Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614208

RESUMEN

Receptor-mediated cellular uptake of specific ligands constitutes an important step in the dynamic regulation of individual protein levels in extracellular fluids. With a focus on the inflammatory lung, we here performed a proteomics-based search for novel ligands regulated by the mannose receptor (MR), a macrophage-expressed endocytic receptor. WT and MR-deficient mice were exposed to lipopolysaccharide, after which the protein content in their lung epithelial lining fluid was compared by tandem mass tag-based mass spectrometry. More than 1200 proteins were identified in the epithelial lining fluid using this unbiased approach, but only six showed a statistically different abundance. Among these, an unexpected potential new ligand, thrombospondin-4 (TSP-4), displayed a striking 17-fold increased abundance in the MR-deficient mice. Experiments using exogenous addition of TSP-4 to MR-transfected CHO cells or MR-positive alveolar macrophages confirmed that TSP-4 is a ligand for MR-dependent endocytosis. Similar studies revealed that the molecular interaction with TSP-4 depends on both the lectin activity and the fibronectin type-II domain of MR and that a closely related member of the TSP family, TSP-5, is also efficiently internalized by the receptor. This was unlike the other members of this protein family, including TSPs -1 and -2, which are ligands for a close MR homologue known as urokinase plasminogen activator receptor-associated protein. Our study shows that MR takes part in the regulation of TSP-4, an important inflammatory component in the injured lung, and that two closely related endocytic receptors, expressed on different cell types, undertake the selective endocytosis of distinct members of the TSP family.


Asunto(s)
Lectinas Tipo C , Lesión Pulmonar , Receptor de Manosa , Lectinas de Unión a Manosa , Proteómica , Receptores de Superficie Celular , Trombospondinas , Animales , Ratones , Células CHO , Cricetulus , Endocitosis , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Ligandos , Lipopolisacáridos/toxicidad , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Lectinas de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa/genética , Ratones Noqueados , Proteómica/métodos , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Trombospondinas/metabolismo , Trombospondinas/genética
2.
Clin Immunol ; 263: 110203, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575046

RESUMEN

Langerhans cell histiocytosis (LCH) is characterized by an expansion and accumulation of pathological histiocytes expressing langerin (CD207) and CD1a in different organs under an inflammatory milieu. The origin of pathognomonic precursors of LCH is widely debated, but monocytes and pre-dendritic cells (pre-DC) play a significant role. Remarkably, we found an expansion of AXLhigh cells in the CD11c+ subset of patients with active LCH, which also express the pathognomonic CD207 and CD1a. Moreover, we obtained a monocyte-derived LC-like (mo-LC-like) expressing high levels of AXL when treated with inflammatory cytokine, or plasma of patients with active disease. Intriguingly, inhibiting the mTOR pathway at the initial stages of monocyte differentiation to LC-like fosters the pathognomonic LCH program, highly increasing CD207 levels, together with NOTCH1 induction. We define here that AXLhigh could also be taken as a strong pathognomonic marker for LCH, and the release of Langerin and NOTCH1 expression depends on the inhibition of the mTOR pathway.


Asunto(s)
Antígenos CD , Tirosina Quinasa del Receptor Axl , Histiocitosis de Células de Langerhans , Lectinas Tipo C , Lectinas de Unión a Manosa , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Serina-Treonina Quinasas TOR , Humanos , Histiocitosis de Células de Langerhans/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Antígenos CD/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Lectinas de Unión a Manosa/metabolismo , Lectinas Tipo C/metabolismo , Masculino , Células Mieloides/metabolismo , Biomarcadores , Femenino , Adolescente , Receptor Notch1/metabolismo , Antígenos CD1/metabolismo , Niño , Monocitos/metabolismo , Monocitos/inmunología , Adulto , Preescolar , Transducción de Señal , Diferenciación Celular
3.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687323

RESUMEN

The human cytomegalovirus (HCMV) pUS2 glycoprotein exploits the host's endoplasmic reticulum (ER)-associated degradation (ERAD) pathway to degrade major histocompatibility complex class I (MHC-I) and prevent antigen presentation. Beyond MHC-I, pUS2 has been shown to target a range of cellular proteins for degradation, preventing their cell surface expression. Here we have identified a novel pUS2 target, ER-resident protein lectin mannose binding 2 like (LMAN2L). pUS2 expression was both necessary and sufficient for the downregulation of LMAN2L, which was dependent on the cellular E3 ligase TRC8. Given the hypothesized role of LMAN2L in the trafficking of glycoproteins, we employed proteomic plasma membrane profiling to measure LMAN2L-dependent changes at the cell surface. A known pUS2 target, integrin alpha-6 (ITGA6), was downregulated from the surface of LMAN2L-deficient cells, but not other integrins. Overall, these results suggest a novel strategy of pUS2-mediated protein degradation whereby pUS2 targets LMAN2L to impair trafficking of ITGA6. Given that pUS2 can directly target other integrins, we propose that this single viral protein may exhibit both direct and indirect mechanisms to downregulate key cell surface molecules.


Asunto(s)
Citomegalovirus , Retículo Endoplásmico , Proteínas del Envoltorio Viral , Proteínas Virales , Humanos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteolisis , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Lectinas de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa/genética , Degradación Asociada con el Retículo Endoplásmico , Interacciones Huésped-Patógeno , Membrana Celular/metabolismo , Membrana Celular/virología
4.
Eur J Nucl Med Mol Imaging ; 51(8): 2216-2228, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38532026

RESUMEN

PURPOSE: Aluminum fluoride-18-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-conjugated mannosylated dextran derivative (Al[18F]F-NOTA-D10CM) is a new tracer for PET imaging. We report here on in vitro and in vivo validation of the tracer's ability to target the macrophage mannose receptor CD206. METHODS: First, the uptake of intravenously (i.v.) administered Al[18F]F-NOTA-D10CM was compared between wild-type (WT) and CD206-/- knockout (KO) mice. C57BL/6N mice were injected with complete Freund's adjuvant (CFA) in the left hind leg and the uptake of Al[18F]F-NOTA-D10CM after i.v. or intradermal (i.d.) injection was studied at 5 and 14 days after CFA induction of inflammation. Healthy C57BL/6N mice were studied as controls. Mice underwent PET/CT on consecutive days with [18F]FDG, i.v. Al[18F]F-NOTA-D10CM, and i.d. Al[18F]F-NOTA-D10CM. After the last imaging, Al[18F]F-NOTA-D10CM was i.v. injected for an ex vivo biodistribution study and autoradiography of inflamed tissues. Blood plasma samples were analyzed using high-performance liquid chromatography. To evaluate the specificity of Al[18F]F-NOTA-D10CM binding, an in vitro competitive displacement study was performed on inflamed tissue sections using autoradiography. CD206 expression was assessed by immunohistochemical staining. RESULTS: Compared with WT mice, the uptake of Al[18F]F-NOTA-D10CM was significantly lower in several CD206-/- KO mice tissues, including liver (SUV 8.21 ± 2.51 vs. 1.06 ± 0.16, P < 0.001) and bone marrow (SUV 1.63 ± 0.37 vs. 0.22 ± 0.05, P < 0.0001). The uptake of i.v. injected Al[18F]F-NOTA-D10CM was significantly higher in inflamed ankle joint (SUV 0.48 ± 0.13 vs. 0.18 ± 0.05, P < 0.0001) and inflamed foot pad skin (SUV 0.41 ± 0.10 vs. 0.04 ± 0.01, P < 0.0001) than in the corresponding tissues in healthy mice. The i.d.-injected Al[18F]F-NOTA-D10CM revealed differences between CFA-induced lymph node activation and lymph nodes in healthy mice. Ex vivo γ-counting, autoradiography, and immunohistochemistry supported the results, and a decrease of ~ 80% in the binding of Al[18F]F-NOTA-D10CM in the displacement study with excess NOTA-D10CM confirmed that tracer binding was specific. At 60 min after i.v. injection, an average 96.70% of plasma radioactivity was derived from intact Al[18F]F-NOTA-D10CM, indicating good in vivo stability. The uptake of Al[18F]F-NOTA-D10CM into inflamed tissues was positively associated with the area percentage of CD206-positive staining. CONCLUSION: The uptake of mannosylated dextran derivative Al[18F]F-NOTA-D10CM correlated with CD206 expression and the tracer appears promising for inflammation imaging.


Asunto(s)
Dextranos , Radioisótopos de Flúor , Lectinas Tipo C , Receptor de Manosa , Lectinas de Unión a Manosa , Receptores de Superficie Celular , Animales , Ratones , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Lectinas de Unión a Manosa/metabolismo , Distribución Tisular , Dextranos/química , Manosa/química , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Marcaje Isotópico , Compuestos Heterocíclicos con 1 Anillo
5.
Chemistry ; 30(30): e202400660, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38527187

RESUMEN

C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.


Asunto(s)
Lectinas Tipo C , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Humanos , Ligandos , Sitios de Unión , Calcio/metabolismo , Calcio/química , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Unión Proteica , Lectinas de Unión a Manosa/química , Lectinas de Unión a Manosa/metabolismo , Lectina de Unión a Manosa/química , Lectina de Unión a Manosa/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/química , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Antígenos CD/química , Antígenos CD/metabolismo
6.
BMC Cancer ; 24(1): 105, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38342891

RESUMEN

BACKGROUND: Histiocytoses are rare disorders manifested by increased proliferation of pathogenic myeloid cells sharing histological features with macrophages or dendritic cells and accumulating in various organs, i.a., bone and skin. Pre-clinical in vitro models that could be used to determine molecular pathways of the disease are limited, hence research on histiocytoses is challenging. The current study compares cytophysiological features of progenitor, stromal-like cells derived from histiocytic lesions (sl-pHCs) of three pediatric patients with different histiocytoses types and outcomes. The characterized cells may find potential applications in drug testing. METHODS: Molecular phenotype of the cells, i.e. expression of CD1a and CD207 (langerin), was determined using flow cytometry. Cytogenetic analysis included GTG-banded metaphases and microarray (aCGH) evaluation. Furthermore, the morphology and ultrastructure of cells were evaluated using a confocal and scanning electron microscope. The microphotographs from the confocal imaging were used to reconstruct the mitochondrial network and its morphology. Basic cytophysiological parameters, such as viability, mitochondrial activity, and proliferation, were analyzed using multiple cellular assays, including Annexin V/7-AAD staining, mitopotential analysis, BrdU test, clonogenicity analysis, and distribution of cells within the cell cycle. Biomarkers potentially associated with histiocytoses progression were determined using RT-qPCR at mRNA, miRNA and lncRNA levels. Intracellular accumulation of histiocytosis-specific proteins was detected with Western blot. Cytotoxicyty and IC50 of vemurafenib and trametinib were determined with MTS assay. RESULTS: Obtained cellular models, i.e. RAB-1, HAN-1, and CHR-1, are heterogenic in terms of molecular phenotype and morphology. The cells express CD1a/CD207 markers characteristic for dendritic cells, but also show intracellular accumulation of markers characteristic for cells of mesenchymal origin, i.e. vimentin (VIM) and osteopontin (OPN). In subsequent cultures, cells remain viable and metabolically active, and the mitochondrial network is well developed, with some distinctive morphotypes noted in each cell line. Cell-specific transcriptome profile was noted, providing information on potential new biomarkers (non-coding RNAs) with diagnostic and prognostic features. The cells showed different sensitivity to vemurafenib and trametinib. CONCLUSION: Obtained and characterized cellular models of stromal-like cells derived from histiocytic lesions can be used for studies on histiocytosis biology and drug testing.


Asunto(s)
Histiocitosis de Células de Langerhans , Humanos , Niño , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Histiocitosis de Células de Langerhans/genética , Histiocitosis de Células de Langerhans/diagnóstico , Vemurafenib , Macrófagos/metabolismo , Biomarcadores , Fenotipo , Antígenos CD , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo
7.
Glycoconj J ; 41(1): 1-33, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38244136

RESUMEN

Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.


Asunto(s)
Lectinas , Virosis , Humanos , Lectinas/metabolismo , Manosa , Glicoproteínas , SARS-CoV-2 , Polisacáridos , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Virosis/tratamiento farmacológico , Lectinas de Plantas/farmacología , Lectinas de Unión a Manosa/química
8.
Liver Int ; 44(8): 1900-1911, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38588014

RESUMEN

BACKGROUND AND AIMS: Acute liver failure is a multisystem disorder with a high mortality and frequent need for emergency liver transplantation. Following massive innate immune system activation, soluble markers of macrophage activation are released during liver damage and their association with disease severity and prognosis requires exploration. METHODS: Patients ALF from the United States Acute Liver Failure Study Group (USALFSG, n = 224) and King's College Hospital (n = 40) together with healthy controls (HC, n = 50) were recruited. Serum from early (Days 1-3) and late (>Day 3) time points were analysed for MAMs by enzyme-linked immunosorbent assay correlated to markers of illness severity and 21-day spontaneous survival. Surface expression phenotyping was performed via Flow Cytometry on CD14+ monocytes. RESULTS: All MAMs serum concentrations were significantly higher in ALF compared to controls (p < .0001). sCD206 concentration was higher in early and late stages of the disease in patients with bacteraemia (p = .002) and infection in general (p = .006). In MELD-adjusted multivariate modelling, sCD206 and sCD163 were independently associated with mortality. CD14+ monocyte expression of CD206 (p < .001) was higher in patients with ALF compared with controls and correlated with SOFA score (p = .018). sCD206 was independently validated as a predictor of infection in an external cohort. CONCLUSIONS: sCD206 is increased in serum of ALF patients with infections and poor outcome and is upregulated on CD14+ monocytes. Later measurements of sCD163 and sCD206 during the evolution of ALF have potential as mechanistic predictors of mortality. sCD206 should be explored as a biomarker of sepsis and mortality in ALF.


Asunto(s)
Antígenos de Diferenciación Mielomonocítica , Biomarcadores , Fallo Hepático Agudo , Activación de Macrófagos , Receptores de Superficie Celular , Humanos , Fallo Hepático Agudo/mortalidad , Fallo Hepático Agudo/sangre , Masculino , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Adulto , Receptores de Superficie Celular/sangre , Estudios de Casos y Controles , Antígenos de Diferenciación Mielomonocítica/sangre , Antígenos CD/sangre , Índice de Severidad de la Enfermedad , Receptores de Lipopolisacáridos/sangre , Pronóstico , Lectinas Tipo C/sangre , Monocitos , Receptor de Manosa , Ensayo de Inmunoadsorción Enzimática , Lectinas de Unión a Manosa/sangre , Estados Unidos/epidemiología , Análisis Multivariante , Citometría de Flujo , Anciano
9.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338648

RESUMEN

The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.


Asunto(s)
Receptor de Manosa , Manosa , Manosa/metabolismo , Receptores de Superficie Celular/metabolismo , Lectinas de Unión a Manosa/metabolismo , Lectinas Tipo C/metabolismo , Ligandos
10.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892398

RESUMEN

Myocardial infarction activates an intense fibro-inflammatory reaction that is essential for cardiac remodeling and heart failure (HF). Bioactive peptide galanin plays a critical role in regulating cardiovascular homeostasis; however, its specific functional relevance in post-infarction fibro-inflammatory reprogramming remains obscure. Here, we show that galanin coordinates the fibro-inflammatory trajectory and mitochondrial integrity in post-infarction reperfusion injury. Aberrant deposition of collagen was associated with a marked increase in CD68-positive macrophage infiltration in cardiac tissue in mice subjected to myocardial ischemia/reperfusion (I/R) for 14 days compared to sham controls. Furthermore, we found that the myocardial expression level of a specific marker of M2 macrophages, CD206, was significantly down-regulated in I/R-challenged mice. In contrast, galanin treatment started during the reperfusion phase blunted the fibro-inflammatory responses and promoted the expression of CD206 in I/R-remodeled hearts. In addition, we found that the anti-apoptotic and anti-hypertrophic effects of galanin were associated with the preservation of mitochondrial integrity and promotion of mitochondrial biogenesis. These findings depict galanin as a key arbitrator of fibro-inflammatory responses to cardiac I/R injury and offer a promising therapeutic trajectory for the treatment of post-infarct cardiovascular complications.


Asunto(s)
Galanina , Macrófagos , Daño por Reperfusión Miocárdica , Animales , Galanina/metabolismo , Galanina/farmacología , Ratones , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Macrófagos/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Mitocondrias/metabolismo , Ratones Endogámicos C57BL , Receptores de Superficie Celular/metabolismo , Inflamación/metabolismo , Inflamación/patología , Receptor de Manosa , Lectinas Tipo C/metabolismo , Miocardio/metabolismo , Miocardio/patología , Lectinas de Unión a Manosa/metabolismo , Modelos Animales de Enfermedad , Apoptosis
11.
J Control Release ; 372: 494-521, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849091

RESUMEN

In the pursuit of achieving better therapeutic outcomes in the treatment of HIV, innovative drug delivery strategies have been extensively explored. Mannose receptors, which are primarily found on macrophages and dendritic cells, offer promising targets for drug delivery due to their involvement in HIV pathogenesis. This review article comprehensively evaluates recent drug delivery system advancements targeting the mannose receptor. We have systematically described recent developments in creating and utilizing drug delivery platforms, including nanoparticles, liposomes, micelles, noisomes, dendrimers, and other nanocarrier systems targeted at the mannose receptor. These strategies aim to enhance drug delivery specificity, bioavailability, and therapeutic efficacy while decreasing off-target effects and systemic toxicity. Furthermore, the article delves into how mannose receptors and HIV interact, highlighting the potential for exploiting this interaction to enhance drug delivery to infected cells. The review covers essential topics, such as the rational design of nanocarriers for mannose receptor recognition, the impact of physicochemical properties on drug delivery performance, and how targeted delivery affects the pharmacokinetics and pharmacodynamics of anti-HIV agents. The challenges of these novel strategies, including immunogenicity, stability, and scalability, and future research directions in this rapidly growing area are discussed. The knowledge synthesis presented in this review underscores the potential of mannose receptor-based targeted drug delivery as a promising avenue for advancing HIV treatment. By leveraging the unique properties of mannose receptors, researchers can design drug delivery systems that cater to individual needs, overcome existing limitations, and create more effective and patient-friendly treatments in the ongoing fight against HIV/AIDS.


Asunto(s)
Fármacos Anti-VIH , Sistemas de Liberación de Medicamentos , Infecciones por VIH , Lectinas Tipo C , Receptor de Manosa , Lectinas de Unión a Manosa , Receptores de Superficie Celular , Humanos , Lectinas Tipo C/metabolismo , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/farmacocinética , Receptores de Superficie Celular/metabolismo , Infecciones por VIH/tratamiento farmacológico , Lectinas de Unión a Manosa/metabolismo , Animales , Nanopartículas
12.
Nat Commun ; 15(1): 2404, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493152

RESUMEN

ERGIC-53 transports certain subsets of newly synthesized secretory proteins and membrane proteins from the endoplasmic reticulum to the Golgi apparatus. Despite numerous structural and functional studies since its identification, the overall architecture and mechanism of action of ERGIC-53 remain unclear. Here we present cryo-EM structures of full-length ERGIC-53 in complex with its functional partner MCFD2. These structures reveal that ERGIC-53 exists as a homotetramer, not a homohexamer as previously suggested, and comprises a four-leaf clover-like head and a long stalk composed of three sets of four-helix coiled-coil followed by a transmembrane domain. 3D variability analysis visualizes the flexible motion of the long stalk and local plasticity of the head region. Notably, MCFD2 is shown to possess a Zn2+-binding site in its N-terminal lid, which appears to modulate cargo binding. Altogether, distinct mechanisms of cargo capture and release by ERGIC- 53 via the stalk bending and metal binding are proposed.


Asunto(s)
Proteínas de la Membrana , Proteínas de Transporte Vesicular , Proteínas de Transporte Vesicular/metabolismo , Unión Proteica , Proteínas de la Membrana/metabolismo , Sitios de Unión , Aparato de Golgi/metabolismo , Lectinas de Unión a Manosa/metabolismo
13.
Carbohydr Res ; 541: 109166, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815341

RESUMEN

Triacedimannose (TADM) is a synthetic trivalent acetylated glycocluster comprising ß-1,2-linked mannobioses that in humans induces TNF in vitro and in vivo. The purpose of this study was to analyze whether uptake of acetylated glycoclusters of such ß-1,2-linked mannobioses by human macrophages is dependent on the mannose receptor (CD206) or if it is mediated by transmembrane activation. In mannose receptor blocking assays, monocyte-derived polarized macrophages were incubated with carbohydrate test-compounds and their binding to the mannose receptor was demonstrated as inhibition of FITC-Dextran binding. For 1H NMR spectroscopy, macrophages were incubated with TADM. The cells were collected at 6 and 24 h of incubation, centrifuged and washed twice with PBS. We found dose-dependent blocking of the mannose receptor in macrophage carbohydrate constructs containing free hydroxyl groups, but not by the trivalent acetylated glycocluster molecules. NMR spectroscopic analyses demonstrated that TADM was found in washed cellular pellets after 6-h co-culture, while after 24-h co-culture TADM was no more detectable, suggesting cleavage of the acetyl groups in vitro. The Type 1 immune response enhancing effects of TADM and other, stereochemically and structurally similar, trivalent acetylated glycoclusters may be due to transmembrane uptake of macrophages independent of the mannose receptor.


Asunto(s)
Lectinas Tipo C , Macrófagos , Receptor de Manosa , Lectinas de Unión a Manosa , Receptores de Superficie Celular , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Receptores de Superficie Celular/metabolismo , Lectinas de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa/química , Humanos , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Acetilación
14.
Int J Surg ; 110(5): 2692-2700, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377062

RESUMEN

BACKGROUND: This study aimed to evaluate the effectiveness of neo-mannosyl human serum albumin-indocyanine green (MSA-ICG) for detecting metastatic lymph node (LN) and mapping sentinel lymph node (SLN) using mouse footpad uterine tumor models. Additionally, the authors assessed the feasibility of MSA-ICG in SLN mapping in rabbit uterine cancer models. MATERIALS AND METHODS: The authors compared the LN targeting ability of MSA-ICG with ICG. Six mouse footpad tumor models and two normal mice were each assigned to MSA-ICG and ICG, respectively. After the assigned tracers were injected, fluorescence images were taken, and the authors compared the signal-to-background ratio (SBR) of the tracers. A SLN biopsy was performed to confirm LN metastasis status and CD206 expression level. Finally, an intraoperative SLN biopsy was performed in rabbit uterine cancer models using MSA-ICG. RESULTS: The authors detected 14 groin LNs out of 16 in the MSA-ICG and ICG groups. The SBR of the MSA-ICG group was significantly higher than that of the ICG group. The metastatic LN subgroup of MSA-ICG showed a significantly higher SBR than that of ICG. CD206 was expressed at a high level in metastatic LN, and the signal intensity difference increased as the CD206 expression level increased. SLN mapping was successfully performed in two of the three rabbit uterine cancer models. CONCLUSIONS: MSA-ICG was able to distinguish metastatic LN for an extended period due to its specific tumor-associated macrophage-targeting property. Therefore, it may be a more distinguishable tracer for identifying metastatic LNs and SLNs during uterine cancer surgery. Further research is needed to confirm these results.


Asunto(s)
Modelos Animales de Enfermedad , Verde de Indocianina , Lectinas Tipo C , Metástasis Linfática , Receptor de Manosa , Lectinas de Unión a Manosa , Receptores de Superficie Celular , Ganglio Linfático Centinela , Neoplasias Uterinas , Animales , Femenino , Conejos , Verde de Indocianina/administración & dosificación , Lectinas de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa/análisis , Ratones , Neoplasias Uterinas/patología , Neoplasias Uterinas/cirugía , Ganglio Linfático Centinela/patología , Ganglio Linfático Centinela/metabolismo , Receptores de Superficie Celular/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/análisis , Biopsia del Ganglio Linfático Centinela/métodos
15.
Sci Rep ; 14(1): 12143, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802677

RESUMEN

Microglia are natural immune cells in the central nervous system, and the activation of microglia is accompanied by a reprogramming of glucose metabolism. In our study, we investigated the role of long non-coding RNA taurine-upregulated gene 1 (TUG1) in regulating microglial glucose metabolism reprogramming and activation. BV2 cells were treated with Lipopolysaccharides (LPS)/Interferon-γ (IFN-γ) to establish a microglial activation model. The glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) was used as a control. The expression levels of TUG1 mRNA and proinflammatory cytokines such as Interleukin-1ß (IL-1ß), Interleukin -6, and Tumor Necrosis Factor-α mRNA and anti-inflammatory cytokines such as IL-4, Arginase 1(Arg1), CD206, and Ym1 were detected by RT-qPCR. TUG1 was silenced using TUG1 siRNA and knocked out using CRISPR/Cas9. The mRNA and protein expression levels of key enzymes involved in glucose metabolism, such as Hexokinase2, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Lactate dehydrogenase, Glucose 6 phosphate dehydrogenase, and Pyruvate dehydrogenase (PDH), were determined by RT-qPCR and Western blotting. The glycolytic rate of microglial cells was measured using Seahorse. Differential metabolites were determined by metabolomics, and pathway enrichment was performed using these differential metabolites. Our findings revealed that the expression of TUG1 was elevated in proinflammatory-activated microglia and positively correlated with the levels of inflammatory factors. The expression of anti-inflammatory cytokines such as IL-4, Arg1, CD206, and Ym1 were decreased when induced with LPS/IFN-γ. However, this decrease was reversed by the treatment with 2-DG. Silencing of GAPDH led to an increase in the expression of TUG1 and inflammatory factors. TUG1 knockout (TUG1KO) inhibited the expression of glycolytic key enzymes and promoted the expression of oxidative phosphorylation key enzymes, shifting the metabolic profile of activated microglia from glycolysis to oxidative phosphorylation. Additionally, TUG1KO reduced the accumulation of metabolites, facilitating the restoration of the tricarboxylic acid cycle and enhancing oxidative phosphorylation in microglia. Furthermore, the downregulation of TUG1 was found to reduce the expression of both proinflammatory and anti-inflammatory cytokines under normal conditions. Interestingly, when induced with LPS/IFN-γ, TUG1 downregulation showed a potentially beneficial effect on microglia in terms of inflammation. Downregulation of TUG1 expression inhibits glycolysis and facilitates the shift of microglial glucose metabolism from glycolysis to oxidative phosphorylation, promoting their transformation towards an anti-inflammatory phenotype and exerting anti-inflammatory effects in BV2.


Asunto(s)
Glucosa , Glucólisis , Lipopolisacáridos , Microglía , ARN Largo no Codificante , Microglía/metabolismo , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Glucosa/metabolismo , Ratones , Lipopolisacáridos/farmacología , Citocinas/metabolismo , Inflamación/metabolismo , Inflamación/genética , Interferón gamma/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , beta-N-Acetilhexosaminidasas/genética , Línea Celular , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa/genética , Desoxiglucosa/farmacología , Interleucina-4/metabolismo , Interleucina-1beta/metabolismo , Reprogramación Metabólica , Arginasa , Hexoquinasa , Lectinas
16.
FEBS Lett ; 598(13): 1633-1643, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38631897

RESUMEN

IFN-γ plays a critical role in host defense against intracellular pathogens. IFN-γ is produced in the bronchoalveolar lavage fluid of mice infected with Pneumocystis, but the role of IFN-γ in host defense against Pneumocystis remains controversial. It has been previously reported that although exogenous IFN-γ has beneficial effects on eradication of Pneumocystis, endogenous IFN-γ has a negative impact on innate immunity in immunocompromised hosts. Surprisingly, CD4+ T cell-depleted IFN-γ deficient (GKO) mice exhibit resistance to Pneumocystis. Alveolar macrophages (AM) from GKO mice exhibit higher expression of macrophage mannose receptor (MMR) and Dectin-1. Concomitantly, they exhibited greater ability to phagocytize Pneumocystis, and this activity was suppressed by inhibitors of these receptors. Incubation with IFN-γ resulted in a reduction in both the expression of these receptors on AM and their Pneumocystis-phagocytic activity. These results indicate that endogenous IFN-γ facilitates Pneumocystis to escape from host innate immunity by attenuating the phagocytic activity of AM via downregulation of MMR and Dectin-1.


Asunto(s)
Linfocitos T CD4-Positivos , Regulación hacia Abajo , Interferón gamma , Lectinas Tipo C , Macrófagos Alveolares , Receptor de Manosa , Fagocitosis , Receptores de Superficie Celular , Animales , Ratones , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Inmunidad Innata , Interferón gamma/metabolismo , Interferón gamma/inmunología , Interferón gamma/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Depleción Linfocítica , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Lectinas de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Pneumocystis/inmunología , Infecciones por Pneumocystis/inmunología , Infecciones por Pneumocystis/metabolismo , Infecciones por Pneumocystis/microbiología , Infecciones por Pneumocystis/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/inmunología
17.
Viruses ; 16(4)2024 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-38675840

RESUMEN

The ability of recombinant, SARS-CoV-2 Spike (S) protein to modulate the production of two COVID-19 relevant, pro-inflammatory cytokines (IL-6 and IFN-γ) in PBMC cultures of healthy, pre-COVID-19 subjects was investigated. We observed that cytokine production was largely and diversely modulated by the S protein depending on antigen or mitogen stimulation, as well as on the protein source, insect (S-in) or human (S-hu) cells. While both proteins co-stimulated cytokine production by polyclonally CD3-activated T cells, PBMC activation by the mitogenic lectin Concanavalin A (Con A) was up-modulated by S-hu protein and down-modulated by S-in protein. These modulatory effects were likely mediated by the S glycans, as demonstrated by direct Con A-S binding experiments and use of yeast mannan as Con A binder. While being ineffective in modulating memory antigenic T cell responses, the S proteins and mannan were able to induce IL-6 production in unstimulated PBMC cultures and upregulate the expression of the mannose receptor (CD206), a marker of anti-inflammatory M2 macrophage. Our data point to a relevant role of N-glycans, particularly N-mannosidic chains, decorating the S protein in the immunomodulatory effects here reported. These novel biological activities of the S glycan ectodomain may add to the comprehension of COVID-19 pathology and immunity to SARS-CoV-2.


Asunto(s)
COVID-19 , Interleucina-6 , Lectinas Tipo C , Leucocitos Mononucleares , Receptor de Manosa , Lectinas de Unión a Manosa , Receptores de Superficie Celular , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , COVID-19/inmunología , COVID-19/virología , COVID-19/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Lectinas de Unión a Manosa/metabolismo , Interleucina-6/metabolismo , Citocinas/metabolismo , Interferón gamma/metabolismo , Células Cultivadas , Polisacáridos/metabolismo , Voluntarios Sanos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Activación de Linfocitos , Concanavalina A/metabolismo
18.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 5677-5688, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38294507

RESUMEN

The present study aims to explore the therapeutic effect of Stefin B on gouty arthritis (GA) and the polarization of macrophages in mice. Stefin B-overexpressed or knockdown M0 macrophages were constructed. The GA model was established in mice by injecting 25 mg/mL MSU, followed by a single injecting of Stefin B-overexpressing adenovirus vector (GA model + Stefin B OE) or an empty vector (GA model + Stefin B OE NC). Stefin B was found lowly expressed in M1 macrophages. CD206 was markedly upregulated and IL-10 release was signally increased in Stefin B-overexpressed macrophages. In gouty arthritis mice, marked redness and swelling were observed in the ankle joint. Dramatical infiltration of inflammatory cells was observed in the GA model and GA model + Stefin B OE NC groups, which was suppressed in the Stefin B OE group. Increased proportion of F4/80+CD86+ cells observed in GA mice was markedly repressed by Stefin B overexpression, accompanied by the declined level of Caspase-1 and IL-17. Collectively, Stefin B alleviated the GA in mice by inducing the M2 polarization of macrophages.


Asunto(s)
Artritis Gotosa , Macrófagos , Animales , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/patología , Artritis Gotosa/metabolismo , Artritis Gotosa/inducido químicamente , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Masculino , Lectinas Tipo C/metabolismo , Ratones Endogámicos C57BL , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Lectinas de Unión a Manosa/metabolismo , Modelos Animales de Enfermedad , Receptor de Manosa , Interleucina-10/metabolismo
19.
ACS Appl Bio Mater ; 7(8): 4856-4866, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38231485

RESUMEN

Physiochemical properties of nanoparticles, such as their size and chemical composition, dictate their interaction with professional phagocytes of the innate immune system. Macrophages, in particular, are key regulators of the immune microenvironment that heavily influence particle biodistribution as a result of their uptake. This attribute enables macrophage-targeted delivery, including for phenotypic modulation. Saccharide-based materials, including polyglucose polymers and nanoparticles, are efficient vehicles for macrophage-targeted delivery. Here, we investigate the influence of particle size on cyclodextrin nanoparticle (CDNP) uptake by macrophages and further examine the receptor-mediated interactions that drive macrophage-targeted delivery. We designed and synthesized CDNPs ranging in size from 25 nm to >100 nm in diameter. Increasing particle size was correlated with greater uptake by macrophages in vitro. Both scavenger receptor A1 and mannose receptor were critical mediators of macrophage-targeted delivery, inhibition of which reduced the extent of uptake. Finally, we investigated the cellular bioavailability of drug-loaded CDNPs using a model anti-inflammatory drug, celastrol, which demonstrated that drug bioactivity is improved by CDNP loading relative to free drug alone. This study thus elucidates the interactions between the polyglucose nanoparticles and macrophages, thereby facilitating their application in macrophage-targeted drug delivery that has applications in the context of tissue injury and repair.


Asunto(s)
Ciclodextrinas , Macrófagos , Nanopartículas , Tamaño de la Partícula , Nanopartículas/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ciclodextrinas/química , Animales , Ratones , Receptor de Manosa , Células RAW 264.7 , Lectinas Tipo C/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/metabolismo , Ensayo de Materiales , Receptores de Superficie Celular/metabolismo , Receptores Depuradores de Clase A/metabolismo , Lectinas de Unión a Manosa/metabolismo
20.
Int Immunopharmacol ; 135: 112333, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38805907

RESUMEN

Macrophages are one of the important immune cells, which play important roles in innate and adaptive immune. However, the roles of macrophages in food allergy are not thoroughly understood. To investigate the roles of macrophages during food allergy, we focused on the relationship between macrophage polarization and allergic responses induced by tropomyosin (TM) in the present study. Arg 1 and CD206 expressions in the TM group were significantly higher than those of the PBS group, while iNOS and TNF-α expressions were no obvious difference, moreover, the morphology of macrophages stimulated by TM was similar to that of M2 macrophages. These results indicated macrophages were mainly polarized toward M2 phenotypes in vitro. The antibodies, mMCP-1, histamine and cytokines, revealed that macrophages could participate in food allergy, and macrophage polarization was associated with changes in allergic-related factors. The cytokine levels of M2 phenotypes were significantly higher than those of M1 phenotypes in peripheral blood. The mRNA expressions and protein levels of Arg1 and iNOS in the jejunum and peritoneal cells indicated that M2 phenotypes were the major macrophage in these tissues compared with M1 phenotypes. Hence, macrophage polarization plays an important role in food allergy.


Asunto(s)
Arginasa , Hipersensibilidad a los Alimentos , Macrófagos , Ratones Endogámicos BALB C , Palaemonidae , Tropomiosina , Animales , Tropomiosina/inmunología , Hipersensibilidad a los Alimentos/inmunología , Ratones , Macrófagos/inmunología , Arginasa/metabolismo , Palaemonidae/inmunología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Lectinas de Unión a Manosa/metabolismo , Femenino , Receptor de Manosa , Yeyuno/inmunología , Yeyuno/patología , Células Cultivadas , Histamina/metabolismo , Activación de Macrófagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA