Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.560
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 21(5): 546-554, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32231300

RESUMEN

High-dose radiation activates caspases in tumor cells to produce abundant DNA fragments for DNA sensing in antigen-presenting cells, but the intrinsic DNA sensing in tumor cells after radiation is rather limited. Here we demonstrate that irradiated tumor cells hijack caspase 9 signaling to suppress intrinsic DNA sensing. Instead of apoptotic genomic DNA, tumor-derived mitochondrial DNA triggers intrinsic DNA sensing. Specifically, loss of mitochondrial DNA sensing in Casp9-/- tumors abolishes the enhanced therapeutic effect of radiation. We demonstrated that combining emricasan, a pan-caspase inhibitor, with radiation generates synergistic therapeutic effects. Moreover, loss of CASP9 signaling in tumor cells led to adaptive resistance by upregulating programmed death-ligand 1 (PD-L1) and resulted in tumor relapse. Additional anti-PD-L1 blockade can further overcome this acquired immune resistance. Therefore, combining radiation with a caspase inhibitor and anti-PD-L1 can effectively control tumors by sequentially blocking both intrinsic and extrinsic inhibitory signaling.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Caspasa 9/metabolismo , Inhibidores de Caspasas/uso terapéutico , Quimioradioterapia/métodos , Neoplasias Colorrectales/terapia , Ácidos Pentanoicos/uso terapéutico , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Caspasa 9/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Trasplante de Neoplasias , Transducción de Señal , Regulación hacia Arriba
2.
Nat Immunol ; 21(7): 736-745, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32367036

RESUMEN

Cytosolic sensing of pathogens and damage by myeloid and barrier epithelial cells assembles large complexes called inflammasomes, which activate inflammatory caspases to process cytokines (IL-1ß) and gasdermin D (GSDMD). Cleaved GSDMD forms membrane pores, leading to cytokine release and inflammatory cell death (pyroptosis). Inhibiting GSDMD is an attractive strategy to curb inflammation. Here we identify disulfiram, a drug for treating alcohol addiction, as an inhibitor of pore formation by GSDMD but not other members of the GSDM family. Disulfiram blocks pyroptosis and cytokine release in cells and lipopolysaccharide-induced septic death in mice. At nanomolar concentration, disulfiram covalently modifies human/mouse Cys191/Cys192 in GSDMD to block pore formation. Disulfiram still allows IL-1ß and GSDMD processing, but abrogates pore formation, thereby preventing IL-1ß release and pyroptosis. The role of disulfiram in inhibiting GSDMD provides new therapeutic indications for repurposing this safe drug to counteract inflammation, which contributes to many human diseases.


Asunto(s)
Disulfiram/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Proteínas de Unión a Fosfato/antagonistas & inhibidores , Piroptosis/efectos de los fármacos , Sepsis/tratamiento farmacológico , Animales , Caspasa 1/genética , Caspasa 1/metabolismo , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , Caspasas Iniciadoras/genética , Caspasas Iniciadoras/metabolismo , Línea Celular Tumoral , Disulfiram/uso terapéutico , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Femenino , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Liposomas , Ratones , Mutagénesis Sitio-Dirigida , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sepsis/inmunología , Células Sf9 , Spodoptera
3.
Nat Immunol ; 15(8): 727-37, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24952505

RESUMEN

Microbes or danger signals trigger inflammasome sensors, which induce polymerization of the adaptor ASC and the assembly of ASC specks. ASC specks recruit and activate caspase-1, which induces maturation of the cytokine interleukin 1ß (IL-1ß) and pyroptotic cell death. Here we found that after pyroptosis, ASC specks accumulated in the extracellular space, where they promoted further maturation of IL-1ß. In addition, phagocytosis of ASC specks by macrophages induced lysosomal damage and nucleation of soluble ASC, as well as activation of IL-1ß in recipient cells. ASC specks appeared in bodily fluids from inflamed tissues, and autoantibodies to ASC specks developed in patients and mice with autoimmune pathologies. Together these findings reveal extracellular functions of ASC specks and a previously unknown form of cell-to-cell communication.


Asunto(s)
Apoptosis/inmunología , Caspasa 1/inmunología , Proteínas del Citoesqueleto/inmunología , Inflamación/inmunología , Interleucina-1beta/inmunología , Clorometilcetonas de Aminoácidos/farmacología , Animales , Anticuerpos/inmunología , Proteínas Reguladoras de la Apoptosis , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/inmunología , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/genética , Caspasa 1/genética , Inhibidores de Caspasas/farmacología , Comunicación Celular/inmunología , Proteínas del Citoesqueleto/genética , Humanos , Inflamasomas/inmunología , Lisosomas/patología , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Fagocitosis/inmunología , Priones/química , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Transducción de Señal/inmunología
4.
Eur J Immunol ; 54(5): e2350515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361219

RESUMEN

Caspase-1 location in cells has been studied with fluorochrome-labeled inhibitors of caspase-1 (FLICA reagents). We report that FLICA reagents have limited cell-membrane permeability. This impacts experimental design as cells with intact membranes, including caspase-1 knockout cells, are not appropriate controls for cells with inflammasome-induced gasdermin D membrane pores.


Asunto(s)
Caspasa 1 , Inhibidores de Caspasas , Permeabilidad de la Membrana Celular , Colorantes Fluorescentes , Inflamasomas , Macrófagos , Caspasa 1/metabolismo , Animales , Macrófagos/inmunología , Macrófagos/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ratones , Inflamasomas/metabolismo , Inhibidores de Caspasas/farmacología , Ratones Noqueados , Proteínas de Unión a Fosfato/metabolismo , Humanos
5.
J Virol ; 98(2): e0197523, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294249

RESUMEN

The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.


Asunto(s)
Caspasas , Citoplasma , Fiebre Hemorrágica Americana , Interacciones Huésped-Patógeno , Inmunidad Innata , Virus Junin , Nucleoproteínas , Biosíntesis de Proteínas , Humanos , Apoptosis , Inhibidores de Caspasas/metabolismo , Caspasas/metabolismo , Citoplasma/metabolismo , Citoplasma/virología , Activación Enzimática , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Interferones/genética , Interferones/inmunología , Virus Junin/genética , Virus Junin/metabolismo , Virus Junin/patogenicidad , Nucleoproteínas/biosíntesis , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/biosíntesis , ARN Viral/genética , Replicación Viral
6.
J Am Chem Soc ; 146(22): 14972-14988, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787738

RESUMEN

Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all 12 human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive noncatalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase-reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify the functions of the zymogen and partially processed (p32) forms of caspase-2 provide evidence to support that caspase-2-mediated response to DNA damage is largely driven by the partially processed p32 form of the enzyme. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target nonconserved and noncatalytic cysteine residues.


Asunto(s)
Caspasa 2 , Inhibidores de Caspasas , Proteómica , Humanos , Caspasa 2/metabolismo , Caspasa 2/química , Proteómica/métodos , Inhibidores de Caspasas/farmacología , Inhibidores de Caspasas/química , Inhibidores de Caspasas/metabolismo , Estructura Molecular , Cisteína Endopeptidasas
7.
Retrovirology ; 21(1): 8, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693565

RESUMEN

The study of HIV infection and pathogenicity in physical reservoirs requires a biologically relevant model. The human immune system (HIS) mouse is an established model of HIV infection, but defects in immune tissue reconstitution remain a challenge for examining pathology in tissues. We utilized exogenous injection of the human recombinant FMS-like tyrosine kinase 3 ligand (rFLT-3 L) into the hematopoietic stem cell (HSC) cord blood HIS mouse model to significantly expand the total area of lymph node (LN) and the number of circulating human T cells. The results enabled visualization and quantification of HIV infectivity, CD4 T cell depletion and other measures of pathogenesis in the secondary lymphoid tissues of the spleen and LN. Treatment with the Caspase-1/4 inhibitor VX-765 limited CD4+ T cell loss in the spleen and reduced viral load in both the spleen and axillary LN. In situ hybridization further demonstrated a decrease in viral RNA in both the spleen and LN. Transcriptomic analysis revealed that in vivo inhibition of caspase-1/4 led to an upregulation in host HIV restriction factors including SAMHD1 and APOBEC3A. These findings highlight the use of rFLT-3 L to augment human immune system characteristics in HIS mice to support investigations of HIV pathogenesis and test host directed therapies, though further refinements are needed to further augment LN architecture and cellular populations. The results further provide in vivo evidence of the potential to target inflammasome pathways as an avenue of host-directed therapy to limit immune dysfunction and virus replication in tissue compartments of HIV+ persons.


Asunto(s)
Linfocitos T CD4-Positivos , Modelos Animales de Enfermedad , Infecciones por VIH , VIH-1 , Animales , Ratones , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Infecciones por VIH/tratamiento farmacológico , VIH-1/fisiología , VIH-1/efectos de los fármacos , Humanos , Linfocitos T CD4-Positivos/inmunología , Tejido Linfoide/virología , Tejido Linfoide/inmunología , Carga Viral/efectos de los fármacos , Bazo/virología , Bazo/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Caspasas/metabolismo , Inhibidores de Caspasas/farmacología , Antirretrovirales/uso terapéutico
8.
J Pharmacol Exp Ther ; 388(2): 367-375, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37918856

RESUMEN

Organophosphates cause hyperstimulation of the central nervous system, leading to extended seizures, convulsions, and brain damage. Sarin is a highly toxic organophosphate nerve agent that has been employed in several terrorist attacks. The prolonged toxicity of sarin may be enhanced by the neuroinflammatory response initiated by the inflammasome, caspase involvement, and generation/release of proinflammatory cytokines. Since neurodegeneration and neuroinflammation are prevalent in sarin-exposed animals, we were interested in evaluating the capacity of quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh), a pan caspase inhibitor to attenuate neuroinflammation following sarin exposure. To test this hypothesis, sarin-exposed C57BL/6 mice were treated with Q-VD-OPh or negative control quinolyl-valyl-O-methylglutamyl-[-2,6-difluorophenoxy]-methyl ketone, sacrificed at 2- and 14-day time points, followed by removal of the amygdala and hippocampus. A Bio-Rad 23-Plex cytokine analysis was completed on each tissue. The results suggest that exposure to sarin induced a dramatic increase in interleukin-1ß and 6 other cytokines and a decrease in 2 of the 23 cytokines at 2 days in the amygdala compared with controls. Q-VD-OPh attenuated these changes at the 2-day time point. At 14 days, six of these cytokines were still significantly different from controls. Hippocampus was less affected at both time points. Diazepam, a neuroprotective drug against nerve agents, caused an increase in several cytokines but did not have a synergistic effect with Q-VD-OPh. Treatment of sarin exposure with apoptosis inhibitors appears to be a worthwhile approach for further testing as a comprehensive counteragent against organophosphate exposure. SIGNIFICANCE STATEMENT: A pan inhibitor of caspases (Q-VD-OPh) was proposed as a potential antidote for sarin-induced neuroinflammation by reducing the level of inflammation via inflammasome caspase inhibition. Q-VD-OPh added at 30 minutes post-sarin exposure attenuated the inflammatory response of a number of cytokines and chemokines in the amygdala and hippocampus, two brain regions sensitive to organophosphate exposure. Apoptotic marker reduction at 2 and 14 days further supports further testing of inhibitors of apoptosis as a means to lessen extended organophosphate toxicity in the brain.


Asunto(s)
Clorometilcetonas de Aminoácidos , Agentes Nerviosos , Quinolinas , Sarín , Ratones , Animales , Sarín/toxicidad , Inhibidores de Caspasas/farmacología , Inhibidores de Caspasas/uso terapéutico , Enfermedades Neuroinflamatorias , Inflamasomas , Ratones Endogámicos C57BL , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Encéfalo , Citocinas , Agentes Nerviosos/farmacología , Caspasas , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Organofosfatos/farmacología , Cetonas/efectos adversos
9.
Acta Pharmacol Sin ; 45(7): 1381-1392, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38514863

RESUMEN

Status epilepticus (SE), a serious and often life-threatening medical emergency, is characterized by abnormally prolonged seizures. It is not effectively managed by present first-line anti-seizure medications and could readily develop into drug resistance without timely treatment. In this study, we highlight the therapeutic potential of CZL80, a small molecule that inhibits caspase-1, in SE termination and its related mechanisms. We found that delayed treatment of diazepam (0.5 h) easily induces resistance in kainic acid (KA)-induced SE. CZL80 dose-dependently terminated diazepam-resistant SE, extending the therapeutic time window to 3 h following SE, and also protected against neuronal damage. Interestingly, the effect of CZL80 on SE termination was model-dependent, as evidenced by ineffectiveness in the pilocarpine-induced SE. Further, we found that CZL80 did not terminate KA-induced SE in Caspase-1-/- mice but partially terminated SE in IL1R1-/- mice, suggesting the SE termination effect of CZL80 was dependent on the caspase-1, but not entirely through the downstream IL-1ß pathway. Furthermore, in vivo calcium fiber photometry revealed that CZL80 completely reversed the neuroinflammation-augmented glutamatergic transmission in SE. Together, our results demonstrate that caspase-1 inhibitor CZL80 terminates diazepam-resistant SE by blocking glutamatergic transmission. This may be of great therapeutic significance for the clinical treatment of refractory SE.


Asunto(s)
Anticonvulsivantes , Caspasa 1 , Ratones Endogámicos C57BL , Estado Epiléptico , Animales , Estado Epiléptico/tratamiento farmacológico , Caspasa 1/metabolismo , Ratones , Masculino , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Ácido Kaínico/farmacología , Ratones Noqueados , Ácido Glutámico/metabolismo , Inhibidores de Caspasas/farmacología , Inhibidores de Caspasas/uso terapéutico , Diazepam/farmacología , Diazepam/uso terapéutico , Transmisión Sináptica/efectos de los fármacos
10.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791499

RESUMEN

The activation of caspases is a crucial event and an indicator of programmed cell death, also known as apoptosis. These enzymes play a central role in cancer biology and are considered one promising target for current and future advancements in therapeutic interventions. Traditional methods of measuring caspase activity such as antibody-based methods provide fundamental insights into their biological functions, and are considered essential tools in the fields of cell and cancer biology, pharmacology and toxicology, and drug discovery. However, traditional methods, though extensively used, are now recognized as having various shortcomings. In addition, these methods fall short of providing solutions to and matching the needs of the rapid and expansive progress achieved in studying caspases. For these reasons, there has been a continuous improvement in detection methods for caspases and the network of pathways involved in their activation and downstream signaling. Over the past decade, newer methods based on cutting-edge state-of-the-art technologies have been introduced to the biomedical community. These methods enable both the temporal and spatial monitoring of the activity of caspases and their downstream substrates, and with enhanced accuracy and precision. These include fluorescent-labeled inhibitors (FLIs) for live imaging, single-cell live imaging, fluorescence resonance energy transfer (FRET) sensors, and activatable multifunctional probes for in vivo imaging. Recently, the recruitment of mass spectrometry (MS) techniques in the investigation of these enzymes expanded the repertoire of tools available for the identification and quantification of caspase substrates, cleavage products, and post-translational modifications in addition to unveiling the complex regulatory networks implicated. Collectively, these methods are enabling researchers to unravel much of the complex cellular processes involved in apoptosis, and are helping generate a clearer and comprehensive understanding of caspase-mediated proteolysis during apoptosis. Herein, we provide a comprehensive review of various assays and detection methods as they have evolved over the years, so to encourage further exploration of these enzymes, which should have direct implications for the advancement of therapeutics for cancer and other diseases.


Asunto(s)
Caspasas , Caspasas/metabolismo , Humanos , Animales , Apoptosis , Transferencia Resonante de Energía de Fluorescencia/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Inhibidores de Caspasas/farmacología , Colorantes Fluorescentes/química
11.
Ecotoxicol Environ Saf ; 249: 114359, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508797

RESUMEN

Silicosis is a diffuse fibrotic lung disease in which excessive inflammatory responses are triggered by silica exposure. Pyroptosis, a pro-inflammatory mode of programmed cell death, is mediated by gasdermin and may play a pivotal role in the development of silicosis. The caspase-1 inhibitor, VX-765, was used in vivo and in vitro to investigate the effects of silica-induced early inflammatory injury and later lung fibrosis. Our findings show that VX-765 reduces inflammatory lung injury by inhibiting silica-induced pyroptosis of alveolar macrophages in a silicosis mouse model. VX-765 limits the infiltration of inflammatory M1 alveolar macrophages, decreasing expression of inflammatory cytokines, including IL-1ß, TNF-α, IL-6, CCL2, and CCL3, and down-regulating endogenous DAMPs and inflammatory immune-related cell pattern recognition receptors TLR4 and NLRP3. Furthermore, VX-765 alleviates fibrosis by down-regulating α-smooth muscle actin (α-SMA), collagen, and fibronectin. In this study, we illustrate that Alveolar macrophages pyroptosis occur in the early stages of silicosis, and VX-765 can alleviate the development of silicosis by inhibiting the pyroptosis signaling pathway. These results may provide new insight into the prevention and treatment of early-stage silicosis.


Asunto(s)
Inhibidores de Caspasas , Lesión Pulmonar , Fibrosis Pulmonar , Piroptosis , Silicosis , Animales , Ratones , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/patología , Macrófagos Alveolares/efectos de los fármacos , Piroptosis/efectos de los fármacos , Dióxido de Silicio/toxicidad , Silicosis/tratamiento farmacológico , Inhibidores de Caspasas/farmacología , Inhibidores de Caspasas/uso terapéutico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico
12.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G439-G460, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165492

RESUMEN

DNA sensor pathways can initiate inflammasome, cell death, and type I interferon (IFN) signaling in immune-mediated inflammatory diseases (IMIDs), including type I interferonopathies. We investigated the involvement of these pathways in the pathogenesis of ulcerative colitis (UC) by analyzing the expression of DNA sensor, inflammasome, and type I IFN biomarker genes in colonic mucosal biopsy tissue from control (n = 31), inactive UC (n = 31), active UC (n = 33), and a UC single-cell RNA-Seq dataset. The effects of type I IFN (IFN-ß), IFN-γ, and TNF-α on gene expression, cytokine production, and cell death were investigated in human colonic organoids. In organoids treated with cytokines alone, or in combination with NLR family pyrin domain-containing 3 (NLRP3), caspase, or JAK inhibitors, cell death was measured, and supernatants were assayed for IL-1ß/IL-18/CXCL10. The expression of DNA sensor pathway genes-PYHIN family members [absent in melanoma 2 (AIM2), IFI16, myeloid cell nuclear differentiation antigen (MNDA), and pyrin and HIN domain family member 1 (PYHIN1)- as well as Z-DNA-binding protein 1 (ZBP1), cyclic GMP-AMP synthase (cGAS), and DDX41 was increased in active UC and expressed in a cell type-restricted pattern. Inflammasome genes (CASP1, IL1B, and IL18), type I IFN inducers [stimulator of interferon response cGAMP interactor 1 (STING), TBK1, and IRF3), IFNB1, and type I IFN biomarker genes (OAS2, IFIT2, and MX2) were also increased in active UC. Cotreatment of organoids with IFN-ß or IFN-γ in combination with TNFα increased expression of IFI16, ZBP1, CASP1, cGAS, and STING induced cell death and IL-1ß/IL-18 secretion. This inflammatory cell death was blocked by the JAK inhibitor tofacitinib but not by inflammasome or caspase inhibitors. Increased type I IFN activity may drive elevated expression of DNA sensor genes and JAK-dependent but inflammasome-independent inflammatory cell death of colonic epithelial cells in UC.NEW & NOTEWORTHY This study found that patients with active UC have significantly increased colonic gene expression of cytosolic DNA sensor, inflammasome, STING, and type I IFN signaling pathways. The type I IFN, IFN-ß, in combination with TNF-α induced JAK-dependent but NLRP3 and inflammasome-independent inflammatory cell death of colonic organoids. This novel inflammatory cell death phenotype is relevant to UC immunopathology and may partially explain the efficacy of the JAKinibs tofacitinib and upadacitinib in patients with UC.


Asunto(s)
Colitis Ulcerosa , Interferón Tipo I , Inhibidores de las Cinasas Janus , Humanos , Inflamasomas/metabolismo , Interleucina-18 , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor de Necrosis Tumoral alfa , Inhibidores de Caspasas , Organoides/metabolismo , Pirina , Caspasa 1/metabolismo , Nucleotidiltransferasas/metabolismo , ADN , Muerte Celular , Proteínas de Unión al ADN/metabolismo , Antígenos de Diferenciación
13.
Eur J Immunol ; 51(5): 1234-1245, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33454984

RESUMEN

Pyroptosis is a type of acute cell death that mainly occurs in immune cells. It is characterized with robust release of inflammatory cytokines and has emerged to play a critical role in the pathogenesis of sepsis-associated immune disorders. In this study, we screened for pyroptotic inhibitors with the ultimate goal to benefit sepsis treatments. Accidentally, we identified that nitrosonisoldipine (NTS), a photodegradation product of calcium channel inhibitor nisoldipine, inhibits noncanonical pyroptosis. Using murine immortalized BM-derived macrophage and human THP-1 cell line, we further discovered that NTS not only inhibits noncanonical pyroptosis mediated by caspase-11 or caspase-4 but also canonical pyroptosis mediated by caspase-1. Mechanistically, NTS directly inhibits the enzyme activities of these inflammatory caspases, and these inhibitory effects persist despite extensive washout of the drug. By contrast, apoptosis mediated by caspase-3/-7 was not affected by NTS. Mice pretreated with NTS intraperitoneally displayed improved survival rate and extended survival time in LPS- and polymicrobe-induced septic models, respectively. In conclusion, NTS is a selective inhibitor of inflammatory caspases that blocks both the noncanonical and canonical pyroptotic pathways. It is safe for intraperitoneal administration and might be used as a prototype to develop drugs for sepsis treatments.


Asunto(s)
Inhibidores de Caspasas/farmacología , Piroptosis/efectos de los fármacos , Choque Séptico/tratamiento farmacológico , Choque Séptico/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Apoptosis/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Inhibidores de Caspasas/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Ratones , Pronóstico , Choque Séptico/etiología , Choque Séptico/mortalidad , Resultado del Tratamiento
14.
Histochem Cell Biol ; 157(4): 403-413, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34999953

RESUMEN

Besides cell death, caspase-9 participates in non-apoptotic events, including cell differentiation. To evaluate a possible impact on the expression of chondrogenic/osteogenic factors, a caspase-9 inhibitor was tested in vitro. For this purpose, mouse forelimb-derived micromass cultures, the most common chondrogenic in vitro model, were used. The following analyses were performed based on polymerase chain reaction (PCR) arrays and real-time PCR. The expression of several chondrogenesis-related genes was shown to be altered, some of which may impact chondrogenic differentiation (Bmp4, Bmp7, Sp7, Gli1), mineral deposition (Alp, Itgam) or the remodelling of the extracellular matrix (Col1a2, Mmp9) related to endochondral ossification. From the cluster of genes with altered expression, Mmp9 showed the most significant decrease in expression, of more than 50-fold. Additionally, we determined the possible impact of caspase-9 downregulation on the expression of other Mmp genes. A mild increase in Mmp14 was observed, but there was no change in the expression of other studied Mmp genes (-2, -3, -8, -10, -12, -13). Interestingly, inhibition of Mmp9 in micromasses led to decreased expression of some chondrogenic markers related to caspase-9. These samples also showed a decreased expression of caspase-9 itself, suggesting a bidirectional regulation of these two enzymes. These results indicate a specific impact of caspase-9 inhibition on the expression of Mmp9. The localisation of these two enzymes overlaps in resting, proliferative and pre-hypertrophic chondrocytes during in vivo development, which supports their multiple functions, either apoptotic or non-apoptotic. Notably, a coincidental expression pattern was identified in Pik3cg, a possible candidate for Mmp9 regulation.


Asunto(s)
Condrocitos , Condrogénesis , Animales , Caspasa 9/genética , Caspasa 9/metabolismo , Inhibidores de Caspasas/metabolismo , Inhibidores de Caspasas/farmacología , Diferenciación Celular , Células Cultivadas , Condrogénesis/fisiología , Ratones , Osteogénesis
15.
Ann Neurol ; 90(3): 377-390, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34288031

RESUMEN

OBJECTIVE: Unidentified mechanisms largely restrict the viability of effective therapies in pharmacoresistant epilepsy. Our previous study revealed that hyperactivity of the subiculum is crucial for the genesis of pharmacoresistance in temporal lobe epilepsy (TLE), but the underlying molecular mechanism is not clear. METHODS: Here, we examined the role of subicular caspase-1, a key neural pro-inflammatory enzyme, in pharmacoresistant TLE. RESULTS: We found that the expression of activated caspase-1 in the subiculum, but not the CA1, was upregulated in pharmacoresistant amygdaloid-kindled rats. Early overexpression of caspase-1 in the subiculum was sufficient to induce pharmacoresistant TLE in rats, whereas genetic ablation of caspase-1 interfered with the genesis of pharmacoresistant TLE in both kindled rats and kainic acid-treated mice. The pro-pharmacoresistance effect of subicular caspase-1 was mediated by its downstream inflammasome-dependent interleukin-1ß. Further electrophysiological results showed that inhibiting caspase-1 decreased the excitability of subicular pyramidal neurons through influencing the excitation/inhibition balance of presynaptic input. Importantly, a small molecular caspase-1 inhibitor CZL80 attenuated seizures in pharmacoresistant TLE models, and decreased the neuronal excitability in the brain slices obtained from patients with pharmacoresistant TLE. INTERPRETATION: These results support the subicular caspase-1-interleukin-1ß inflammatory pathway as a novel alternative mechanism hypothesis for pharmacoresistant TLE, and present caspase-1 as a potential target. ANN NEUROL 2021;90:377-390.


Asunto(s)
Caspasa 1/biosíntesis , Inhibidores de Caspasas/uso terapéutico , Epilepsia Refractaria/enzimología , Epilepsia del Lóbulo Temporal/enzimología , Hipocampo/enzimología , Adulto , Animales , Caspasa 1/genética , Inhibidores de Caspasas/farmacología , Niño , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Femenino , Hipocampo/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
16.
Respir Res ; 23(1): 21, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35130879

RESUMEN

BACKGROUND: Inhalation of dust containing silica particles is associated with severe pulmonary inflammation and lung injury leading to chronic silicosis including fibrotic remodeling of the lung. Silicosis represents a major global health problem causing more than 45.000 deaths per year. The inflammasome-caspase-1 pathway contributes to the development of silica-induced inflammation and fibrosis via IL-1ß and IL-18 production. Recent studies indicate that tetracycline can be used to treat inflammatory diseases mediated by IL-1ß and IL-18. Therefore, we hypothesized that tetracycline reduces silica-induced lung injury and lung fibrosis resulting from chronic silicosis via limiting IL-1ß and IL-18 driven inflammation. METHODS: To investigate whether tetracycline is a therapeutic option to block inflammasome-caspase-1 driven inflammation in silicosis, we incubated macrophages with silica alone or combined with tetracycline. The in vivo effect of tetracycline was determined after intratracheal administration of silica into the mouse lung. RESULTS: Tetracycline selectively blocks IL-1ß production and pyroptotic cell death via inhibition of caspase-1 in macrophages exposed to silica particles. Consistent, treatment of silica-instilled mice with tetracycline significantly reduced pulmonary caspase-1 activation as well as IL-1ß and IL-18 production, thereby ameliorating pulmonary inflammation and lung injury. Furthermore, prolonged tetracycline administration in a model of chronic silicosis reduced lung damage and fibrotic remodeling. CONCLUSIONS: These findings suggest that tetracycline inhibits caspase-1-dependent production of IL-1ß in response to silica in vitro and in vivo. The results were consistent with tetracycline reducing silica-induced pulmonary inflammation and chronic silicosis in terms of lung injury and fibrosis. Thus, tetracycline could be effective in the treatment of patients with silicosis as well as other diseases involving silicotic inflammation.


Asunto(s)
Caspasa 1/metabolismo , Inhibidores de Caspasas/uso terapéutico , Neumonía/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico , Tetraciclina/uso terapéutico , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía/inducido químicamente , Neumonía/metabolismo , Inhibidores de la Síntesis de la Proteína/uso terapéutico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Dióxido de Silicio/toxicidad
17.
Allergy ; 77(1): 118-129, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33993490

RESUMEN

BACKGROUND: COVID-19 can present with lymphopenia and extraordinary complex multiorgan pathologies that can trigger long-term sequela. AIMS: Given that inflammasome products, like caspase-1, play a role in the pathophysiology of a number of co-morbid conditions, we investigated caspases across the spectrum of COVID-19 disease. MATERIALS & METHODS: We assessed transcriptional states of multiple caspases and using flow cytometry, the expression of active caspase-1 in blood cells from COVID-19 patients in acute and convalescent stages of disease. Non-COVID-19 subject presenting with various comorbid conditions served as controls. RESULTS: Single-cell RNA-seq data of immune cells from COVID-19 patients showed a distinct caspase expression pattern in T cells, neutrophils, dendritic cells, and eosinophils compared with controls. Caspase-1 was upregulated in CD4+ T-cells from hospitalized COVID-19 patients compared with unexposed controls. Post-COVID-19 patients with lingering symptoms (long-haulers) also showed upregulated caspase-1activity in CD4+ T-cells that ex vivo was attenuated with a select pan-caspase inhibitor. We observed elevated caspase-3/7levels in red blood cells from COVID-19 patients compared with controls that was reduced following caspase inhibition. DISCUSSION: Our preliminary results suggest an exuberant caspase response in COVID-19 that may facilitate immune-related pathological processes leading to severe outcomes. Further clinical correlations of caspase expression in different stages of COVID-19 will be needed. CONCLUSION: Pan-caspase inhibition could emerge as a therapeutic strategy to ameliorate or prevent severe COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Inhibidores de Caspasas , Linfocitos T CD4-Positivos , COVID-19/complicaciones , Caspasa 1 , Caspasa 3 , Caspasa 7 , Inhibidores de Caspasas/uso terapéutico , Caspasas/genética , Humanos , Síndrome Post Agudo de COVID-19
18.
Nature ; 536(7615): 215-8, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27487218

RESUMEN

Metastasis is the leading cause of cancer-related death in humans. It is a complex multistep process during which individual tumour cells spread primarily through the circulatory system to colonize distant organs. Once in the circulation, tumour cells remain vulnerable, and their metastatic potential largely depends on a rapid and efficient way to escape from the blood stream by passing the endothelial barrier. Evidence has been provided that tumour cell extravasation resembles leukocyte transendothelial migration. However, it remains unclear how tumour cells interact with endothelial cells during extravasation and how these processes are regulated on a molecular level. Here we show that human and murine tumour cells induce programmed necrosis (necroptosis) of endothelial cells, which promotes tumour cell extravasation and metastasis. Treatment of mice with the receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-inhibitor necrostatin-1 or endothelial-cell-specific deletion of RIPK3 reduced tumour-cell-induced endothelial necroptosis, tumour cell extravasation and metastasis. In contrast, pharmacological caspase inhibition or endothelial-cell-specific loss of caspase-8 promoted these processes. We furthermore show in vitro and in vivo that tumour-cell-induced endothelial necroptosis leading to extravasation and metastasis requires amyloid precursor protein expressed by tumour cells and its receptor, death receptor 6 (DR6), on endothelial cells as the primary mediators of these effects. Our data identify a new mechanism underlying tumour cell extravasation and metastasis, and suggest endothelial DR6-mediated necroptotic signalling pathways as targets for anti-metastatic therapies.


Asunto(s)
Apoptosis , Células Endoteliales/metabolismo , Células Endoteliales/patología , Necrosis , Metástasis de la Neoplasia , Neoplasias/patología , Receptores del Factor de Necrosis Tumoral/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 8/genética , Inhibidores de Caspasas/farmacología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Imidazoles/farmacología , Indoles/farmacología , Masculino , Ratones , Necrosis/tratamiento farmacológico , Metástasis de la Neoplasia/tratamiento farmacológico , Neoplasias/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Migración Transendotelial y Transepitelial/efectos de los fármacos
19.
Acta Pharmacol Sin ; 43(9): 2289-2301, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35132192

RESUMEN

Connexin 43 (Cx43) is the most important protein in the gap junction channel between cardiomyocytes. Abnormalities of Cx43 change the conduction velocity and direction of cardiomyocytes, leading to reentry and conduction block of the myocardium, thereby causing arrhythmia. It has been shown that IL-1ß reduces the expression of Cx43 in astrocytes and cardiomyocytes in vitro. However, whether caspase-1 and IL-1ß affect connexin 43 after myocardial infarction (MI) is uncertain. In this study we investigated the effects of VX765, a caspase-1 inhibitor, on the expression of Cx43 and cell-to-cell communication after MI. Rats were treated with VX765 (16 mg/kg, i.v.) 1 h before the left anterior descending artery (LAD) ligation, and then once daily for 7 days. The ischemic heart was collected for histochemical analysis and Western blot analysis. We showed that VX765 treatment significantly decreased the infarct area, and alleviated cardiac dysfunction and remodeling by suppressing the NLRP3 inflammasome/caspase-1/IL-1ß expression in the heart after MI. In addition, VX765 treatment markedly raised Cx43 levels in the heart after MI. In vitro experiments were conducted in rat cardiac myocytes (RCMs) stimulated with the supernatant from LPS/ATP-treated rat cardiac fibroblasts (RCFs). Pretreatment of the RCFs with VX765 (25 µM) reversed the downregulation of Cx43 expression in RCMs and significantly improved intercellular communication detected using a scrape-loading/dye transfer assay. We revealed that VX765 suppressed the activation of p38 MAPK signaling in the heart tissue after MI as well as in RCMs stimulated with the supernatant from LPS/ATP-treated RCFs. Taken together, these data show that the caspase-1 inhibitor VX765 upregulates Cx43 expression and improves cell-to-cell communication in rat heart after MI via suppressing the IL-1ß/p38 MAPK pathway.


Asunto(s)
Caspasa 1 , Conexina 43 , Infarto del Miocardio , Animales , Ratas , Adenosina Trifosfato/farmacología , Arritmias Cardíacas , Caspasa 1/metabolismo , Caspasa 1/farmacología , Inhibidores de Caspasas/farmacología , Caspasas , Comunicación Celular/efectos de los fármacos , Conexina 43/genética , Conexina 43/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Infarto del Miocardio/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Serpinas , Proteínas Virales , Expresión Génica/efectos de los fármacos
20.
Proc Natl Acad Sci U S A ; 116(28): 14039-14048, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239343

RESUMEN

Most normal and tumor cells are protected from tumor necrosis factor α (TNFα)-induced apoptosis. Here, we identify the MAP3 kinase tumor progression locus-2 (TPL2) as a player contributing to the protection of a subset of tumor cell lines. The combination of TPL2 knockdown and TNFα gives rise to a synthetic lethality phenotype via receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-dependent and -independent mechanisms. Whereas wild-type TPL2 rescues the phenotype, its kinase-dead mutant does not. Comparison of the molecular events initiated by small interfering RNA for TPL2 (siTPL2) ± TNFα in treatment-sensitive and -resistant lines revealed that the activation of caspase-8, downstream of miR-21-5p and cFLIP, is the dominant TPL2-dependent event. More important, comparison of the gene expression profiles of all of the tested cell lines results in the clustering of sensitive and resistant lines into distinct groups, providing proof of principle for the feasibility of generating a predictive tool for treatment sensitivity.


Asunto(s)
Carcinoma/genética , Inhibidores de Caspasas/farmacología , Quinasas Quinasa Quinasa PAM/genética , Proteínas Proto-Oncogénicas/genética , Factor de Necrosis Tumoral alfa/genética , Apoptosis/genética , Carcinoma/tratamiento farmacológico , Carcinoma/patología , Caspasa 8/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Macrófagos/metabolismo , MicroARNs/genética , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal , Mutaciones Letales Sintéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA