RESUMEN
BACKGROUND: Kelps are not only ecologically important, being primary producers and habitat forming species, they also hold substantial economic potential. Expansion of the kelp cultivation industry raises the interest for genetic improvement of kelp for cultivation, as well as concerns about genetic introgression from cultivated to wild populations. Thus, increased understanding of population genetics in natural kelp populations is crucial. Genotyping-by-sequencing (GBS) is a powerful tool for studying population genetics. Here, using Saccharina latissima (sugar kelp) as our study species, we characterize the population genetics at a fine geographic scale, while also investigating the influence of marker type (biallelic SNPs versus multi-allelic short read-backed haplotypes) and minor allele count (MAC) thresholds on estimated population genetic metrics. RESULTS: We examined 150 sporophytes from 10 locations within a small area in Mid-Norway. Employing GBS, we detected 20,710 bi-allelic SNPs and 42,264 haplotype alleles at 20,297 high quality GBS loci. We used both marker types as well as two MAC filtering thresholds (3 and 15) in the analyses. Overall, higher genetic diversity, more outbreeding and stronger substructure was estimated using haplotypes compared to SNPs, and with MAC 15 compared to MAC 3. The population displayed high genetic diversity (HE ranging from 0.18-0.37) and significant outbreeding (FIS ≤ - 0.076). Construction of a genomic relationship matrix, however, revealed a few close relatives within sampling locations. The connectivity between sampling locations was high (FST ≤ 0.09), but subtle, yet significant, genetic substructure was detected, even between sampling locations separated by less than 2 km. Isolation-by-distance was significant and explained 15% of the genetic variation, while incorporation of predicted currents in an "isolation-by-oceanography" model explained a larger proportion (~ 27%). CONCLUSION: The studied population is diverse, significantly outbred and exhibits high connectivity, partly due to local currents. The use of genome-wide markers combined with permutation testing provides high statistical power to detect subtle population substructure and inbreeding or outbreeding. Short haplotypes extracted from GBS data and removal of rare alleles enhances the resolution. Careful consideration of marker type and filtering thresholds is crucial when comparing independent studies, as they profoundly influence numerical estimates of population genetic metrics.
Asunto(s)
Genética de Población , Haplotipos , Kelp , Polimorfismo de Nucleótido Simple , Kelp/genética , Marcadores Genéticos , Alelos , Variación Genética , Algas Comestibles , LaminariaRESUMEN
The impact of climate change on populations will be contingent upon their contemporary adaptive evolution. In this study, we investigated the contemporary evolution of 4 populations of the cold-water kelp Laminaria digitata by analyzing their spatial and temporal genomic variations using ddRAD-sequencing. These populations were sampled from the center to the southern margin of its north-eastern Atlantic distribution at 2 time points, spanning at least 2 generations. Through genome scans for local adaptation at a single time point, we identified candidate loci that showed clinal variation correlated with changes in sea surface temperature (SST) along latitudinal gradients. This finding suggests that SST may drive the adaptive response of these kelp populations, although factors such as species' demographic history should also be considered. Additionally, we performed a simulation approach to distinguish the effect of selection from genetic drift in allele frequency changes over time. This enabled the detection of loci in the southernmost population that exhibited temporal differentiation beyond what would be expected from genetic drift alone: these are candidate loci which could have evolved under selection over time. In contrast, we did not detect any outlier locus based on temporal differentiation in the population from the North Sea, which also displayed low and decreasing levels of genetic diversity. The diverse evolutionary scenarios observed among populations can be attributed to variations in the prevalence of selection relative to genetic drift across different environments. Therefore, our study highlights the potential of temporal genomics to offer valuable insights into the contemporary evolution of marine foundation species facing climate change.
Asunto(s)
Kelp , Kelp/genética , Genómica , Cambio Climático , Evolución Biológica , Variación Genética , Selección Genética , Laminaria/genética , Adaptación Fisiológica/genética , Flujo GenéticoRESUMEN
BACKGROUND: The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE: We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION: Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.
Asunto(s)
Algas Comestibles , Kelp , Laminaria , Kelp/genética , Ecosistema , Azúcares , Cambio ClimáticoRESUMEN
A fundamental question in holobiont biology is the extent to which microbiomes are determined by host characteristics regulated by their genotype. Studies on the interactions of host genotype and microbiomes are emerging but disentangling the role that host genotype has in shaping microbiomes remains challenging in natural settings. Host genotypes tend to be segregated in space and affected by different environments. Here we overcome this challenge by studying an unusual situation where host asexual (5 clonal lineages) and sexual genotypes (15 non-clonal lineages) of the same species co-occur under the same environment. This allowed us to partition the influence of morphological traits and genotype in shaping host-associated bacterial communities. Lamina-associated bacteria of co-occurring kelp sexual non-clonal (Ecklonia radiata) and asexual clonal (E. brevipes) morphs were compared to test whether host genotype influences microbiomes beyond morphology. Similarity of bacterial composition and predicted functions were evaluated among individuals within a single clonal genotype or among non-clonal genotypes of each morph. Higher similarity in bacterial composition and inferred functions were found among identical clones of E. brevipes compared to other clonal genotypes or unique non-clonal E. radiata genotypes. Additionally, bacterial diversity and composition differed significantly between the two morphs and were related with one morphological trait in E. brevipes (haptera). Thus, factors regulated by the host genotype (e.g. secondary metabolite production) likely drive differences in microbial communities between morphs. The strong association of genotype and microbiome found here highlights the importance of genetic relatedness of hosts in determining variability in their bacterial symbionts.
Asunto(s)
Kelp , Microbiota , Humanos , Kelp/genética , Microbiota/genética , GenotipoRESUMEN
The surfperches (family Embiotocidae) are a unique group of mostly marine fishes whose phylogenetic position within the Ovalentaria clade (Percomorpha) is still unresolved. As a result of their viviparity and lack of a dispersive larval stage, surfperches are an excellent model for the study of speciation, gene flow, and local adaptation in the ocean. They are also the target of an immensely popular recreational fishery. Very few high-quality molecular resources, however, are available for this group and only for a single species. Here, we describe a highly complete reference genome for the kelp surfperch, Brachyistius frenatus, assembled using a combination of short-read (Illumina, ~47× coverage) and long-read (Oxford Nanopore Technologies, ~27× coverage) sequencing. The 596 Mb assembly has a completeness level of 98.1% (BUSCO), a contig N50 of 2.6 Mb (n = 56), and a contig N90 of 406.6 kb (n = 293). Comparative analysis revealed a high level of synteny between B. frenatus and its close relative, Embiotoca jacksoni. This assembly will serve as a valuable molecular resource upon which future evolutionary dynamics research will build, such as the investigation of local adaptation and the genomic potential for climate adaptation in wild populations.
Asunto(s)
Kelp , Perciformes , Animales , Kelp/genética , Filogenia , Larva/genética , Genoma , Perciformes/genética , Peces/genéticaRESUMEN
Large-scale disturbance events have the potential to drastically reshape biodiversity patterns. Notably, newly vacant habitat space cleared by disturbance can be colonized by multiple lineages, which can lead to the evolution of distinct spatial "sectors" of genetic diversity within a species. We test for disturbance-driven sectoring of genetic diversity in intertidal southern bull kelp, Durvillaea antarctica (Chamisso) Hariot, following the high-magnitude 1855 Wairarapa earthquake in New Zealand. Specifically, we use genotyping-by-sequencing (GBS) to analyse fine-scale population structure across the uplift zone and apply machine learning to assess the fit of alternative recolonizaton models. Our analysis reveals that specimens from the uplift zone carry distinctive genomic signatures potentially linked to post-earthquake recolonization processes. Specifically, our analysis identifies two parapatric spatial-genomic sectors of D. antarctica at Turakirae Head, which experienced the most dramatic uplift. Based on phylogeographical modelling, we infer that bull kelp in the Wellington region was probably a source for recolonization of the heavily uplifted Turakirae Head coastline, via two parallel, eastward recolonization events. By identifying multiple parapatric genotypic sectors within a recently recolonized coastal region, the current study provides support for the hypothesis that competing lineage expansions can generate striking spatial structuring of genetic diversity, even in highly dispersive taxa.
Asunto(s)
Terremotos , Kelp , Ecosistema , Genómica , Kelp/genética , FilogeografíaRESUMEN
Analyses of phylogeographic patterns and genetic diversity provide fundamental information for the management and conservation of species. However, little is published about these patterns in Japanese kelp species. In this study, we conducted phylogeographic analyses of a canopy-forming kelp, Eisenia bicyclis, based on genome-wide SNPs identified by ddRAD-seq. We obtained 1,299 SNPs for 76 samples from nine localities across the distribution. STRUCTURE, NeighborNet, and discriminant analysis of principal components consistently showed high genetic differentiation among the Eastern Pacific, Central Pacific, and Sea of Japan coastal regions. Relatively strong gene flow was detected only within populations in the Eastern Pacific and in the Sea of Japan. Genetic diversity and genetic uniqueness were high in the Central Pacific and low in the Sea of Japan. These results suggest that there were at least three independent refugia corresponding to the three regions during the Last Glacial Maximum (LGM). Furthermore, relatively larger populations in the Central Pacific and smaller populations in the Sea of Japan have been maintained in the demographic history from before the LGM to the present. These phylogeographic histories were supported by an Approximate Bayesian Computation analysis. From a conservation genetics perspective, the loss of southern populations in the Central Pacific would greatly reduce the total genetic diversity of the species. Southern populations in the Sea of Japan, which have relatively low genetic diversity, may be highly vulnerable to environmental change, such as heat waves and increased feeding. Therefore, careful monitoring and conservation are needed in the two regions.
Asunto(s)
Kelp , Phaeophyceae , Teorema de Bayes , Variación Genética , Haplotipos , Kelp/genética , Filogenia , FilogeografíaRESUMEN
Keystone species are known to play a critical role in kelp forest health, including the well-known killer whales, sea otter, sea urchin, kelp trophic cascade in the Aleutian Islands, Alaska, USA. In California, a major player in the regulation of sea urchin abundance, and in turn, the health of kelp forests ecosystems, is a large wrasse, the California Sheephead, Semicossyphus pulcher. We present a reference genome for this ecologically important species that will serve as a key resource for future conservation research of California's inshore marine environment utilizing genomic tools to address changes in life-history traits, dispersal, range shifts, and ecological interactions among members of the kelp forest ecological assemblages. Our genome assembly of S. pulcher has a total length of 0.794 Gb, which is similar to many other marine fishes. The assembly is largely contiguous (N50 = 31.9 Mb) and nearly complete (BUSCO single-copy core gene content = 98.1%). Within the context of the California Conservation Genomics Project (CCGP), the genome of S. pulcher will be used as an important reference resource for ongoing whole genome resequencing efforts of the species.
Asunto(s)
Kelp , Perciformes , Animales , Kelp/genética , Ecosistema , Cadena Alimentaria , Peces/genética , Bosques , Erizos de Mar/fisiología , CaliforniaRESUMEN
Understanding how trophic dynamics drive variation in biodiversity is essential for predicting the outcomes of trophic downgrading across the world's ecosystems. However, assessing the biodiversity of morphologically cryptic lineages can be problematic, yet may be crucial to understanding ecological patterns. Shifts in keystone predation that favor increases in herbivore abundance tend to have negative consequences for the biodiversity of primary producers. However, in nearshore ecosystems, coralline algal cover increases when herbivory is intense, suggesting that corallines may uniquely benefit from trophic downgrading. Because many coralline algal species are morphologically cryptic and their diversity has been globally underestimated, increasing the resolution at which we distinguish species could dramatically alter our conclusions about the consequences of trophic dynamics for this group. In this study, we used DNA barcoding to compare the diversity and composition of cryptic coralline algal assemblages at sites that differ in urchin biomass and keystone predation by sea otters. We show that while coralline cover is greater in urchin-dominated sites (or "barrens"), which are subject to intense grazing, coralline assemblages in these urchin barrens are significantly less diverse than in kelp forests and are dominated by only 1 or 2 species. These findings clarify how food web structure relates to coralline community composition and reconcile patterns of total coralline cover with the widely documented pattern that keystone predation promotes biodiversity. Shifts in coralline diversity and distribution associated with transitions from kelp forests to urchin barrens could have ecosystem-level effects that would be missed by ignoring cryptic species' identities.
Asunto(s)
Biodiversidad , Nutrias/fisiología , Filogenia , Rhodophyta/clasificación , Erizos de Mar/fisiología , Animales , Antozoos/fisiología , Arrecifes de Coral , Código de Barras del ADN Taxonómico , ADN de Algas/genética , Ecosistema , Cadena Alimentaria , Kelp/clasificación , Kelp/genética , Océano Pacífico , Conducta Predatoria/fisiología , Rhodophyta/genéticaRESUMEN
BACKGROUND: In brown algae, dioicy is the prevalent sexual system, and phenotypic differences between male and female gametophytes have been found in many dioicous species. Saccharina japonica show remarkable sexual dimorphism in gametophytes before gametogenesis. A higher level of phenotypic differentiation was also found in female and male gametes after gametogenesis. However, the patterns of differential gene expression throughout gametophyte development and how these changes might relate to sex-specific fitness at the gamete stage in S. japonica are not well known. RESULTS: In this study, differences in gene expression between male and female gametophytes in different developmental stages were investigated using comparative transcriptome analysis. Among the 20,151 genes expressed in the haploid gametophyte generation, 37.53% were sex-biased. The abundance of sex-biased genes in mature gametophytes was much higher than that in immature gametophytes, and more male-biased than female-biased genes were observed in the mature stage. The predicted functions of most sex-biased genes were closely related to the sex-specific characteristics of gametes, including cell wall biosynthesis, sperm motility, and sperm and egg recognition. In addition, 51 genes were specifically expressed in males in both stages, showing great potential as candidate male sex-determining region (SDR) genes. CONCLUSIONS: This study describes a thorough investigation into differential gene expression between male and female gametophytes in the dioicous kelp S. japonica. A large number of sex-biased genes in mature gametophytes may be associated with the divergence of phenotypic traits and physiological functions between female gametes (eggs) and male gametes (sperm) during sexual differentiation. These genes may mainly come from new sex-biased genes that have recently evolved in the S. japonica lineage. The duplication of sex-biased genes was detected, which may increase the number of sex-biased genes after gametogenesis in S. japonica to some extent. The excess of male-biased genes over female-biased genes in the mature stage may reflect the different levels of sexual selection across sexes. This study deepens our understanding of the regulation of sex development and differentiation in the dioicous kelp S. japonica.
Asunto(s)
Células Germinativas de las Plantas/crecimiento & desarrollo , Kelp/genética , Perfilación de la Expresión Génica , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Polen/genética , Polen/crecimiento & desarrolloRESUMEN
The development of population genomic approaches in non-model species allows for renewed studies of the impact of reproductive systems and genetic drift on population diversity. Here, we investigate the genomic signatures of partial clonality in the deep water kelp Laminaria rodriguezii, known to reproduce by both sexual and asexual means. We compared these results with the species Laminaria digitata, a closely related species that differs by different traits, in particular its reproductive mode (no clonal reproduction). We analysed genome-wide variation with dd-RAD sequencing using 4,077 SNPs in L. rodriguezii and 7,364 SNPs in L. digitata. As predicted for partially clonal populations, we show that the distribution of FIS within populations of L. rodriguezii is shifted toward negative values, with a high number of loci showing heterozygote excess. This finding is the opposite of what we observed within sexual populations of L. digitata, characterized by a generalized deficit in heterozygotes. Furthermore, we observed distinct distributions of FIS among populations of L. rodriguezii, which is congruent with the predictions of theoretical models for different levels of clonality and genetic drift. These findings highlight that the empirical distribution of FIS is a promising feature for the genomic study of asexuality in natural populations. Our results also show that the populations of L. rodriguezii analysed here are genetically differentiated and probably isolated. Our study provides a conceptual framework to investigate partial clonality on the basis of RAD-sequencing SNPs. These results could be obtained without any reference genome, and are therefore of interest for various non-model species.
Asunto(s)
Kelp , Laminaria , Flujo Genético , Genómica , Kelp/genética , Laminaria/genética , AguaRESUMEN
Climate change is increasingly impacting ecosystems globally. Understanding adaptive genetic diversity and whether it will keep pace with projected climatic change is necessary to assess species' vulnerability and design efficient mitigation strategies such as assisted adaptation. Kelp forests are the foundations of temperate reefs globally but are declining in many regions due to climate stress. A lack of knowledge of kelp's adaptive genetic diversity hinders assessment of vulnerability under extant and future climates. Using 4245 single nucleotide polymorphisms (SNPs), we characterized patterns of neutral and putative adaptive genetic diversity for the dominant kelp in the southern hemisphere (Ecklonia radiata) from ~1000 km of coastline off Western Australia. Strong population structure and isolation-by-distance was underpinned by significant signatures of selection related to temperature and light. Gradient forest analysis of temperature-linked SNPs under selection revealed a strong association with mean annual temperature range, suggesting adaptation to local thermal environments. Critically, modelling revealed that predicted climate-mediated temperature changes will probably result in high genomic vulnerability via a mismatch between current and future predicted genotype-environment relationships such that kelp forests off Western Australia will need to significantly adapt to keep pace with projected climate change. Proactive management techniques such as assisted adaptation to boost resilience may be required to secure the future of these kelp forests and the immense ecological and economic values they support.
Asunto(s)
Kelp , Cambio Climático , Ecosistema , Bosques , Genotipo , Kelp/genéticaRESUMEN
DNA metabarcoding has been increasingly used to detail distributions of hundreds of species. Most analyses focus on creating molecular operational taxonomic units (MOTUs) from complex mixtures of DNA sequences, but much less common is use of the sequence diversity within these MOTUs. Here we use the diversity of COI haplotypes within MOTUs from a California kelp forest to infer patterns of population abundance, dispersal and population history from 527 species of animals and algae from 106 samples of benthic habitats in Monterey Bay. Using haplotypes as a unit we show fine-grained differences of abundance across locations for 15 species, and marked aggregation from sample to sample for most of the common species of plants and animals. Previous analyses could not distinguish these patterns from artefacts of amplification or sequence bias. Our haplotype data also reveal strong population genetic differentiation over small spatial scales for 48 species of red algae, sponges and Bryozoa. Last, phylogenetic analysis of mismatch frequencies among haplotypes show a wide variety of demographic histories from recent expansions to long, stable population sizes. These analyses show that abundant, small-bodied marine species that are often overlooked in ecological surveys can have strikingly different patterns of ecological and genetic structure leading to population, ecological and perhaps adaptive differences between habitats. MOTU diversity data from the same sequencing efforts that generate species-level analyses can greatly increase the scope and value of metabarcoding studies.
Asunto(s)
Kelp , Animales , Biodiversidad , Bosques , Haplotipos/genética , Kelp/genética , FilogeniaRESUMEN
The genomic era continues to revolutionize our understanding of the evolution of biodiversity. In phycology, emphasis remains on assembling nuclear and organellar genomes, leaving the full potential of genomic datasets to answer long-standing questions about the evolution of biodiversity largely unexplored. Here, we used whole-genome sequencing (WGS) datasets to survey species diversity in the kelp genus Alaria, compare phylogenetic signals across organellar and nuclear genomes, and specifically test whether phylogenies behave like trees or networks. Genomes were sequenced from across the global distribution of Alaria (including Alaria crassifolia, A. praelonga, A. crispa, A. marginata, and A. esculenta), representing over 550 GB of data and over 2.2 billion paired reads. Genomic datasets retrieved 3,814 and 4,536 single-nucleotide polymorphisms (SNPs) for mitochondrial and chloroplast genomes, respectively, and upwards of 148,542 high-quality nuclear SNPs. WGS revealed an Arctic lineage of Alaria, which we hypothesize represents the synonymized taxon A. grandifolia. The SNP datasets also revealed inconsistent topologies across genomic compartments, and hybridization (i.e., phylogenetic networks) between Pacific A. praelonga, A. crispa, and putative A. grandifolia, and between some lineages of the A. marginata complex. Our analysis demonstrates the potential for WGS data to advance our understanding of evolution and biodiversity beyond amplicon sequencing, and that hybridization is potentially an important mechanism contributing to novel lineages within Alaria. We also emphasize the importance of surveying phylogenetic signals across organellar and nuclear genomes, such that models of mixed ancestry become integrated into our evolutionary and taxonomic understanding.
Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Kelp , Secuencia de Bases , Hibridación Genética , Kelp/clasificación , Kelp/genética , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Secuenciación Completa del GenomaRESUMEN
Brown algae have convergently evolved plant-like body plans and reproductive cycles, which in plants are controlled by differential DNA methylation. This contribution provides the first single-base methylome profiles of haploid gametophytes and diploid sporophytes of a multicellular alga. Although only c. 1.4% of cytosines in Saccharina japonica were methylated mainly at CHH sites and characterized by 5-methylcytosine (5mC), there were significant differences between life-cycle stages. DNA methyltransferase 2 (DNMT2), known to efficiently catalyze tRNA methylation, is assumed to methylate the genome of S. japonica in the structural context of tRNAs as the genome does not encode any other DNA methyltransferases. Circular and long noncoding RNA genes were the most strongly methylated regulatory elements in S. japonica. Differential expression of genes was negatively correlated with DNA methylation with the highest methylation levels measured in both haploid gametophytes. Hypomethylated and highly expressed genes in diploid sporophytes included genes involved in morphogenesis and halogen metabolism. The data herein provide evidence that cytosine methylation, although occurring at a low level, is significantly contributing to the formation of different life-cycle stages, tissue differentiation and metabolism in brown algae.
Asunto(s)
Metilación de ADN/genética , Kelp/genética , Microalgas/genética , Plantas/genética , Cromosomas de las Plantas/genética , Citosina/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Heterocigoto , Metiltransferasas/genética , Metiltransferasas/metabolismo , Oxidorreductasas O-Demetilantes/metabolismo , Regiones Promotoras Genéticas/genética , Transcriptoma/genéticaRESUMEN
In species that form dense populations, major disturbance events are expected to increase the chance of establishment for immigrant lineages. Real-time tests of the impact of disturbance on patterns of genetic structure are, however, scarce. Central to testing these concepts is determining the pool of potential immigrants dispersing into a disturbed area. In 2016, a 7.8 magnitude earthquake occurred on the South Island of New Zealand. Affecting approximately 100 km of coastline, this quake caused extensive uplift (several metres high), extirpating many intertidal populations, including keystone intertidal kelp species. Following the uplift, we set out to determine the geographic origins of detached kelp specimens which rafted into the disturbed zone. Specifically, we used genotyping-by-sequencing (GBS) approaches to compare beach-cast southern bull-kelp (Durvillaea antarctica and Durvillaea poha) samples to established populations throughout the species' ranges, and thus infer the geographic origins of potential colonists reaching the disturbed coast. Our findings revealed an ongoing supply of diverse lineages dispersing to the newly uplifted coastline, suggesting potential for establishment of "exotic" lineages following disturbance. Furthermore, we found that some drifting individuals of each species came from far-distant regions, some >1,200 km away. These results show that diverse lineages - in many cases from very distant sources - can compete for new space in the wake of an exceptional disturbance event, illustrating the potential of long-distance dispersal as a key mechanism for reassembly of coastal ecosystems. Furthermore, our findings demonstrate that high-resolution genomic baselines can be used to robustly assign the provenance of dispersing individuals.
Asunto(s)
Genómica , Kelp/genética , Polimorfismo de Nucleótido Simple/genética , Terremotos , Ecología , Ecosistema , Técnicas de Genotipaje , Kelp/fisiología , Nueva Zelanda , Densidad de Población , Movimientos del AguaRESUMEN
Studies of quantitative trait loci based on genetic linkage maps require the establishment of a mapping population. Permanent mapping populations are more ideal than temporary ones because they can be used repeatedly. However, there has been no reported permanent sporophyte population of economically important kelp species. Based on the characteristics of the kelp life cycle, we proposed a method to establish, and then constructed experimentally, an "immortalized F2 " (IF2 ) population of Undaria pinnatifida. Doubled-haploid "female" and "male" sporophytes were obtained through the parthenogenesis of a female gametophyte clone and the selfing of a "monoicous" gametophyte clone (originally male), respectively, and they were used as the parents. The F1 hybrid line was generated by crossing the female and male gametophytes derived from the respective female and male parents. Full-sibling F2 gametophyte clones, consisting of 260 females and 260 males, were established from an F1 hybrid sporophyte. Thirty-five females and 35 males were randomly selected and paired to give rise to an IF2 population containing 35 crossing lines. A parentage analysis using 10 microsatellite markers confirmed the accuracy of the IF2 population and indicated the feasibility of this method. This proposed method may be adapted for use in other kelp species, and thus, it will be useful for genetic studies of kelp.
Asunto(s)
Kelp , Phaeophyceae , Undaria , Células Germinativas de las Plantas , Kelp/genética , Masculino , Repeticiones de Microsatélite , Phaeophyceae/genéticaRESUMEN
Saccharina japonica is a brown macroalga that has been commercially cultivated in China for almost a century. As a natural raw material, it is widely used in the food and pharmaceutical industries, and it may potentially be useful for biofuel production. However, little is known about the genes involved in carbohydrate biosynthesis, and their regulation is less understood. In this study, the analysis of growth traits and alginate and mannitol contents suggested that sporophyte development could be divided into four stages. Accordingly, we performed transcriptome analysis of the S. japonica sporophyte. In total, 589 million clean reads were generated, and 4,514 novel genes were identified. Gene expression analysis revealed that 2,542 genes were differentially expressed. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that these genes were significantly enriched in "Carbon metabolism," "Photosynthesis," and "Photosynthesis-antenna proteins" pathways, which are important for metabolism of various carbohydrates during sporophyte development. Systematic analysis identified the genes encoding enzymes for the biosynthesis of cell wall carbohydrates (including alginate, fucoidan, and cellulose) and cytoplasm storage carbohydrates (mannitol, laminarin, and trehalose). Among them, some key genes associated with carbohydrate content were further identified based on detailed expression profiling, representing good candidates for further functional studies. This study provides a global view of the carbohydrate metabolism process and an important resource for functional genomics studies in S. japonica. The results obtained lay the basis for elucidating the molecular mechanism of carbohydrate biosynthesis and for genetic breeding of carbohydrates-related traits in kelp.
Asunto(s)
Kelp , Phaeophyceae , Metabolismo de los Hidratos de Carbono/genética , China , Perfilación de la Expresión Génica , Kelp/genética , Phaeophyceae/genética , TranscriptomaRESUMEN
The extent that Pleistocene climate variability promoted speciation has been much debated. Here, we surveyed genetic markers in winged kelp Alaria in the Gulf of Alaska, Northeast Pacific Ocean to understand how paleoclimates may have influenced diversity in this kelp. The study included wide geographic sampling over 2800 km and large sample sizes compared to previous studies of this kelp. Mitochondrial 5'-COI (664 bp), plastid rbcL-3' (740 bp) and 8 microsatellite markers in 16 populations resolved 5 well-defined lineages. COI-rbcL haplotypes were distributed chaotically among populations around the Gulf of Alaska. Principal Coordinates Analysis of microsatellite genotypes grouped plants largely by organellar lineage instead of geography, indicating reproductive isolation among lineages. However, microsatellite markers detected hybrids at 3 sites where lineages co-occurred. Local adaptation on various time scales may be responsible for some genetic differences between populations located along wave-energy and salinity gradients, but the chaotic pattern of variability over hundreds of kilometers is likely due to isolations in northern refugia during Pleistocene ice ages. The range of divergences between populations indicates that episodic glaciations led to the creation of new lineages, but population turnover (local extinctions and recolonizations) limited the formation of new species in the Northeastern Pacific Ocean.
Asunto(s)
Evolución Biológica , Kelp/clasificación , Kelp/genética , Alaska , ADN Mitocondrial , Ecosistema , Genes Mitocondriales , Variación Genética , Haplotipos , Repeticiones de Microsatélite , Filogenia , FilogeografíaRESUMEN
BACKGROUND: Kelps (Laminariales, Phaeophyceae) are brown macroalgae of utmost ecological, and increasingly economic, importance on temperate to polar rocky shores. Omics approaches in brown algae are still scarce and knowledge of their acclimation mechanisms to the changing conditions experienced in coastal environments can benefit from the application of RNA-sequencing. Despite evidence of ecotypic differentiation, transcriptomic responses from distinct geographical locations have, to our knowledge, never been studied in the sugar kelp Saccharina latissima so far. RESULTS: In this study we investigated gene expression responses using RNA-sequencing of S. latissima from environments with contrasting temperature and salinity conditions - Roscoff, in temperate eastern Atlantic, and Spitsbergen in the Arctic. Juvenile sporophytes derived from uniparental stock cultures from both locations were pre-cultivated at 8 °C and SA 30. Sporophytes acclimated to 0 °C, 8 °C and 15 °C were exposed to a low salinity treatment (SA 20) for 24 h. Hyposalinity had a greater impact at the transcriptomic level than the temperature alone, and its effects were modulated by temperature. Namely, photosynthesis and pigment synthesis were extensively repressed by low salinity at low temperatures. Although some responses were shared among sporophytes from the different sites, marked differences were revealed by principal component analysis, differential expression and GO enrichment. The interaction between low temperature and low salinity drove the largest changes in gene expression in sporophytes from Roscoff while specimens from Spitsbergen required more metabolic adjustment at higher temperatures. Moreover, genes related to cell wall adjustment were differentially expressed between Spitsbergen and Roscoff control samples. CONCLUSIONS: Our study reveals interactive effects of temperature and salinity on transcriptomic profiles in S. latissima. Moreover, our data suggest that under identical culture conditions sporophytes from different locations diverge in their transcriptomic responses. This is probably connected to variations in temperature and salinity in their respective environment of origin. The current transcriptomic results support the plastic response pattern in sugar kelp which is a species with several reported ecotypes. Our data provide the baseline for a better understanding of the underlying processes of physiological plasticity and may help in the future to identify strains adapted to specific environments and its genetic control.