Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(37): e2120079119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067316

RESUMEN

The extracellular protein Reelin, expressed by Cajal-Retzius (CR) cells at early stages of cortical development and at late stages by GABAergic interneurons, regulates radial migration and the "inside-out" pattern of positioning. Current models of Reelin functions in corticogenesis focus on early CR cell-derived Reelin in layer I. However, developmental disorders linked to Reelin deficits, such as schizophrenia and autism, are related to GABAergic interneuron-derived Reelin, although its role in migration has not been established. Here we selectively inactivated the Reln gene in CR cells or GABAergic interneurons. We show that CR cells have a major role in the inside-out order of migration, while CR and GABAergic cells sequentially cooperate to prevent invasion of cortical neurons into layer I. Furthermore, GABAergic cell-derived Reelin compensates some features of the reeler phenotype and is needed for the fine tuning of the layer-specific distribution of cortical neurons. In the hippocampus, the inactivation of Reelin in CR cells causes dramatic alterations in the dentate gyrus and mild defects in the hippocampus proper. These findings lead to a model in which both CR and GABAergic cell-derived Reelin cooperate to build the inside-out order of corticogenesis, which might provide a better understanding of the mechanisms involved in the pathogenesis of neuropsychiatric disorders linked to abnormal migration and Reelin deficits.


Asunto(s)
Corteza Cerebral , Proteínas del Tejido Nervioso , Neuronas , Proteína Reelina , Animales , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Neuronas GABAérgicas/enzimología , Hipocampo/embriología , Hipocampo/enzimología , Interneuronas/enzimología , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/enzimología , Proteína Reelina/genética , Proteína Reelina/metabolismo
2.
EMBO J ; 39(18): e105759, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32744742

RESUMEN

Parvalbumin-positive (PV+ ) fast-spiking interneurons are essential to control the firing activity of principal neuron ensembles, thereby regulating cognitive processes. The high firing frequency activity of PV+ interneurons imposes high-energy demands on their metabolism that must be supplied by distinctive machinery for energy generation. Exploring single-cell transcriptomic data for the mouse cortex, we identified a metabolism-associated gene with highly restricted expression to PV+ interneurons: Cox6a2, which codes for an isoform of a cytochrome c oxidase subunit. Cox6a2 deletion in mice disrupts perineuronal nets and enhances oxidative stress in PV+ interneurons, which in turn impairs the maturation of their morphological and functional properties. Such dramatic effects were likely due to an essential role of COX6A2 in energy balance of PV+ interneurons, underscored by a decrease in the ATP-to-ADP ratio in Cox6a2-/- PV+ interneurons. Energy disbalance and aberrant maturation likely hinder the integration of PV+ interneurons into cortical neuronal circuits, leading to behavioral alterations in mice. Additionally, in a human patient bearing mutations in COX6A2, we found a potential association of the mutations with mental/neurological abnormalities.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Interneuronas/enzimología , Proteínas Musculares/metabolismo , Estrés Oxidativo , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Anciano , Animales , Complejo IV de Transporte de Electrones/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proteínas Musculares/genética
3.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34389674

RESUMEN

Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.


Asunto(s)
Astrocitos/fisiología , Conexina 30/metabolismo , Ácido Glutámico/metabolismo , Neuronas/fisiología , Animales , Diferenciación Celular , Conexina 30/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacología , Fenómenos Electrofisiológicos , Neuronas GABAérgicas/enzimología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Interneuronas/enzimología , Proteínas Luminiscentes , Ratones , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Recombinación Genética , Tamoxifeno/farmacología
4.
Eur J Neurosci ; 50(4): 2653-2662, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30941837

RESUMEN

The striatum mediates a broad range of cognitive and motor functions. Within the striatum, recently discovered tyrosine hydroxylase expressing interneurons (THINs) provide a source of intrastriatal synaptic connectivity that is critical for regulating striatal activity, yet the role of THIN's in behavior remains unknown. Given the important role of the striatum in reward-based behaviors, we investigated whether loss of striatal THINs would impact instrumental behavior in mice. We selectively ablated striatal THINs in TH-Cre mice using chemogenetic techniques, and then tested THIN-lesioned or control mice on three reward-based striatal-dependent instrumental tests: (a) progressive ratio test; (b) choice test following selective-satiety induced outcome devaluation; (c) outcome reinstatement test. Both striatal-THIN-lesioned and control mice acquired an instrumental response for flavored food pellets, and their behavior did not differ in the progressive ratio test, suggesting intact effort to obtain rewards. However, striatal THIN lesions markedly impaired choice performance following selective-satiety induced outcome devaluation. Unlike control mice, THIN-lesioned mice did not adjust their choice of actions following a change in outcome value. In the outcome reinstatement test THIN-lesioned and control mice showed response invigoration by outcome presentation, suggesting the incentive properties of outcomes were not disrupted by THIN lesions. Overall, we found that striatal THIN lesions selectively impaired goal-directed behavior, while preserving motoric and appetitive behaviors. These findings are the first to describe a function of striatal THINs in reward-based behavior, and further illustrate the important role for intrastriatal interneuronal connectivity in behavioral functions ascribed to the striatum more generally.


Asunto(s)
Condicionamiento Operante , Interneuronas/patología , Neostriado/fisiopatología , Tirosina 3-Monooxigenasa/metabolismo , Animales , Conducta Apetitiva , Conducta de Elección , Extinción Psicológica , Objetivos , Interneuronas/enzimología , Masculino , Ratones , Ratones Transgénicos , Actividad Motora , Neostriado/citología , Neostriado/enzimología , Desempeño Psicomotor , Esquema de Refuerzo , Recompensa
5.
Cereb Cortex ; 27(12): 5696-5714, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29117290

RESUMEN

The proliferative niches in the subpallium generate a rich cellular variety fated for diverse telencephalic regions. The embryonic preoptic area (POA) represents one of these domains giving rise to the pool of cortical GABAergic interneurons and glial cells, in addition to striatal and residual POA cells. The migration from sites of origin within the subpallium to the distant targets like the cerebral cortex, accomplished by the adoption and maintenance of a particular migratory morphology, is a critical step during interneuron development. To identify factors orchestrating this process, we performed single-cell transcriptome analysis and detected Dnmt1 expression in murine migratory GABAergic POA-derived cells. Deletion of Dnmt1 in postmitotic immature cells of the POA caused defective migration and severely diminished adult cortical interneuron numbers. We found that DNA methyltransferase 1 (DNMT1) preserves the migratory shape in part through negative regulation of Pak6, which stimulates neuritogenesis at postmigratory stages. Our data underline the importance of DNMT1 for the migration of POA-derived cells including cortical interneurons.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/embriología , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Interneuronas/enzimología , Células-Madre Neurales/enzimología , Área Preóptica/embriología , Animales , Animales Recién Nacidos , Recuento de Células , Supervivencia Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/enzimología , Metilación de ADN , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/enzimología , Interneuronas/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/citología , Proyección Neuronal/fisiología , Área Preóptica/citología , Área Preóptica/enzimología , Técnicas de Cultivo de Tejidos , Transcriptoma , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
6.
Nature ; 471(7337): 240-4, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21390131

RESUMEN

DNA replication and repair in mammalian cells involves three distinct DNA ligases: ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4). Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway. Lig3 is also present in the mitochondria, where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc1 (ref. 4). However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart-pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but acted in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair.


Asunto(s)
Núcleo Celular/genética , ADN Ligasas/metabolismo , Reparación del ADN , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Animales , Ataxia/patología , Ataxia/fisiopatología , Biocatálisis , Supervivencia Celular , Células Cultivadas , Daño del ADN , ADN Ligasa (ATP) , ADN Ligasas/deficiencia , ADN Ligasas/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Genes Esenciales , Corazón/fisiología , Corazón/fisiopatología , Interneuronas/enzimología , Interneuronas/patología , Ratones , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/patología , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Miocardio/enzimología , Miocardio/patología , Sistema Nervioso/enzimología , Sistema Nervioso/patología , Fenotipo , Proteínas de Unión a Poli-ADP-Ribosa , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
7.
J Neurosci ; 35(6): 2372-83, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25673832

RESUMEN

Perturbations in fast-spiking parvalbumin (PV) interneurons are hypothesized to be a major component of various neuropsychiatric disorders; however, the mechanisms regulating PV interneurons remain mostly unknown. Recently, cyclin-dependent kinase 5 (Cdk5) has been shown to function as a major regulator of synaptic plasticity. Here, we demonstrate that genetic ablation of Cdk5 in PV interneurons in mouse brain leads to an increase in GABAergic neurotransmission and impaired synaptic plasticity. PVCre;fCdk5 mice display a range of behavioral abnormalities, including decreased anxiety and memory impairment. Our results reveal a central role of Cdk5 expressed in PV interneurons in gating inhibitory neurotransmission and underscore the importance of such regulation during behavioral tasks. Our findings suggest that Cdk5 can be considered a promising therapeutic target in a variety of conditions attributed to inhibitory interneuronal dysfunction, such as epilepsy, anxiety disorders, and schizophrenia.


Asunto(s)
Ansiedad/psicología , Quinasa 5 Dependiente de la Ciclina/genética , Inhibición Psicológica , Interneuronas/metabolismo , Trastornos de la Memoria/psicología , Parvalbúminas/metabolismo , Animales , Ansiedad/genética , Conducta Animal/fisiología , Interneuronas/enzimología , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Actividad Motora/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Vesículas Sinápticas/ultraestructura , Ácido gamma-Aminobutírico/metabolismo
8.
Neurol Sci ; 35(8): 1181-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24563117

RESUMEN

This study examined the response of interneurons in the medial prefrontal cortex (mPFC) to 5-HT1A receptor agonist 8-OH-DPAT and change in expression of 5-HT1A receptor on glutamate decarboxylase 67 (GAD67)-positive neurons in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc). Systemic administration of 5-HT1A receptor agonist 8-OH-DPAT dose-dependently inhibited the firing rate of the interneurons at all doses tested in sham-operated rats. In 6-OHDA-lesioned rats, 8-OH-DPAT, at the same doses, also inhibited the firing rate of the interneurons, whereas the inhibition was significant only at a high cumulative dose. Furthermore, injection of 8-OH-DPAT into the mPFC inhibited the interneurons in sham-operated rats, while having no effect on firing rate of the interneurons in 6-OHDA-lesioned rats. In contrast to sham-operated rats, SNc lesion reduced the expression of 5-HT1A receptor on GAD67-positive neurons in the prelimbic cortex, a sub-region of the mPFC. Our results indicate that degeneration of the nigrostriatal pathway leads to decreased response of mPFC interneurons to 5-HT1A receptor activation, which attributes to the down-regulation of 5-HT1A receptor expression in these interneurons.


Asunto(s)
8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Interneuronas/efectos de los fármacos , Trastornos Parkinsonianos/fisiopatología , Corteza Prefrontal/fisiopatología , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Antagonistas del Receptor de Serotonina 5-HT1/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Glutamato Descarboxilasa/análisis , Interneuronas/enzimología , Interneuronas/fisiología , Masculino , Degeneración Nerviosa , Oxidopamina/toxicidad , Piperazinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/patología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT1A/biosíntesis , Receptor de Serotonina 5-HT1A/fisiología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/análisis
9.
J Neurosci ; 32(2): 417-22, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22238078

RESUMEN

We have previously shown that driving PI3K levels up or down leads to increases or reductions in the number of synapses, respectively. Using these tools to assay their behavioral effects in Drosophila melanogaster, we showed that a loss of synapses in two sets of local interneurons, GH298 and krasavietz, leads to olfaction changes toward attraction or repulsion, while the simultaneous manipulation of both sets of neurons restored normal olfactory indexes. We show here that olfactory central adaptation also requires the equilibrated changes in both sets of local interneurons. The same genetic manipulations directed to projection (GH146) or mushroom body (201Y, MB247) neurons did not affect adaptation. Also, we show that the equilibrium is a requirement for the glomerulus-specific size changes which are a morphological signature of central adaptation. Since the two sets of local neurons are mostly, although not exclusively, inhibitory (GH298) and excitatory (krasavietz), we interpret that the normal phenomena of sensory perception, measured as an olfactory index, and central adaptation rely on an inhibition/excitation ratio.


Asunto(s)
Adaptación Fisiológica/fisiología , Encéfalo/enzimología , Drosophila melanogaster/fisiología , Interneuronas/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Olfato/fisiología , Animales , Antenas de Artrópodos/enzimología , Antenas de Artrópodos/inervación , Encéfalo/citología , Encéfalo/embriología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/citología , Masculino , Vías Nerviosas/citología , Vías Nerviosas/embriología , Vías Nerviosas/enzimología , Odorantes , Sinapsis/enzimología , Transmisión Sináptica/fisiología , Degeneración Walleriana/enzimología , Degeneración Walleriana/genética
10.
J Neurochem ; 127(5): 605-19, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24032518

RESUMEN

Copper (Cu), an essential trace element present throughout the mammalian nervous system, is crucial for normal synaptic function. Neuronal handling of Cu is poorly understood. We studied the localization and expression of Atp7a, the major intracellular Cu transporter in the brain, and its relation to peptidylglycine α-amidating monooxygenase (PAM), an essential cuproenzyme and regulator of Cu homeostasis in neuroendocrine cells. Based on biochemical fractionation and immunostaining of dissociated neurons, Atp7a was enriched in post-synaptic vesicular fractions. Cu followed a similar pattern, with ~ 20% of total Cu in synaptosomes. A mouse model heterozygous for the Pam gene (PAM+/−) was selectively Cu deficient in the amygdala. As in cortex and hippocampus, Atp7a and PAM expression overlap in the amygdala, with highest expression in interneurons. Messenger RNA levels of Atox-1 and Atp7a, which deliver Cu to the secretory pathway, were reduced in the amygdala but not in the hippocampus in PAM+/− mice, GABAB receptor mRNA levels were similarly affected. Consistent with Cu deficiency, dopamine ß-monooxygenase function was impaired as evidenced by elevated dopamine metabolites in the amygdala, but not in the hippocampus, of PAM+/− mice. These alterations in Cu delivery to the secretory pathway in the PAM+/− amygdala may contribute to the physiological and behavioral deficits observed. Atp7a, a Cu-transporting P-type ATPase, is localized to the trans-Golgi network and to vesicles distributed throughout the dendritic arbor. Tissue-specific alterations in Atp7a expression were found in mice heterozygous for peptidylglycine α-amidating monooxygenase (PAM), an essential neuropeptide-synthesizing cuproenzyme. Atp7a and PAM are highly expressed in amygdalar interneurons. Reduced amygdalar expression of Atox-1 and Atp7a in PAM heterozygous mice may lead to reduced synaptic Cu levels, contributing to the behavioral and neurochemical alterations seen in these mice.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Cobre/metabolismo , Interneuronas/enzimología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Adenosina Trifosfatasas/metabolismo , Amígdala del Cerebelo/citología , Animales , Catecolaminas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , ATPasas Transportadoras de Cobre , Femenino , Heterocigoto , Hipocampo/metabolismo , Interneuronas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Embarazo , Fracciones Subcelulares/metabolismo , Red trans-Golgi/metabolismo
11.
J Pharmacol Exp Ther ; 344(2): 511-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23230214

RESUMEN

Nitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7-30 days later. The current study examined nitric oxide synthase expression and activity and protein nitration in striata of animals administered saline or neurotoxic regimens of methamphetamine at postnatal days 60 and/or 90, resulting in four treatment groups: Saline:Saline, METH:Saline, Saline:METH, and METH:METH. Acute administration of methamphetamine on postnatal day 90 (Saline:METH and METH:METH) increased nitric oxide production, as evidenced by increased protein nitration. Methamphetamine did not, however, change the expression of endothelial or inducible isoforms of nitric oxide synthase, nor did it change the number of cells positive for neuronal nitric oxide synthase mRNA expression or the amount of neuronal nitric oxide synthase mRNA per cell. However, nitric oxide synthase activity in striatal interneurons was increased in the Saline:METH and METH:METH animals. These data suggest that increased nitric oxide production after a neurotoxic regimen of methamphetamine results from increased nitric oxide synthase activity, rather than an induction of mRNA, and that constitutively expressed neuronal nitric oxide synthase is the most likely source of nitric oxide after methamphetamine administration. Of interest, animals rendered resistant to further methamphetamine-induced dopamine depletions still show equivalent degrees of methamphetamine-induced nitric oxide production, suggesting that nitric oxide production alone in response to methamphetamine is not sufficient to induce acute neurotoxic injury.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Metanfetamina/toxicidad , Síndromes de Neurotoxicidad/enzimología , Óxido Nítrico Sintasa , Óxido Nítrico/biosíntesis , Animales , Cuerpo Estriado/enzimología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Inducción Enzimática , Hibridación in Situ , Interneuronas/efectos de los fármacos , Interneuronas/enzimología , Interneuronas/metabolismo , Isoenzimas , Masculino , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Óxido Nítrico Sintasa/biosíntesis , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I/biosíntesis , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas , Ratas Sprague-Dawley
12.
Neurochem Res ; 38(1): 74-81, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22987057

RESUMEN

DNA methylation is a key epigenetic modification of DNA that is catalyzed by DNA methyltransferases (Dnmt). Increasing evidences suggest that DNA methylation in neurons regulates synaptic plasticity as well as neuronal network activity. In the present study, we investigated the changes in DNA methyltransferases 1 (Dnmt1) immunoreactivity and its protein levels in the gerbil hippocampal CA1 region after 5 min of transient global cerebral ischemia. CA1 pyramidal neurons were well stained with NeuN (a neuron-specific soluble nuclear antigen) antibody in the sham-group, Four days after ischemia-reperfusion (I-R), NeuN-positive ((+)) cells were significantly decreased in the stratum pyramidale (SP) of the CA1 region, and many Fluro-Jade B (a marker for neuronal degeneration)(+) cells were observed in the SP. Dnmt1 immunoreactivity was well detected in all the layers of the sham-group. Dnmt1 immunoreactivity was hardly detected only in the stratum pyramidale of the CA1 region from 4 days post-ischemia; however, at these times, Dnmt1 immunoreactivity was newly expressed in GABAergic interneurons or astrocytes in the ischemic CA1 region. In addition, the level of Dnmt1 was lowest at 4 days post-ischemia. In brief, both the Dnmt1 immunoreactivity and protein levels were distinctively decreased in the ischemic CA1 region 4 days after transient cerebral ischemia. These results indicate that the decrease of Dnmt1 expression at 4 days post-ischemia may be related to ischemia-induced delayed neuronal death.


Asunto(s)
Región CA1 Hipocampal/enzimología , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , Ataque Isquémico Transitorio/enzimología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/enzimología , Western Blotting , Muerte Celular/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1 , Fluoresceínas , Técnica del Anticuerpo Fluorescente Indirecta , Colorantes Fluorescentes , Gerbillinae , Inmunohistoquímica , Interneuronas/efectos de los fármacos , Interneuronas/enzimología , Masculino , Células Piramidales/efectos de los fármacos , Células Piramidales/enzimología
13.
J Neurosci ; 31(8): 2769-80, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21414899

RESUMEN

Inhibitory interneurons play a critical role in coordinating the activity of neural circuits. To explore the mechanisms that direct the organization of inhibitory circuits, we analyzed the involvement of tropomyosin-related kinase B (TrkB) in the assembly and maintenance of GABAergic inhibitory synapses between Golgi and granule cells in the mouse cerebellar cortex. We show that TrkB acts directly within each cell-type to regulate synaptic differentiation. TrkB is required not only for assembly, but also maintenance of these synapses and acts, primarily, by regulating the localization of synaptic constituents. Postsynaptically, TrkB controls the localization of a scaffolding protein, gephyrin, but acts at a step subsequent to the localization of a cell adhesion molecule, Neuroligin-2. Importantly, TrkB is required for the localization of an Ig superfamily cell adhesion molecule, Contactin-1, in Golgi and granule cells and the absence of Contactin-1 also results in deficits in inhibitory synaptic development. Thus, our findings demonstrate that TrkB controls the assembly and maintenance of GABAergic synapses and suggest that TrkB functions, in part, through promoting synaptic adhesion.


Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebelosa/enzimología , Corteza Cerebelosa/crecimiento & desarrollo , Receptor trkB/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Diferenciación Celular/genética , Interneuronas/citología , Interneuronas/enzimología , Ratones , Ratones Noqueados , Ratones Transgénicos , Sinapsis/enzimología , Sinapsis/genética , Transmisión Sináptica/genética , Tropomiosina/fisiología
14.
J Neurosci ; 31(8): 3007-15, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21414922

RESUMEN

Animals facing conflicting sensory cues make a behavioral choice between competing alternatives through integration of the sensory cues. Here, we performed a genetic screen to identify genes important for the sensory integration of two conflicting cues, the attractive odorant diacetyl and the aversive stimulus Cu(2+), and found that the membrane-bound guanylyl cyclase GCY-28 and the receptor tyrosine kinase SCD-2 regulate the behavioral choice between these alternatives in Caenorhabditis elegans. The gcy-28 mutants and scd-2 mutants show an abnormal bias in the behavioral choice between the cues, although their responses to each individual cue are similar to those in wild-type animals. Mutants in a gene encoding a cyclic nucleotide gated ion channel, cng-1, also exhibit the defect in sensory integration. Molecular genetic analyses suggested that GCY-28 and SCD-2 regulate sensory integration in AIA interneurons, where the conflicting sensory cues may converge. Genetic ablation or hyperpolarization of AIA interneurons showed nearly the same phenotype as gcy-28 or scd-2 mutants in the sensory integration, although this did not affect the sensory response to each individual cue. In gcy-28 or scd-2 mutants, activation of AIA interneurons is sufficient to restore normal sensory integration. These results suggest that the activity of AIA interneurons regulates the behavioral choice between the alternatives. We propose that GCY-28 and SCD-2 regulate sensory integration by modulating the activity of AIA interneurons.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/enzimología , Conducta de Elección/fisiología , Guanilato Ciclasa/fisiología , Interneuronas/enzimología , Proteínas Tirosina Quinasas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Acoplados a la Guanilato-Ciclasa/fisiología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Guanilato Ciclasa/genética , Interneuronas/citología , Proteínas de la Membrana , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptores Acoplados a la Guanilato-Ciclasa/genética
15.
J Neurosci ; 31(13): 4821-33, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21451020

RESUMEN

Commissural inhibitory interneurons (INs) are integral components of the locomotor circuitry that coordinate left-right motor activity during movements. We have shown that GABA-mediated synaptic transmission plays a key role in generating alternating locomotor-like activity in the mouse spinal cord (Hinckley et al., 2005a). The primary objective of our study was to determine whether properties of lamina VIII (LVIII) GABAergic INs in the spinal cord of GAD67::GFP transgenic mice fit the classification of rhythm-coordinating neurons in the locomotor circuitry. The relatively large green fluorescent protein-expressing (GFP(+)) INs had comparable morphological and electrophysiological properties, suggesting that they comprised a homogenous neuronal population. They displayed multipolar and complex dendritic arbors in ipsilateral LVII-LVIII, and their axonal projections crossed the ventral commissure and branched into contralateral ventral, medial, and dorsal laminae. Putative synaptic contacts evident as bouton-like varicosities were detected in close apposition to lateral motoneurons, Renshaw cells, other GFP(+) INs, and unidentified neurons. Exposure to a rhythmogenic mixture triggered locomotor-like rhythmic firing in the majority of LVIII GFP(+) INs. Their induced oscillatory activity was out-of-phase with bursts of contralateral motoneurons and in-phase with bouts of ipsilateral motor activity. Membrane voltage oscillations were elicited by rhythmic increases in excitatory synaptic drive and might have been augmented by three types of voltage-activated cationic currents known to increase neuronal excitability. Based on their axonal projections and activity pattern, we propose that this population of GABAergic INs forms a class of local commissural inhibitory interneurons that are integral component of the locomotor circuitry.


Asunto(s)
Interneuronas/fisiología , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Red Nerviosa/fisiología , Médula Espinal/fisiología , Ácido gamma-Aminobutírico/fisiología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Femenino , Glutamato Descarboxilasa/fisiología , Interneuronas/citología , Interneuronas/enzimología , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/citología , Neuronas Motoras/enzimología , Red Nerviosa/citología , Red Nerviosa/enzimología , Médula Espinal/citología , Médula Espinal/enzimología
16.
Proc Natl Acad Sci U S A ; 106(16): 6766-71, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19342486

RESUMEN

Mutations in doublecortin (DCX) are associated with intractable epilepsy in humans, due to a severe disorganization of the neocortex and hippocampus known as classical lissencephaly. However, the basis of the epilepsy in lissencephaly remains unclear. To address potential functional redundancy with murin Dcx, we targeted one of the closest homologues, doublecortin-like kinase 2 (Dclk2). Here, we report that Dcx; Dclk2-null mice display frequent spontaneous seizures that originate in the hippocampus, with most animals dying in the first few months of life. Elevated hippocampal expression of c-fos and loss of somatostatin-positive interneurons were identified, both known to correlate with epilepsy. Dcx and Dclk2 are coexpressed in developing hippocampus, and, in their absence, there is dosage-dependent disrupted hippocampal lamination associated with a cell-autonomous simplification of pyramidal dendritic arborizations leading to reduced inhibitory synaptic tone. These data suggest that hippocampal dysmaturation and insufficient receptive field for inhibitory input may underlie the epilepsy in lissencephaly, and suggest potential therapeutic strategies for controlling epilepsy in these patients.


Asunto(s)
Diferenciación Celular , Hipocampo/enzimología , Hipocampo/patología , Proteínas Asociadas a Microtúbulos/deficiencia , Neuronas/enzimología , Neuropéptidos/deficiencia , Proteínas Serina-Treonina Quinasas/deficiencia , Convulsiones/enzimología , Animales , Diferenciación Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/patología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Hipocampo/embriología , Interneuronas/efectos de los fármacos , Interneuronas/enzimología , Interneuronas/patología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Neuropéptidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/enzimología , Células Piramidales/patología , Convulsiones/patología , Somatostatina/metabolismo , Análisis de Supervivencia , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Destete , Ácido gamma-Aminobutírico/farmacología
17.
J Neurosci ; 30(50): 16818-31, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21159953

RESUMEN

Nitric oxide (NO) is a signaling molecule that is synthesized in a range of tissues by the NO synthases (NOSs). In the immature nervous system, the neuronal isoform of NOS (NOS1) is often expressed during periods of axon outgrowth and elaboration. However, there is little direct molecular evidence to suggest that NOS1 influences these processes. Here we address the functional role of NOS1 during in vivo zebrafish locomotor circuit development. We show that NOS1 is expressed in a population of interneurons that lie close to nascent motoneurons of the spinal cord. To determine how this protein regulates spinal network assembly, we perturbed NOS1 expression in vivo with antisense morpholino oligonucleotides. This treatment dramatically increased the number of axon collaterals formed by motoneuron axons, an effect mimicked by pharmacological inhibition of the NO/cGMP signaling pathway. In contrast, exogenous elevation of NO/cGMP levels suppressed motor axon branching. These effects were not accompanied by a change in motoneuron number, suggesting that NOS1 does not regulate motoneuron differentiation. Finally we show that perturbation of NO signaling affects the ontogeny of locomotor performance. Our findings provide evidence that NOS1 is a key regulator of motor axon ontogeny in the developing vertebrate spinal cord.


Asunto(s)
Morfogénesis/fisiología , Óxido Nítrico Sintasa de Tipo I/fisiología , Médula Espinal/enzimología , Médula Espinal/crecimiento & desarrollo , Pez Cebra , Animales , Técnicas de Silenciamiento del Gen , Interneuronas/enzimología , Actividad Motora/fisiología , Neuronas Motoras/citología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/biosíntesis , Oligonucleótidos Antisentido/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/citología , Sinapsis/metabolismo , Triazenos/farmacología
18.
J Neurosci ; 30(6): 2165-76, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20147544

RESUMEN

GABAergic interneurons critically regulate cortical computation through exquisite spatiotemporal control over excitatory networks. Precision of this inhibitory control requires a remarkable diversity within interneuron populations that is largely specified during embryogenesis. Although interneurons expressing the neuronal isoform of nitric oxide synthase (nNOS) constitute the largest hippocampal interneuron cohort their origin and specification remain unknown. Thus, as neurogliaform cells (NGC) and Ivy cells (IvC) represent the main nNOS(+) interneurons, we investigated their developmental origins. Although considered distinct interneuron subtypes, NGCs and IvCs exhibited similar neurochemical and electrophysiological signatures, including NPY expression and late spiking. Moreover, lineage analyses, including loss-of-function experiments and inducible fate-mapping, indicated that nNOS(+) IvCs and NGCs are both derived from medial ganglionic eminence (MGE) progenitors under control of the transcription factor Nkx2-1. Surprisingly, a subset of NGCs lacking nNOS arises from caudal ganglionic eminence (CGE) progenitors. Thus, while nNOS(+) NGCs and IvCs arise from MGE progenitors, a CGE origin distinguishes a discrete population of nNOS(-) NGCs.


Asunto(s)
Hipocampo/citología , Interneuronas/citología , Interneuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/biosíntesis , Potenciales de Acción , Animales , Linaje de la Célula , Polaridad Celular , Hipocampo/enzimología , Inmunohistoquímica , Interneuronas/enzimología , Masculino , Ratones , Ratones Transgénicos , Neuropéptido Y/biosíntesis , Proteínas Nucleares/fisiología , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/citología , Células Madre/fisiología , Telencéfalo/citología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/fisiología , Péptido Intestinal Vasoactivo/biosíntesis
19.
J Neurosci ; 30(8): 2844-55, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-20181582

RESUMEN

Hippocampal mossy fiber (MF) synapses on area CA3 lacunosum-moleculare (L-M) interneurons are capable of undergoing a Hebbian form of NMDA receptor (NMDAR)-independent long-term potentiation (LTP) induced by the same type of high-frequency stimulation (HFS) that induces LTP at MF synapses on pyramidal cells. LTP of MF input to L-M interneurons occurs only at synapses containing mostly calcium-impermeable (CI)-AMPA receptors (AMPARs). Here, we demonstrate that HFS-induced LTP at these MF-interneuron synapses requires postsynaptic activation of protein kinase A (PKA) and protein kinase C (PKC). Brief extracellular stimulation of PKA with forskolin (FSK) alone or in combination with 1-Methyl-3-isobutylxanthine (IBMX) induced a long-lasting synaptic enhancement at MF synapses predominantly containing CI-AMPARs. However, the FSK/IBMX-induced potentiation in cells loaded with the specific PKA inhibitor peptide PKI(6-22) failed to be maintained. Consistent with these data, delivery of HFS to MFs synapsing onto L-M interneurons loaded with PKI(6-22) induced posttetanic potentiation (PTP) but not LTP. Hippocampal sections stained for the catalytic subunit of PKA revealed abundant immunoreactivity in interneurons located in strata radiatum and L-M of area CA3. We also found that extracellular activation of PKC with phorbol 12,13-diacetate induced a pharmacological potentiation of the isolated CI-AMPAR component of the MF EPSP. However, HFS delivered to MF synapses on cells loaded with the PKC inhibitor chelerythrine exhibited PTP followed by a significant depression. Together, our data indicate that MF LTP in L-M interneurons at synapses containing primarily CI-AMPARs requires some of the same signaling cascades as does LTP of glutamatergic input to CA3 or CA1 pyramidal cells.


Asunto(s)
Región CA3 Hipocampal/enzimología , Interneuronas/enzimología , Potenciación a Largo Plazo/fisiología , Fibras Musgosas del Hipocampo/enzimología , Proteínas Quinasas/metabolismo , Transmisión Sináptica/fisiología , 1-Metil-3-Isobutilxantina/farmacología , Animales , Benzofenantridinas/farmacología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Dominio Catalítico/fisiología , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Ácido Glutámico/metabolismo , Interneuronas/citología , Interneuronas/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Fibras Musgosas del Hipocampo/efectos de los fármacos , Fibras Musgosas del Hipocampo/ultraestructura , Técnicas de Cultivo de Órganos , Fragmentos de Péptidos/farmacología , Ésteres del Forbol/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteínas Quinasas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/efectos de los fármacos , Receptores AMPA/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/enzimología , Transmisión Sináptica/efectos de los fármacos
20.
Mol Pain ; 7: 36, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21569622

RESUMEN

BACKGROUND: Inhibitory interneurons constitute 30-40% of neurons in laminae I-III and have an important anti-nociceptive role. However, because of the difficulty in classifying them we know little about their organisation. Previous studies have identified 3 non-overlapping groups of inhibitory interneuron, which contain neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS) or parvalbumin, and have shown that these differ in postsynaptic targets. Some inhibitory interneurons contain galanin and the first aim of this study was to determine whether these form a different population from those containing NPY, nNOS or parvalbumin. We also estimated the proportion of neurons and GABAergic axons that contain galanin in laminae I-III. RESULTS: Galanin cells were concentrated in laminae I-IIo, with few in laminae IIi-III. Galanin showed minimal co-localisation with NPY, nNOS or parvalbumin in laminae I-II, but most galanin-containing cells in lamina III were nNOS-positive. Galanin cells constituted ~7%, 3% and 2% of all neurons in laminae I, II and III, and we estimate that this corresponds to 26%, 10% and 5% of the GABAergic neurons in these laminae. However, galanin was only found in ~6% of GABAergic boutons in laminae I-IIo, and ~1% of those in laminae IIi-III. CONCLUSIONS: These results show that galanin, NPY, nNOS and parvalbumin can be used to define four distinct neurochemical populations of inhibitory interneurons. Together with results of a recent study, they suggest that the galanin and NPY populations account for around half of the inhibitory interneurons in lamina I and a quarter of those in lamina II.


Asunto(s)
Galanina/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Inhibición Neural/fisiología , Médula Espinal/citología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Inmunohistoquímica , Interneuronas/enzimología , Masculino , Neuropéptido Y/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Parvalbúminas/metabolismo , Células del Asta Posterior/citología , Células del Asta Posterior/metabolismo , Terminales Presinápticos/metabolismo , Transporte de Proteínas , Ratas , Ratas Wistar , Coloración y Etiquetado , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA