Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1451: 399-412, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801593

RESUMEN

Historically, biological agents have been used to target various populations. One of the earliest examples could be the catastrophic effect of smallpox in Australia in the eighteenth century (as alleged by some historians). Modern biological techniques can be used to both create or provide protection against various agents of biological warfare. Any microorganism (viruses, bacteria, and fungi) or its toxins can be used as biological agents. Minnesota Department of Health has listed Smallpox (variola major) as a category A bioterrorism agent, even though it has been eradicated in 1980 through an extensive vaccination campaign. Category A agents are considered the highest risk to public health. Laboratory-associated outbreaks of poxviruses could cause unprecedented occupational hazards. Only two WHO-approved BSL-4 facilities in the United States and Russia are allowed to perform research on the variola virus. So, poxviruses present themselves as a classical case of a dual-use dilemma, since research with them can be used for both beneficial and harmful purposes. Although the importance of ethics in scientific research requires no further elaboration, ethical norms assume greater significance during experimentation with poxviruses. In this chapter, we will update the readers on the sensitive nature of conducting research with poxviruses, and how these viruses can be a source of potential biological weapons. Finally, specified ethical guidelines are explored to ensure safe research practices in virology.


Asunto(s)
Armas Biológicas , Guerra Biológica , Humanos , Armas Biológicas/ética , Guerra Biológica/ética , Poxviridae/genética , Bioterrorismo/ética , Bioterrorismo/prevención & control , Animales , Viruela/prevención & control , Viruela/virología , Infecciones por Poxviridae/virología , Infecciones por Poxviridae/prevención & control , Investigación Biomédica/ética
2.
Adv Exp Med Biol ; 1451: 111-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801574

RESUMEN

Poxviruses are large (200-450 nm) and enveloped viruses carrying double-stranded DNA genome with an epidermal cell-specific adaptation. The genus Orthopoxvirus within Poxviridae family constitutes several medically and veterinary important viruses including variola (smallpox), vaccinia, monkeypox virus (MPXV), and cowpox. The monkeypox disease (mpox) has recently emerged as a public health emergency caused by MPXV. An increasing number of human cases of MPXV have been documented in non-endemic nations without any known history of contact with animals brought in from endemic and enzootic regions, nor have they involved travel to an area where the virus was typically prevalent. Here, we review the MPXV replication, virus pathobiology, mechanism of viral infection transmission, virus evasion the host innate immunity and antiviral therapies against Mpox. Moreover, preventive measures including vaccination were discussed and concluded that cross-protection against MPXV may be possible using antibodies that are directed against an Orthopoxvirus. Despite the lack of a specialised antiviral medication, several compounds such as Cidofovir and Ribavirin warrant consideration against mpox.


Asunto(s)
Monkeypox virus , Mpox , Orthopoxvirus , Humanos , Animales , Monkeypox virus/genética , Monkeypox virus/patogenicidad , Monkeypox virus/inmunología , Orthopoxvirus/genética , Orthopoxvirus/inmunología , Orthopoxvirus/clasificación , Mpox/virología , Mpox/transmisión , Mpox/epidemiología , Antivirales/uso terapéutico , Antivirales/farmacología , Replicación Viral , Infecciones por Poxviridae/virología , Infecciones por Poxviridae/transmisión , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/inmunología
3.
Adv Exp Med Biol ; 1451: 273-287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801584

RESUMEN

Smallpox was a significant cause of mortality for over three thousand years, amounting to 10% of deaths yearly. Edward Jenner discovered smallpox vaccination in 1796, which rapidly became a smallpox infection preventive practice throughout the world and eradicated smallpox infection by 1980. After smallpox eradication, monkeypox vaccines have been used primarily in research and in outbreaks in Africa, where the disease is endemic. In the present, the vaccines are being used for people who work with animals or in high-risk areas, as well as for healthcare workers treating patients with monkeypox. Among all orthopoxviruses (OPXV), monkeypox viral (MPXV) infection occurs mainly in cynomolgus monkeys, natural reservoirs, and occasionally causes severe multi-organ infection in humans, who were the incidental hosts. The first case of the present epidemic of MXPV was identified on May 7, 2022, and rapidly increased the number of cases. In this regard, the WHO declared the outbreak, an international public health emergency on July 23, 2022. The first monkeypox vaccine was developed in the 1960s by the US Army and was based on the vaccinia virus, which is also used in smallpox vaccines. In recent years, newer monkeypox vaccines have been developed based on other viruses such as Modified Vaccinia Ankara (MVA). These newer vaccines are safer and can provide longer-lasting immunity with fewer side effects. For the future, there is ongoing research to improve the current vaccines and to develop new ones. One notable advance has been the development of a recombinant vaccine that uses a genetically modified vaccinia virus to express monkeypox antigens. This vaccine has shown promising results in pre-clinical trials and is currently undergoing further testing in clinical trials. Another recent development has been the use of a DNA vaccine, which delivers genetic material encoding monkeypox antigens directly into cells. This type of vaccine has shown effectiveness in animal studies and is also undergoing clinical testing in humans. Overall, these recent advances in monkeypox vaccine development hold promise for protecting individuals against this potentially serious disease.


Asunto(s)
Vacuna contra Viruela , Humanos , Animales , Vacuna contra Viruela/inmunología , Viruela/prevención & control , Viruela/inmunología , Viruela/epidemiología , Viruela/historia , Historia del Siglo XXI , Historia del Siglo XX , Mpox/prevención & control , Mpox/epidemiología , Mpox/inmunología , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/epidemiología , Poxviridae/inmunología , Poxviridae/genética , Monkeypox virus/inmunología , Monkeypox virus/genética , Vacunación , Vacunas Virales/inmunología , Desarrollo de Vacunas
4.
Euro Surveill ; 29(38)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39301741

RESUMEN

In response to the mpox outbreak in 2022 and 2023, widespread vaccination with modified vaccinia Ankara-Bavarian Nordic (MVA-BN, also known as JYNNEOS or Imvanex) was initiated. Here, we demonstrate that orthopoxvirus-specific binding and MVA-neutralising antibodies waned to undetectable levels 1 year post vaccination in at-risk individuals who received two doses of MVA-BN administered subcutaneously with an interval of 4 weeks, without prior smallpox or mpox vaccination. Continuous surveillance is essential to understand the impact of declining antibody levels.


Asunto(s)
Anticuerpos Antivirales , Orthopoxvirus , Vacunación , Humanos , Anticuerpos Antivirales/sangre , Orthopoxvirus/inmunología , Países Bajos/epidemiología , Masculino , Adulto , Femenino , Vacuna contra Viruela/administración & dosificación , Vacuna contra Viruela/inmunología , Persona de Mediana Edad , Anticuerpos Neutralizantes/sangre , Brotes de Enfermedades/prevención & control , Viruela/prevención & control , Infecciones por Poxviridae/prevención & control , Mpox/prevención & control , Virus Vaccinia/inmunología , Adulto Joven , Adolescente
5.
J Virol ; 96(3): e0150421, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34851148

RESUMEN

In the age of COVID, nucleic acid vaccines have garnered much attention, at least in part, because of the simplicity of construction, production, and flexibility to adjust and adapt to an evolving outbreak. Orthopoxviruses remain a threat on multiple fronts, especially as emerging zoonoses. In response, we developed a DNA vaccine, termed 4pox, that protected nonhuman primates against monkeypox virus (MPXV)-induced severe disease. Here, we examined the protective efficacy of the 4pox DNA vaccine delivered by intramuscular (i.m.) electroporation (EP) in rabbits challenged with aerosolized rabbitpox virus (RPXV), a model that recapitulates the respiratory route of exposure and low dose associated with natural smallpox exposure in humans. We found that 4pox-vaccinated rabbits developed immunogen-specific antibodies, including neutralizing antibodies, and did not develop any clinical disease, indicating protection against aerosolized RPXV. In contrast, unvaccinated animals developed significant signs of disease, including lesions, and were euthanized. These findings demonstrate that an unformulated, nonadjuvanted DNA vaccine delivered i.m. can protect against an aerosol exposure. IMPORTANCE The eradication of smallpox and subsequent cessation of vaccination have left a majority of the population susceptible to variola virus or other emerging poxviruses. This is exemplified by human monkeypox, as evidenced by the increase in reported endemic and imported cases over the past decades. Therefore, a malleable vaccine technology that can be mass produced and does not require complex conditions for distribution and storage is sought. Herein, we show that a DNA vaccine, in the absence of a specialized formulation or adjuvant, can protect against a lethal aerosol insult of rabbitpox virus.


Asunto(s)
Vacunación Basada en Ácidos Nucleicos/inmunología , Orthopoxvirus/inmunología , Infecciones por Poxviridae/prevención & control , Virus Vaccinia/inmunología , Vaccinia/prevención & control , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Relación Dosis-Respuesta Inmunológica , Electroporación , Femenino , Inmunización/métodos , Inmunogenicidad Vacunal , Activación de Linfocitos/inmunología , Vacunación Basada en Ácidos Nucleicos/administración & dosificación , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/inmunología , Conejos , Vacunas de ADN/inmunología , Virus Vaccinia/genética , Vacunas Virales/administración & dosificación
6.
Clin Immunol ; 243: 109108, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36067982

RESUMEN

Monkeypox is a zoonotic Orthopoxvirus which has predominantly affected humans living in western and central Africa since the 1970s. Type I and II interferon signaling, NK cell function, and serologic immunity are critical for host immunity against monkeypox. Monkeypox can evade host viral recognition and block interferon signaling, leading to overall case fatality rates of up to 11%. The incidence of monkeypox has increased since cessation of smallpox vaccination. In 2022, a global outbreak emerged, predominantly affecting males, with exclusive human-to-human transmission and more phenotypic variability than earlier outbreaks. Available vaccines are safe and effective tools for prevention of severe disease, but supply is limited. Now considered a public health emergency, more studies are needed to better characterize at-risk populations and to develop new anti-viral therapies.


Asunto(s)
Enfermedades Transmisibles , Mpox , Orthopoxvirus , Humanos , Interferones , Masculino , Mpox/epidemiología , Mpox/prevención & control , Monkeypox virus , Infecciones por Poxviridae/epidemiología , Infecciones por Poxviridae/prevención & control
7.
Wilderness Environ Med ; 32(4): 528-536, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34563454

RESUMEN

Zoonotic orthopoxvirus outbreaks have occurred repeatedly worldwide, including monkeypox in Africa and the United States, cowpox in Europe, camelpox in the Middle East and India, buffalopox in India, vaccinia in South America, and novel emerging orthopoxvirus infections in the United States, Europe, Asia, and South America. Waning smallpox immunity may increase the potential for animal-to-human transmission followed by further community transmission person-to-person (as demonstrated by monkeypox and buffalopox outbreaks) and by contact with fomites (as demonstrated by camelpox, cowpox, and, possibly, Alaskapox). The objectives of this review are to describe the disease ecology, epidemiology, clinical manifestations, prevention, and control of human infections with animal orthopoxviruses and to discuss the association with diminished population herd immunity formerly induced by vaccinia vaccination against smallpox. Internet search engines were queried with key words, and case reports, case series, seroprevalence studies, and epidemiologic investigations were found for review.


Asunto(s)
Orthopoxvirus , Infecciones por Poxviridae , Virus de la Viruela , Animales , Humanos , Infecciones por Poxviridae/epidemiología , Infecciones por Poxviridae/prevención & control , Estudios Seroepidemiológicos , Estados Unidos , Virus Vaccinia
8.
PLoS Pathog ; 14(10): e1007286, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30286188

RESUMEN

The recent de novo assembly of horsepox is an instructive example of an information hazard: published methods enabling poxvirus synthesis led to media coverage spelling out the implications, efficiently disseminating true information that might be used to cause harm. Whether or not the benefits justified the risks, the horsepox saga provides ample reason to upgrade the current system for screening synthesized DNA for hazardous sequences, which does not cover the majority of firms and cannot reliably prevent the assembly of potentially pandemic pathogens. An upgraded system might leverage one-way encryption to confidentially scrutinize virtually all commercial production by a cooperative international network of servers whose integrity can be verified by third parties. Funders could support participating institutions to ease the transition or outright subsidize the market to make clean DNA cheaper, while boycotts by journals, institutions, and funders could ensure compliance and require hardware-level locks on future DNA synthesizers. However, the underlying problem is that security and safety discussions among experts typically follow potentially hazardous events rather than anticipating them. Changing norms and incentives to favor preregistration and advisory peer review of planned experiments could test alternatives to the current closeted research model in select areas of science. Because the fields of synthetic mammalian virology and especially gene drive research involve technologies that could be unilaterally deployed and may self-replicate in the wild, they are compelling candidates for initial trials of early-stage peer review.


Asunto(s)
Derrame de Material Biológico/prevención & control , Investigación Biomédica/normas , Difusión de la Información , Orthopoxvirus , Pandemias/legislación & jurisprudencia , Infecciones por Poxviridae/prevención & control , Humanos , Infecciones por Poxviridae/virología , Medición de Riesgo , Administración de la Seguridad
9.
Biologicals ; 65: 39-41, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32334926

RESUMEN

Camelpox virus is the causative agent of Camelpox, a highly contagious disease of camels. A high passage Camelpox virus strain has previously been reported to contain several genes which more closely resemble Vaccinia, a virus species with no known natural host, encompassing various strains that show high inter-strain genomic variation. In this study, we demonstrate that yet another high passage, live attenuated vaccine, comprising a different strain of Camelpox virus, contains genomic sequences that match a differing strain of Vaccinia virus. These results are discussed in the context of hypotheses put forward to explain the unknown origins of Vaccinia virus, suggesting further studies to elucidate evolutionary trajectories of Orthopoxviruses through passaging.


Asunto(s)
Orthopoxvirus/genética , Vacunas Atenuadas/genética , Virus Vaccinia/genética , Animales , Camelus , ADN Viral , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/veterinaria , Pase Seriado , Vacunas Atenuadas/uso terapéutico
10.
J Virol ; 91(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27903800

RESUMEN

Myxomatosis is a recurrent problem on rabbit farms throughout Europe despite the success of vaccines. To identify gene variations of field and vaccine strains that may be responsible for changes in virulence, immunomodulation, and immunoprotection, the genomes of 6 myxoma virus (MYXV) strains were sequenced: German field isolates Munich-1, FLI-H, 2604, and 3207; vaccine strain MAV; and challenge strain ZA. The analyzed genomes ranged from 147.6 kb (strain MAV) to 161.8 kb (strain 3207). All sequences were affected by several mutations, covering 24 to 93 open reading frames (ORFs) and resulted in amino acid substitutions, insertions, or deletions. Only strains Munich-1 and MAV revealed the deletion of 10 ORFs (M007L to M015L) and 11 ORFs (M007L to M008.1L and M149R to M008.1R), respectively. Major differences were observed in the 27 immunomodulatory proteins encoded by MYXV. Compared to the reference strain Lausanne, strains FLI-H, 2604, 3207, and ZA showed the highest amino acid identity (>98.4%). In strains Munich-1 and MAV, deletion of 5 and 10 ORFs, respectively, was observed, encoding immunomodulatory proteins with ankyrin repeats or members of the family of serine protease inhibitors. Furthermore, putative immunodominant surface proteins with homology to vaccinia virus (VACV) were investigated in the sequenced strains. Only strain MAV revealed above-average frequencies of amino acid substitutions and frameshift mutations. Finally, we performed recombination analysis and found signs of recombination in vaccine strain MAV. Phylogenetic analysis showed a close relationship of strain MAV and the MSW strain of Californian MYXV. However, in a challenge model, strain MAV provided full protection against lethal challenges with strain ZA. IMPORTANCE: Myxoma virus (MYXV) is pathogenic for European rabbits and two North American species. Due to sophisticated strategies in immune evasion and oncolysis, MYXV is an important model virus for immunological and pathological research. In its natural hosts, MYXV causes a benign infection, whereas in European rabbits, it causes the lethal disease myxomatosis. Since the introduction of MYXV into Australia and Europe for the biological control of European rabbits in the 1950s, a coevolution of host and pathogen has started, selecting for attenuated virus strains and increased resistance in rabbits. Evolution of viruses is a continuous process and influences the protective potential of vaccines. In our analyses, we sequenced 6 MYXV field, challenge, and vaccine strains. We focused on genes encoding proteins involved in virulence, host range, immunomodulation, and envelope composition. Genes affected most by mutations play a role in immunomodulation. However, attenuation cannot be linked to individual mutations or gene disruptions.


Asunto(s)
Variación Genética , Genoma Viral , Myxoma virus/genética , Infecciones por Poxviridae/virología , Sustitución de Aminoácidos , Animales , Repetición de Anquirina , Apoptosis , Línea Celular , Chlorocebus aethiops , Evolución Molecular , Genómica/métodos , Inmunomodulación , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/virología , Leucocitos/inmunología , Leucocitos/metabolismo , Mutación , Myxoma virus/clasificación , Myxoma virus/inmunología , Sistemas de Lectura Abierta , Filogenia , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/prevención & control , Unión Proteica , Mapeo de Interacción de Proteínas , Conejos , Receptores Inmunológicos , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Vacunas Virales/genética , Vacunas Virales/inmunología
11.
Emerg Infect Dis ; 23(12): 1941-1949, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28975882

RESUMEN

In January 2015, during a 3-week period, 12 captive Tonkean macacques at a sanctuary in Italy died. An orthopoxvirus infection was suspected because of negative-staining electron microscopy results. The diagnosis was confirmed by histology, virus isolation, and molecular analysis performed on different organs from all animals. An epidemiologic investigation was unable to define the infection source in the surrounding area. Trapped rodents were negative by virologic testing, but specific IgG was detected in 27.27% of small rodents and 14.28% of rats. An attenuated live vaccine was administered to the susceptible monkey population, and no adverse reactions were observed; a detectable humoral immune response was induced in most of the vaccinated animals. We performed molecular characterization of the orthopoxvirus isolate by next-generation sequencing. According to the phylogenetic analysis of the 9 conserved genes, the virus could be part of a novel clade, lying between cowpox and ectromelia viruses.


Asunto(s)
Brotes de Enfermedades , Enfermedades de los Monos/epidemiología , Orthopoxvirus/genética , Filogenia , Infecciones por Poxviridae/epidemiología , Infecciones por Poxviridae/veterinaria , Animales , Anticuerpos Antivirales/sangre , Vivienda para Animales , Inmunidad Humoral/efectos de los fármacos , Inmunoglobulina G/sangre , Italia/epidemiología , Macaca , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/mortalidad , Enfermedades de los Monos/prevención & control , Orthopoxvirus/clasificación , Orthopoxvirus/aislamiento & purificación , Orthopoxvirus/patogenicidad , Infecciones por Poxviridae/mortalidad , Infecciones por Poxviridae/prevención & control , Ratas , Roedores/virología , Piel/patología , Piel/virología , Análisis de Supervivencia , Vacunación , Vacunas Virales/administración & dosificación
12.
PLoS Pathog ; 11(9): e1005148, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26325270

RESUMEN

Vaccinia virus A33 is an extracellular enveloped virus (EEV)-specific type II membrane glycoprotein that is essential for efficient EEV formation and long-range viral spread within the host. A33 is a target for neutralizing antibody responses against EEV. In this study, we produced seven murine anti-A33 monoclonal antibodies (MAbs) by immunizing mice with live VACV, followed by boosting with the soluble A33 homodimeric ectodomain. Five A33 specific MAbs were capable of neutralizing EEV in the presence of complement. All MAbs bind to conformational epitopes on A33 but not to linear peptides. To identify the epitopes, we have adetermined the crystal structures of three representative neutralizing MAbs in complex with A33. We have further determined the binding kinetics for each of the three antibodies to wild-type A33, as well as to engineered A33 that contained single alanine substitutions within the epitopes of the three crystallized antibodies. While the Fab of both MAbs A2C7 and A20G2 binds to a single A33 subunit, the Fab from MAb A27D7 binds to both A33 subunits simultaneously. A27D7 binding is resistant to single alanine substitutions within the A33 epitope. A27D7 also demonstrated high-affinity binding with recombinant A33 protein that mimics other orthopoxvirus strains in the A27D7 epitope, such as ectromelia, monkeypox, and cowpox virus, suggesting that A27D7 is a potent cross-neutralizer. Finally, we confirmed that A27D7 protects mice against a lethal challenge with ectromelia virus.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Glicoproteínas de Membrana/antagonistas & inhibidores , Modelos Moleculares , Orthopoxvirus/fisiología , Infecciones por Poxviridae/virología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Tropismo Viral , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/uso terapéutico , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/genética , Complejo Antígeno-Anticuerpo/metabolismo , Chlorocebus aethiops , Femenino , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos BALB C , Mutación , Orthopoxvirus/inmunología , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/prevención & control , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico , Vacunas Sintéticas/química , Vacunas Sintéticas/genética , Vacunas Sintéticas/metabolismo , Vacunas Sintéticas/uso terapéutico , Células Vero , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Vacunas Virales/química , Vacunas Virales/genética , Vacunas Virales/metabolismo , Vacunas Virales/uso terapéutico
14.
BMC Vet Res ; 12(1): 133, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27357388

RESUMEN

BACKGROUND: Sheeppox (SPP) is one of the priorities, high-impact animal diseases in many developing countries, where live attenuated vaccines are routinely used against sheeppox virus (SPPV). In an event of an SPP outbreak, historically disease-free countries would hesitate to use of live vaccines against SPPVdue to the safety and trade reasons. Currently no killed SPPV vaccines are commercially available. In this study, we developed an inactivated Romanian SPPVvaccine and assessed its efficacy and potency in comparison with a live attenuated Romanian SPPV vaccine. Four naïve sheep were vaccinated once with the Romanian SPPV live attenuated vaccine and16 sheep were vaccinated twice with the inactivated vaccine. All sheep in the live vaccine group were included in the challenge trial, which was conducted using a highly virulent Moroccan SPPV field strain. Eight sheep of the inactivated vaccine group were challenged and the remaining sheep were monitored for seroconversion. Experimental animals were closely monitored for the appearance of clinical signs, body temperature and inflammation at the injection site. Two naïve sheep were used as unvaccinated controls. RESULTS: The inactivated Romanian SPPV vaccine was found to be safe and confer a good protection, similar to the live vaccine. Specific antibodies appeared from seven days post vaccination and remained up to nine months. CONCLUSION: This study showed that the developed inactivated Romanian SPPV vaccine has a potential to replace attenuated vaccine to control and prevent sheep pox in disease-free or endemic countries.


Asunto(s)
Capripoxvirus/inmunología , Infecciones por Poxviridae/veterinaria , Enfermedades de las Ovejas/prevención & control , Vacunas Virales/inmunología , Animales , Chlorocebus aethiops , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/prevención & control , Ovinos , Enfermedades de las Ovejas/inmunología , Potencia de la Vacuna , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunología , Células Vero
18.
PLoS Pathog ; 9(12): e1003756, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339772

RESUMEN

On May 8, 1980, the World Health Assembly at its 33(rd) session solemnly declared that the world and all its peoples had won freedom from smallpox and recommended ceasing the vaccination of the population against smallpox. Currently, a larger part of the world population has no immunity not only against smallpox but also against other zoonotic orthopoxvirus infections. Recently, recorded outbreaks of orthopoxvirus diseases not only of domestic animals but also of humans have become more frequent. All this indicates a new situation in the ecology and evolution of zoonotic orthopoxviruses. Analysis of state-of-the-art data on the phylogenetic relationships, ecology, and host range of orthopoxviruses--etiological agents of smallpox (variola virus, VARV), monkeypox (MPXV), cowpox (CPXV), vaccinia (VACV), and camelpox (CMLV)--as well as the patterns of their evolution suggests that a VARV-like virus could emerge in the course of natural evolution of modern zoonotic orthopoxviruses. Thus, there is an insistent need for organization of the international control over the outbreaks of zoonotic orthopoxvirus infections in various countries to provide a rapid response and prevent them from developing into epidemics.


Asunto(s)
Infecciones por Poxviridae/epidemiología , Zoonosis/epidemiología , Animales , Brotes de Enfermedades , Reservorios de Enfermedades/estadística & datos numéricos , Evolución Molecular , Humanos , Control de Infecciones , Vacunación Masiva , Orthopoxvirus/genética , Orthopoxvirus/patogenicidad , Infecciones por Poxviridae/prevención & control , Virus Vaccinia/genética , Virus Vaccinia/patogenicidad , Virus de la Viruela/genética , Virus de la Viruela/patogenicidad
19.
Immunol Rev ; 239(1): 8-26, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21198662

RESUMEN

The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines.


Asunto(s)
Orthopoxvirus/inmunología , Vacuna contra Viruela , Viruela/prevención & control , Virus Vaccinia/inmunología , Virus de la Viruela/inmunología , Animales , Anticuerpos Antivirales/inmunología , Armas Biológicas , Modelos Animales de Enfermedad , Regulación Viral de la Expresión Génica , Humanos , Ratones , Orthopoxvirus/genética , Orthopoxvirus/fisiología , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/prevención & control , Viruela/inmunología , Vacuna contra Viruela/inmunología , Vacunas , Virus de la Viruela/patogenicidad
20.
Immunol Rev ; 244(1): 149-68, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22017437

RESUMEN

The human respiratory tract is an entry point for over 200 known viruses that collectively contribute to millions of annual deaths worldwide. Consequently, the World Health Organization has designated respiratory viral infections as a priority for vaccine development. Despite enormous advances in understanding the attributes of a protective mucosal antiviral immune response, current vaccines continue to fail in effectively generating long-lived protective CD8(+) T-cell immunity. To date, the majority of licensed human vaccines afford protection against infectious pathogens through the generation of specific immunoglobulin responses. In recent years, the selective manipulation of specific costimulatory pathways, which are critical in regulating T cell-mediated immune responses, has generated increasing interest. Impressive results in animal models have shown that the tumor necrosis factor receptor (TNFR) family member OX40 (CD134) and its binding partner OX40L (CD252) are key costimulatory molecules involved in the generation of protective CD8(+) T-cell responses at mucosal surfaces, such as the lung. In this review, we highlight these new findings with a particular emphasis on their potential as immunological adjuvants to enhance poxvirus-based CD8(+) T-cell vaccines.


Asunto(s)
Inmunidad Celular , Inmunidad Mucosa , Infecciones por Poxviridae , Poxviridae/inmunología , Receptores OX40/inmunología , Sistema Respiratorio/inmunología , Transducción de Señal/inmunología , Vacunas Virales , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Comunicación Celular , Expresión Génica/inmunología , Humanos , Inmunización , Memoria Inmunológica , Ratones , Ratones Noqueados , Ligando OX40/genética , Ligando OX40/inmunología , Ligando OX40/metabolismo , Poxviridae/efectos de los fármacos , Poxviridae/patogenicidad , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/virología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores OX40/genética , Receptores OX40/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/inmunología , Receptores del Factor de Necrosis Tumoral/metabolismo , Sistema Respiratorio/citología , Sistema Respiratorio/virología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunas Virales/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA