Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.519
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(10): 1793-1805.e17, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35483372

RESUMEN

The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types. Using well-established inhibitors of endocannabinoid hydrolases and monoamine oxidases, direct or competitive CATCH not only reveals distinct anatomical distributions and predominant cell targets of different drug compounds in the mouse brain but also uncovers unexpected differences in drug engagement across and within brain regions, reflecting rare cell types, as well as dose-dependent target shifts across tissue, cellular, and subcellular compartments that are not accessible by conventional methods. CATCH represents a valuable platform for visualizing in vivo interactions of small molecules in tissue.


Asunto(s)
Química Clic , Imagen Óptica , Animales , Encéfalo , Sistemas de Liberación de Medicamentos , Mamíferos , Ratones , Imagen Óptica/métodos
2.
Cell ; 185(1): 9-41, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995519

RESUMEN

Recent progress in fluorescence imaging allows neuroscientists to observe the dynamics of thousands of individual neurons, identified genetically or by their connectivity, across multiple brain areas and for extended durations in awake behaving mammals. We discuss advances in fluorescent indicators of neural activity, viral and genetic methods to express these indicators, chronic animal preparations for long-term imaging studies, and microscopes to monitor and manipulate the activity of large neural ensembles. Ca2+ imaging studies of neural activity can track brain area interactions and distributed information processing at cellular resolution. Across smaller spatial scales, high-speed voltage imaging reveals the distinctive spiking patterns and coding properties of targeted neuron types. Collectively, these innovations will propel studies of brain function and dovetail with ongoing neuroscience initiatives to identify new neuron types and develop widely applicable, non-human primate models. The optical toolkit's growing sophistication also suggests that "brain observatory" facilities would be useful open resources for future brain-imaging studies.


Asunto(s)
Mapeo Encefálico/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neocórtex/diagnóstico por imagen , Neocórtex/metabolismo , Neuronas/metabolismo , Imagen Óptica/métodos , Animales , Calcio/metabolismo , Ratones , Modelos Animales , Neurociencias/métodos
3.
Cell ; 184(2): 323-333.e9, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33306959

RESUMEN

The December 2019 outbreak of a novel respiratory virus, SARS-CoV-2, has become an ongoing global pandemic due in part to the challenge of identifying symptomatic, asymptomatic, and pre-symptomatic carriers of the virus. CRISPR diagnostics can augment gold-standard PCR-based testing if they can be made rapid, portable, and accurate. Here, we report the development of an amplification-free CRISPR-Cas13a assay for direct detection of SARS-CoV-2 from nasal swab RNA that can be read with a mobile phone microscope. The assay achieved ∼100 copies/µL sensitivity in under 30 min of measurement time and accurately detected pre-extracted RNA from a set of positive clinical samples in under 5 min. We combined crRNAs targeting SARS-CoV-2 RNA to improve sensitivity and specificity and directly quantified viral load using enzyme kinetics. Integrated with a reader device based on a mobile phone, this assay has the potential to enable rapid, low-cost, point-of-care screening for SARS-CoV-2.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , Teléfono Celular/instrumentación , Imagen Óptica/métodos , ARN Viral/análisis , Carga Viral/métodos , Animales , Prueba de Ácido Nucleico para COVID-19/economía , Prueba de Ácido Nucleico para COVID-19/instrumentación , Sistemas CRISPR-Cas , Línea Celular , Proteínas de la Nucleocápside de Coronavirus/genética , Humanos , Nasofaringe/virología , Imagen Óptica/instrumentación , Fosfoproteínas/genética , Pruebas en el Punto de Atención , Interferencia de ARN , ARN Viral/genética , Sensibilidad y Especificidad , Carga Viral/economía , Carga Viral/instrumentación
4.
Annu Rev Biochem ; 89: 557-581, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32208767

RESUMEN

The binding affinity and kinetics of target engagement are fundamental to establishing structure-activity relationships (SARs) for prospective therapeutic agents. Enhancing these binding parameters for operative targets, while minimizing binding to off-target sites, can translate to improved drug efficacy and a widened therapeutic window. Compound activity is typically assessed through modulation of an observed phenotype in cultured cells. Quantifying the corresponding binding properties under common cellular conditions can provide more meaningful interpretation of the cellular SAR analysis. Consequently, methods for assessing drug binding in living cells have advanced and are now integral to medicinal chemistry workflows. In this review, we survey key technological advancements that support quantitative assessments of target occupancy in cultured cells, emphasizing generalizable methodologies able to deliver analytical precision that heretofore required reductionist biochemical approaches.


Asunto(s)
Química Farmacéutica/métodos , Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento , Técnicas de Sonda Molecular , Terapia Molecular Dirigida/métodos , Transferencia de Energía por Resonancia de Bioluminiscencia , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Genes Reporteros , Humanos , Cinética , Imagen Óptica/métodos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
5.
Cell ; 180(3): 521-535.e18, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31978320

RESUMEN

Cortical layer 1 (L1) interneurons have been proposed as a hub for attentional modulation of underlying cortex, but the transformations that this circuit implements are not known. We combined genetically targeted voltage imaging with optogenetic activation and silencing to study the mechanisms underlying sensory processing in mouse barrel cortex L1. Whisker stimuli evoked precisely timed single spikes in L1 interneurons, followed by strong lateral inhibition. A mild aversive stimulus activated cholinergic inputs and evoked a bimodal distribution of spiking responses in L1. A simple conductance-based model that only contained lateral inhibition within L1 recapitulated the sensory responses and the winner-takes-all cholinergic responses, and the model correctly predicted that the network would function as a spatial and temporal high-pass filter for excitatory inputs. Our results demonstrate that all-optical electrophysiology can reveal basic principles of neural circuit function in vivo and suggest an intuitive picture for how L1 transforms sensory and modulatory inputs. VIDEO ABSTRACT.


Asunto(s)
Electrofisiología/métodos , Potenciales Evocados Somatosensoriales/fisiología , Interneuronas/fisiología , Inhibición Neural/fisiología , Imagen Óptica/métodos , Corteza Somatosensorial/citología , Potenciales de Acción/fisiología , Animales , Neuronas Colinérgicas/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Placa-Clamp/métodos , Potenciales Sinápticos/fisiología , Vibrisas/fisiología
6.
Cell ; 180(4): 796-812.e19, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32059778

RESUMEN

Optical tissue transparency permits scalable cellular and molecular investigation of complex tissues in 3D. Adult human organs are particularly challenging to render transparent because of the accumulation of dense and sturdy molecules in decades-aged tissues. To overcome these challenges, we developed SHANEL, a method based on a new tissue permeabilization approach to clear and label stiff human organs. We used SHANEL to render the intact adult human brain and kidney transparent and perform 3D histology with antibodies and dyes in centimeters-depth. Thereby, we revealed structural details of the intact human eye, human thyroid, human kidney, and transgenic pig pancreas at the cellular resolution. Furthermore, we developed a deep learning pipeline to analyze millions of cells in cleared human brain tissues within hours with standard lab computers. Overall, SHANEL is a robust and unbiased technology to chart the cellular and molecular architecture of large intact mammalian organs.


Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional/métodos , Imagen Óptica/métodos , Coloración y Etiquetado/métodos , Anciano de 80 o más Años , Animales , Encéfalo/diagnóstico por imagen , Ojo/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional/normas , Riñón/diagnóstico por imagen , Límite de Detección , Masculino , Ratones , Persona de Mediana Edad , Imagen Óptica/normas , Páncreas/diagnóstico por imagen , Coloración y Etiquetado/normas , Porcinos , Glándula Tiroides/diagnóstico por imagen
7.
Annu Rev Biochem ; 88: 635-659, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30359080

RESUMEN

In the past decades, advances in microscopy have made it possible to study the dynamics of individual biomolecules in vitro and resolve intramolecular kinetics that would otherwise be hidden in ensemble averages. More recently, single-molecule methods have been used to image, localize, and track individually labeled macromolecules in the cytoplasm of living cells, allowing investigations of intermolecular kinetics under physiologically relevant conditions. In this review, we illuminate the particular advantages of single-molecule techniques when studying kinetics in living cells and discuss solutions to specific challenges associated with these methods.


Asunto(s)
Microscopía Fluorescente/métodos , Imagen Individual de Molécula/métodos , Animales , Humanos , Cinética , Imagen Óptica/métodos
8.
Cell ; 176(5): 1158-1173.e16, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30712869

RESUMEN

Homeostatic regulation of the intestinal enteroendocrine lineage hierarchy is a poorly understood process. We resolved transcriptional changes during enteroendocrine differentiation in real time at single-cell level using a novel knockin allele of Neurog3, the master regulator gene briefly expressed at the onset of enteroendocrine specification. A bi-fluorescent reporter, Neurog3Chrono, measures time from the onset of enteroendocrine differentiation and enables precise positioning of single-cell transcriptomes along an absolute time axis. This approach yielded a definitive description of the enteroendocrine hierarchy and its sub-lineages, uncovered differential kinetics between sub-lineages, and revealed time-dependent hormonal plasticity in enterochromaffin and L cells. The time-resolved map of transcriptional changes predicted multiple novel molecular regulators. Nine of these were validated by conditional knockout in mice or CRISPR modification in intestinal organoids. Six novel candidate regulators (Sox4, Rfx6, Tox3, Myt1, Runx1t1, and Zcchc12) yielded specific enteroendocrine phenotypes. Our time-resolved single-cell transcriptional map presents a rich resource to unravel enteroendocrine differentiation.


Asunto(s)
Linaje de la Célula/genética , Células Enteroendocrinas/metabolismo , Perfilación de la Expresión Génica/métodos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Linaje de la Célula/fisiología , Células Enteroendocrinas/fisiología , Colorantes Fluorescentes , Proteínas de Homeodominio/genética , Mucosa Intestinal/citología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Imagen Óptica/métodos , Organoides , Fenotipo , Análisis de la Célula Individual/métodos , Células Madre , Factores de Transcripción/genética , Transcriptoma/genética
9.
Cell ; 175(3): 859-876.e33, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30318151

RESUMEN

The mouse embryo has long been central to the study of mammalian development; however, elucidating the cell behaviors governing gastrulation and the formation of tissues and organs remains a fundamental challenge. A major obstacle is the lack of live imaging and image analysis technologies capable of systematically following cellular dynamics across the developing embryo. We developed a light-sheet microscope that adapts itself to the dramatic changes in size, shape, and optical properties of the post-implantation mouse embryo and captures its development from gastrulation to early organogenesis at the cellular level. We furthermore developed a computational framework for reconstructing long-term cell tracks, cell divisions, dynamic fate maps, and maps of tissue morphogenesis across the entire embryo. By jointly analyzing cellular dynamics in multiple embryos registered in space and time, we built a dynamic atlas of post-implantation mouse development that, together with our microscopy and computational methods, is provided as a resource. VIDEO ABSTRACT.


Asunto(s)
Linaje de la Célula , Gastrulación , Organogénesis , Análisis de la Célula Individual/métodos , Animales , Ratones , Ratones Endogámicos C57BL , Modelos Estadísticos , Imagen Óptica/métodos
10.
Annu Rev Biochem ; 86: 873-896, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28426242

RESUMEN

Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Fimbrias Bacterianas/ultraestructura , Poro Nuclear/química , Imagen Óptica/métodos , Células Procariotas/ultraestructura , Archaea/metabolismo , Archaea/ultraestructura , Bacterias/metabolismo , Bacterias/ultraestructura , Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/ultraestructura , Microscopía por Crioelectrón/historia , Microscopía por Crioelectrón/instrumentación , Tomografía con Microscopio Electrónico/historia , Tomografía con Microscopio Electrónico/instrumentación , Fimbrias Bacterianas/metabolismo , Flagelos/metabolismo , Flagelos/ultraestructura , Historia del Siglo XX , Historia del Siglo XXI , Modelos Moleculares , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Imagen Óptica/historia , Imagen Óptica/instrumentación , Células Procariotas/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína
11.
Cell ; 165(4): 976-89, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153498

RESUMEN

Regulation of mRNA translation, the process by which ribosomes decode mRNAs into polypeptides, is used to tune cellular protein levels. Currently, methods for observing the complete process of translation from single mRNAs in vivo are unavailable. Here, we report the long-term (>1 hr) imaging of single mRNAs undergoing hundreds of rounds of translation in live cells, enabling quantitative measurements of ribosome initiation, elongation, and stalling. This approach reveals a surprising heterogeneity in the translation of individual mRNAs within the same cell, including rapid and reversible transitions between a translating and non-translating state. Applying this method to the cell-cycle gene Emi1, we find strong overall repression of translation initiation by specific 5' UTR sequences, but individual mRNA molecules in the same cell can exhibit dramatically different translational efficiencies. The ability to observe translation of single mRNA molecules in live cells provides a powerful tool to study translation regulation.


Asunto(s)
Imagen Óptica/métodos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Regiones no Traducidas 5' , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Fluorescencia , Genes Reporteros , Técnicas Genéticas , Proteínas Fluorescentes Verdes/análisis , Humanos , Proteínas Luminiscentes/análisis , Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/química , Ribosomas/metabolismo , Proteína Fluorescente Roja
12.
Cell ; 165(4): 990-1001, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153499

RESUMEN

Translation is under tight spatial and temporal controls to ensure protein production in the right time and place in cells. Methods that allow real-time, high-resolution visualization of translation in live cells are essential for understanding the spatiotemporal dynamics of translation regulation. Based on multivalent fluorescence amplification of the nascent polypeptide signal, we develop a method to image translation on individual mRNA molecules in real time in live cells, allowing direct visualization of translation events at the translation sites. Using this approach, we monitor transient changes of translation dynamics in responses to environmental stresses, capture distinct mobilities of individual polysomes in different subcellular compartments, and detect 3' UTR-dependent local translation and active transport of polysomes in dendrites of primary neurons.


Asunto(s)
Imagen Óptica/métodos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Animales , Dendritas/metabolismo , Humanos , Polirribosomas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/química
13.
Cell ; 163(2): 493-505, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26435106

RESUMEN

As a basic functional unit in neural circuits, each neuron integrates input signals from hundreds to thousands of synapses. Knowledge of the synaptic input fields of individual neurons, including the identity, strength, and location of each synapse, is essential for understanding how neurons compute. Here, we developed a volumetric super-resolution reconstruction platform for large-volume imaging and automated segmentation of neurons and synapses with molecular identity information. We used this platform to map inhibitory synaptic input fields of On-Off direction-selective ganglion cells (On-Off DSGCs), which are important for computing visual motion direction in the mouse retina. The reconstructions of On-Off DSGCs showed a GABAergic, receptor subtype-specific input field for generating direction selective responses without significant glycinergic inputs for mediating monosynaptic crossover inhibition. These results demonstrate unique capabilities of this super-resolution platform for interrogating neural circuitry.


Asunto(s)
Neuronas/citología , Imagen Óptica/métodos , Sinapsis/metabolismo , Animales , Encéfalo/citología , Proteínas Portadoras , Inmunohistoquímica , Proteínas de la Membrana , Ratones , Red Nerviosa , Vías Nerviosas , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Células Ganglionares de la Retina/metabolismo , Neuronas Retinianas/metabolismo
14.
Cell ; 159(3): 635-46, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25307933

RESUMEN

Signals in many biological processes can be amplified by recruiting multiple copies of regulatory proteins to a site of action. Harnessing this principle, we have developed a protein scaffold, a repeating peptide array termed SunTag, which can recruit multiple copies of an antibody-fusion protein. We show that the SunTag can recruit up to 24 copies of GFP, thereby enabling long-term imaging of single protein molecules in living cells. We also use the SunTag to create a potent synthetic transcription factor by recruiting multiple copies of a transcriptional activation domain to a nuclease-deficient CRISPR/Cas9 protein and demonstrate strong activation of endogenous gene expression and re-engineered cell behavior with this system. Thus, the SunTag provides a versatile platform for multimerizing proteins on a target protein scaffold and is likely to have many applications in imaging and controlling biological outputs.


Asunto(s)
Imagen Molecular/métodos , Imagen Óptica/métodos , Multimerización de Proteína , Proteínas/química , Animales , Sistemas CRISPR-Cas , Técnicas Genéticas , Humanos , Anticuerpos de Cadena Única/química
15.
Cell ; 158(4): 722-733, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126781

RESUMEN

Antibiotic therapy often fails to eliminate a fraction of transiently refractory bacteria, causing relapses and chronic infections. Multiple mechanisms can induce such persisters with high antimicrobial tolerance in vitro, but their in vivo relevance remains unclear. Using a fluorescent growth rate reporter, we detected extensive phenotypic variation of Salmonella in host tissues. This included slow-growing subsets as well as well-nourished fast-growing subsets driving disease progression. Monitoring of Salmonella growth and survival during chemotherapy revealed that antibiotic killing correlated with single-cell division rates. Nondividing Salmonella survived best but were rare, limiting their impact. Instead, most survivors originated from abundant moderately growing, partially tolerant Salmonella. These data demonstrate that host tissues diversify pathogen physiology, with major consequences for disease progression and control.


Asunto(s)
Antibacterianos/administración & dosificación , Fluoroquinolonas/administración & dosificación , Imagen Óptica/métodos , Salmonella typhimurium/efectos de los fármacos , Fiebre Tifoidea/tratamiento farmacológico , Fiebre Tifoidea/microbiología , Animales , Proteínas Bacterianas/análisis , Enrofloxacina , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Proteoma/análisis , Salmonella typhimurium/citología , Salmonella typhimurium/crecimiento & desarrollo , Bazo/microbiología , Bazo/patología
16.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657972

RESUMEN

Advances in fluorescence microscopy and tissue-clearing have revolutionised 3D imaging of fluorescently labelled tissues, organs and embryos. However, the complexity and high cost of existing software and computing solutions limit their widespread adoption, especially by researchers with limited resources. Here, we present Acto3D, an open-source software, designed to streamline the generation and analysis of high-resolution 3D images of targets labelled with multiple fluorescent probes. Acto3D provides an intuitive interface for easy 3D data import and visualisation. Although Acto3D offers straightforward 3D viewing, it performs all computations explicitly, giving users detailed control over the displayed images. Leveraging an integrated graphics processing unit, Acto3D deploys all pixel data to system memory, reducing visualisation latency. This approach facilitates accurate image reconstruction and efficient data processing in 3D, eliminating the need for expensive high-performance computers and dedicated graphics processing units. We have also introduced a method for efficiently extracting lumen structures in 3D. We have validated Acto3D by imaging mouse embryonic structures and by performing 3D reconstruction of pharyngeal arch arteries while preserving fluorescence information. Acto3D is a cost-effective and efficient platform for biological research.


Asunto(s)
Imagenología Tridimensional , Programas Informáticos , Imagenología Tridimensional/métodos , Animales , Ratones , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Embrión de Mamíferos/diagnóstico por imagen
17.
Nat Methods ; 21(2): 331-341, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38151595

RESUMEN

Multiplexed fluorescence imaging is typically limited to three- to five-plex on standard setups. Sequential imaging methods based on iterative labeling and imaging enable practical higher multiplexing, but generally require a complex fluidic setup with several rounds of slow buffer exchange (tens of minutes to an hour for each exchange step). We report the thermal-plex method, which removes complex and slow buffer exchange steps and provides fluidic-free, rapid sequential imaging. Thermal-plex uses simple DNA probes that are engineered to fluoresce sequentially when, and only when, activated with transient exposure to heating spikes at designated temperatures (thermal channels). Channel switching is fast (<30 s) and is achieved with a commercially available and affordable on-scope heating device. We demonstrate 15-plex RNA imaging (five thermal × three fluorescence channels) in fixed cells and retina tissues in less than 4 min, without using buffer exchange or fluidics. Thermal-plex introduces a new labeling method for efficient sequential multiplexed imaging.


Asunto(s)
ADN , Imagen Óptica , Imagen Óptica/métodos , ARN , Temperatura
18.
Nat Methods ; 21(10): 1801-1805, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39242832

RESUMEN

We present a way to encode more information in fluorescence imaging by splitting the original point spread function (PSF), which offers broadband operation and compatibility with other PSF engineering modalities and existing analysis tools. We demonstrate the approach using the 'Circulator', an add-on that encodes the fluorophore emission band into the PSF, enabling simultaneous multicolor super-resolution and single-molecule microscopy using essentially the full field of view.


Asunto(s)
Microscopía Fluorescente , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/química , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Individual de Molécula/métodos , Humanos , Imagen Óptica/métodos , Algoritmos
19.
Nat Methods ; 21(10): 1916-1925, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39304767

RESUMEN

Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca2+ responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca2+ concentration using fluorescence lifetime imaging microscopy (FLIM).


Asunto(s)
Calcio , Colorantes Fluorescentes , Pez Cebra , Animales , Calcio/metabolismo , Ratones , Colorantes Fluorescentes/química , Astrocitos/metabolismo , Neuronas/metabolismo , Humanos , Microscopía Fluorescente/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Imagen Óptica/métodos
20.
Cell ; 151(6): 1370-85, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217717

RESUMEN

Optical imaging of the dynamics of living specimens involves tradeoffs between spatial resolution, temporal resolution, and phototoxicity, made more difficult in three dimensions. Here, however, we report that rapid three-dimensional (3D) dynamics can be studied beyond the diffraction limit in thick or densely fluorescent living specimens over many time points by combining ultrathin planar illumination produced by scanned Bessel beams with super-resolution structured illumination microscopy. We demonstrate in vivo karyotyping of chromosomes during mitosis and identify different dynamics for the actin cytoskeleton at the dorsal and ventral surfaces of fibroblasts. Compared to spinning disk confocal microscopy, we demonstrate substantially reduced photodamage when imaging rapid morphological changes in D. discoideum cells, as well as improved contrast and resolution at depth within developing C. elegans embryos. Bessel beam structured plane illumination thus promises new insights into complex biological phenomena that require 4D subcellular spatiotemporal detail in either a single or multicellular context.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Animales , Encéfalo/citología , Encéfalo/ultraestructura , Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Línea Celular , Línea Celular Tumoral , Dermatitis Fototóxica , Dictyostelium/ultraestructura , Drosophila melanogaster/citología , Fibroblastos/ultraestructura , Humanos , Cariotipificación/métodos , Larva/citología , Larva/ultraestructura , Mitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA