250-63, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22332716

RESUMEN

The inosine monophosphate dehydrogenase (IMPDH)/guanosine monophosphate reductase (GMPR) family of (ß/α)(8) enzymes presents an excellent opportunity to investigate how subtle changes in enzyme structure change reaction specificity. IMPDH and GMPR bind the same ligands with similar affinities and share a common set of catalytic residues. Both enzymes catalyze a hydride transfer reaction involving a nicotinamide cofactor hydride, and both reactions proceed via the same covalent intermediate. In the case of IMPDH, this intermediate reacts with water, while in GMPR it reacts with ammonia. In both cases, the two chemical transformations are separated by a conformational change. In IMPDH, the conformational change involves a mobile protein flap while in GMPR, the cofactor moves. Thus reaction specificity is controlled by differences in dynamics, which in turn are controlled by residues outside the active site. These findings have some intriguing implications for the evolution of the IMPDH/GMPR family.


Asunto(s)
GMP-Reductasa/química , Guanosina Monofosfato/química , IMP Deshidrogenasa/química , Amoníaco/química , Dominio Catalítico , Cationes Monovalentes/química , Humanos , Cinética , Ligandos , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato , Agua/química
13.
PLoS Pathog ; 8(10): e1002957, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071437

RESUMEN

We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus.


Asunto(s)
Cryptococcus neoformans/enzimología , Cryptococcus neoformans/patogenicidad , Guanosina Trifosfato/biosíntesis , IMP Deshidrogenasa/química , IMP Deshidrogenasa/metabolismo , Ácido Micofenólico/farmacología , Animales , Antifúngicos/farmacología , Caenorhabditis elegans/microbiología , Cryptococcus gattii/efectos de los fármacos , Cryptococcus gattii/genética , Cryptococcus gattii/aislamiento & purificación , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/metabolismo , Cristalografía por Rayos X , Farmacorresistencia Fúngica/genética , Inhibidores Enzimáticos/farmacología , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/genética , Meningoencefalitis/microbiología
14.
J Enzyme Inhib Med Chem ; 29(3): 408-19, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23663081

RESUMEN

This study is based on our attempts to further explore the structure-activity relationship (SAR) of VX-148 (3) in an attempt to identify inosine 5'-mono-phosphate dehydrogenase (IMPDH) inhibitors superior to mycophenolic acid. A five-point pharmacophore developed using structurally diverse, known IMPDH inhibitors guided further design of novel analogs of 3. Several conventional as well as novel medicinal chemistry strategies were tried. The combined structure- and ligand-based approaches culminated in a few analogs with either retained or slightly higher potency. The compounds which retained the potency were also checked for their ability to inhibit human peripheral blood mononuclear cells proliferation. This study illuminates the stringent structural requirements and strict SAR for IMPDH II inhibition.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/química , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Ácido Micofenólico/química , Ácido Micofenólico/farmacología , Compuestos de Fenilurea/química , Compuestos de Fenilurea/farmacología , Relación Estructura-Actividad
15.
Protein J ; 43(3): 592-602, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733555

RESUMEN

The main structural difference between the mutation-susceptible retinal isoforms of inosine 5´-monophosphate dehydrogenase-1 (IMPDH-1) with the canonical form resides in the C- and N-terminal peptide extensions with unknown structural/functional impacts. In this report, we aimed to experimentally evaluate the functional impact of these extensions on the specific/non-specific single-stranded DNA (ssDNA)-binding activities relative to those of the canonical form. Our in silico findings indicated the possible contribution of the C-terminal segment to the reduced flexibility of the Bateman domain of the enzyme. In addition, the in silico data indicated that the N-terminal tail acts by altering the distance between the tetramers in the concave octamer complex (the native form) of the enzyme. The overall impact of these predicted structural variations became evident, first, through higher Km values with respect to either of the substrates relative to the canonical isoform, as reported previously (Andashti et al. in Mol Cell Biochem 465(1):155-164, 2020). Secondary, the binding of the recombinant mouse retinal isoform IMPDH1 (603) to its specific Rhodopsin target gene was significantly augmented while its binding to non-specific ssDNA was lower than that of the canonical isoform. The DNA-binding activity of the other mouse retinal isoform, IMPDH1(546), to specific and non-specific ssDNA was lower than that of the canonical form most probably due to the in silico predicted rigidity created in the Bateman domain by the C-terminal peptide extension. Furthermore, the DNA binding to the Rhodopsin target gene by each of the IMPDH isoforms influenced in the presence of GTP (Guanosine triphosphate) and ATP (Adenosine triphosphate).


Asunto(s)
IMP Deshidrogenasa , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/química , IMP Deshidrogenasa/genética , Animales , Ratones , Isoenzimas/metabolismo , Isoenzimas/química , Isoenzimas/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Retina/metabolismo , Retina/enzimología , Unión Proteica , Humanos
16.
Nat Chem Biol ; 7(12): 950-8, 2011 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22037469

RESUMEN

Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP* as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR. The cofactor is found in two conformations: an 'in' conformation poised for hydride transfer and an 'out' conformation in which the cofactor is 6 Å from IMP. Mutagenesis along with substrate and cofactor analog experiments demonstrate that the out conformation is required for the deamination of GMP. Remarkably, the cofactor is part of the catalytic machinery that activates ammonia.


Asunto(s)
GMP-Reductasa/metabolismo , IMP Deshidrogenasa/metabolismo , Biocatálisis , Cristalografía por Rayos X , GMP-Reductasa/química , Guanosina Monofosfato/biosíntesis , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Humanos , IMP Deshidrogenasa/química , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Cinética , Modelos Moleculares , Estructura Molecular , NADP/química , NADP/metabolismo , Teoría Cuántica , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-23519796

RESUMEN

Inosine 5'-monophosphate dehydrogenase (IMPDH) represents a potential antimicrobial drug target. The crystal structure of recombinant Pseudomonas aeruginosa IMPDH has been determined to a resolution of 2.25 Å. The structure is a homotetramer of subunits dominated by a (ß/α)8-barrel fold, consistent with other known structures of IMPDH. Also in common with previous work, the cystathionine ß-synthase domains, residues 92-204, are not present in the model owing to disorder. However, unlike the majority of available structures, clearly defined electron density exists for a loop that creates part of the active site. This loop, composed of residues 297-315, links α8 and ß9 and carries the catalytic Cys304. P. aeruginosa IMPDH shares a high level of sequence identity with bacterial and protozoan homologues, with residues involved in binding substrate and the NAD+ cofactor being conserved. Specific differences that have been proven to contribute to selectivity against the human enzyme in a study of Cryptosporidium parvum IMPDH are also conserved, highlighting the potential value of IMPDH as a drug target.


Asunto(s)
Proteínas Bacterianas/química , Cisteína/química , IMP Deshidrogenasa/química , Pseudomonas aeruginosa/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Secuencia Conservada , Cryptosporidium parvum/química , Cryptosporidium parvum/metabolismo , Cristalografía por Rayos X , Cisteína/genética , Escherichia coli/química , Escherichia coli/genética , IMP Deshidrogenasa/genética , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie
18.
J Biomol Struct Dyn ; 41(24): 14832-14848, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866624

RESUMEN

Onchocerciasis is a vector-borne disease caused by the filarial nematode Onchocerca volvulus, which is responsible for most of the visual impairments recorded in Africa, Asia and the Americas. It is known that O. volvulus has similar molecular and biological characteristics as Onchocerca ochengi in cattle. This study was designed to screen for immunogenic epitopes and binding pockets of O. ochengi IMPDH and GMPR ligands using immunoinformatic approaches. In this study, a total of 23 B cell epitopes for IMPDH and 7 B cell epitopes for GMPR were predicted using ABCpred tool, Bepipred 2.0 and Kolaskar and Tongaonkar methods. The CD4+ Th computational results showed 16 antigenic epitopes from IMPDH with strong binding affinity for DRB1_0301, DRB3_0101, DRB1_0103 and DRB1_1501 MHC II alleles while 8 antigenic epitopes from GMPR were predicted to bind DRB1_0101 and DRB1_0401 MHC II alleles, respectively. For the CD8+ CTLs analysis, 8 antigenic epitopes from IMPDH showed strong binding affinity to human leukocyte antigen HLA-A*26:01, HLA-A*03:01, HLA-A*24:02 and HLA-A*01:01 MHC I alleles while 2 antigenic epitopes from GMPR showed strong binding affinity to HLA-A*01:01 allele, respectively. The immunogenic B cell and T cell epitopes were further evaluated for antigenicity, non-alllergernicity, toxicity, IFN-gamma, IL4 and IL10. The docking score revealed favorable binding free energy with IMP and MYD scoring the highest binding affinity at -6.6 kcal/mol with IMPDH and -8.3 kcal/mol with GMPR. This study provides valuable insight on IMPDH and GMPR as potential drug targets and for the development of multiple epitope vaccine candidates.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Onchocerca , Vacunas , Humanos , Animales , Bovinos , Onchocerca/metabolismo , Inmunoinformática , GMP-Reductasa/química , GMP-Reductasa/metabolismo , IMP Deshidrogenasa/química , IMP Deshidrogenasa/metabolismo , Epítopos de Linfocito B , Epítopos de Linfocito T , Guanosina , Inosina , Antígenos HLA-A
19.
Structure ; 31(12): 1526-1534.e4, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37875114

RESUMEN

IMP dehydrogenase and GMP reductase are enzymes from the same protein family with analogous structures and catalytic mechanisms that have gained attention because of their essential roles in nucleotide metabolism and as potential drug targets. This study focusses on GuaB3, a less-explored enzyme within this family. Phylogenetic analysis uncovers GuaB3's independent evolution from other members of the family and it predominantly occurs in Cyanobacteria. Within this group, GuaB3 functions as a unique IMP dehydrogenase, while its counterpart in Actinobacteria has a yet unknown function. Synechocystis sp. PCC6803 GuaB3 structures demonstrate differences in the active site compared to canonical IMP dehydrogenases, despite shared catalytic mechanisms. These findings highlight the essential role of GuaB3 in Cyanobacteria, provide insights into the diversity and evolution of the IMP dehydrogenase protein family, and reveal a distinctive characteristic in nucleotide metabolism, potentially aiding in combating harmful cyanobacterial blooms-a growing concern for humans and wildlife.


Asunto(s)
Cianobacterias , IMP Deshidrogenasa , Humanos , IMP Deshidrogenasa/química , IMP Deshidrogenasa/metabolismo , Filogenia , Catálisis , Nucleótidos/metabolismo , Cianobacterias/genética
20.
Biochemistry ; 51(31): 6148-63, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22788966

RESUMEN

Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the first unique step of the GMP branch of the purine nucleotide biosynthetic pathway. This enzyme is found in organisms of all three kingdoms. IMPDH inhibitors have broad clinical applications in cancer treatment, as antiviral drugs and as immunosuppressants, and have also displayed antibiotic activity. We have determined three crystal structures of Bacillus anthracis IMPDH, in a phosphate ion-bound (termed "apo") form and in complex with its substrate, inosine 5'-monophosphate (IMP), and product, xanthosine 5'-monophosphate (XMP). This is the first example of a bacterial IMPDH in more than one state from the same organism. Furthermore, for the first time for a prokaryotic enzyme, the entire active site flap, containing the conserved Arg-Tyr dyad, is clearly visible in the structure of the apoenzyme. Kinetic parameters for the enzymatic reaction were also determined, and the inhibitory effect of XMP and mycophenolic acid (MPA) has been studied. In addition, the inhibitory potential of two known Cryptosporidium parvum IMPDH inhibitors was examined for the B. anthracis enzyme and compared with those of three bacterial IMPDHs from Campylobacter jejuni, Clostridium perfringens, and Vibrio cholerae. The structures contribute to the characterization of the active site and design of inhibitors that specifically target B. anthracis and other microbial IMPDH enzymes.


Asunto(s)
Bacillus anthracis/enzimología , IMP Deshidrogenasa/química , IMP Deshidrogenasa/metabolismo , Inosina Monofosfato/metabolismo , Ribonucleótidos/metabolismo , Secuencia de Aminoácidos , Apoenzimas/antagonistas & inhibidores , Apoenzimas/química , Apoenzimas/metabolismo , Bencimidazoles/química , Bencimidazoles/metabolismo , Bencimidazoles/farmacología , Dominio Catalítico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , IMP Deshidrogenasa/antagonistas & inhibidores , Modelos Moleculares , Datos de Secuencia Molecular , Ácido Micofenólico/metabolismo , NAD/metabolismo , Unión Proteica , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología , Xantina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA