Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848567

RESUMEN

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Asunto(s)
Lentinula , Filogenia , Asia Oriental , Tailandia
2.
Proc Natl Acad Sci U S A ; 120(28): e2301007120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399371

RESUMEN

Wood-decaying fungi are the major decomposers of plant litter. Heavy sequencing efforts on genomes of wood-decaying fungi have recently been made due to the interest in their lignocellulolytic enzymes; however, most parts of their proteomes remain uncharted. We hypothesized that wood-decaying fungi would possess promiscuous enzymes for detoxifying antifungal phytochemicals remaining in the dead plant bodies, which can be useful biocatalysts. We designed a computational mass spectrometry-based untargeted metabolomics pipeline for the phenotyping of biotransformation and applied it to 264 fungal cultures supplemented with antifungal plant phenolics. The analysis identified the occurrence of diverse reactivities by the tested fungal species. Among those, we focused on O-xylosylation of multiple phenolics by one of the species tested, Lentinus brumalis. By integrating the metabolic phenotyping results with publicly available genome sequences and transcriptome analysis, a UDP-glycosyltransferase designated UGT66A1 was identified and validated as an enzyme catalyzing O-xylosylation with broad substrate specificity. We anticipate that our analytical workflow will accelerate the further characterization of fungal enzymes as promising biocatalysts.


Asunto(s)
Glucosiltransferasas , Lentinula , Metabolómica , Metabolómica/métodos , Lentinula/enzimología , Glucosiltransferasas/química , Glucosiltransferasas/aislamiento & purificación , Glucosiltransferasas/metabolismo , Fitoquímicos/metabolismo , Xilosa/metabolismo , Genoma Fúngico , Cromatografía Líquida con Espectrometría de Masas
3.
Photochem Photobiol Sci ; 22(3): 669-686, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36417143

RESUMEN

The mycelial biomass of basidiomycetes is a promising source of compounds and represents an alternative for industrial and biotechnological applications. Fungi use light as information and hold photoresponse mechanisms, in which sensors respond to light wavelengths and regulate various biological processes. Therefore, this study aimed to investigate the effects of blue, green, and red lights on the growth, chemical composition, and antioxidant and antimicrobial activity of Lentinus crinitus mycelial biomass. The chemical composition of the mycelial biomass was determined by chromatographic methods, antioxidant activity was analyzed by in vitro assays, and antimicrobial activity was investigated by the microdilution assay. The highest mycelial biomass yield was observed under blue-light cultivation. Many primordia arose under blue or green light, whereas the stroma was formed under red light. The presence of light altered the primary fungal metabolism, increasing the carbohydrate, tocopherol, fatty acid, and soluble sugar contents, mostly mannitol, and reducing the protein and organic acid concentrations. Cultivation under red light increased the phenol concentration. In contrast, cultivation under blue and green lights decreased phenol concentration. Benzoic and gallic acids were the main phenolic acids in the hydroalcoholic extracts, and the latter acids increased in all cultures under light, especially red light. Mycelial biomass cultivated under red light showed the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The ferric reducing antioxidant power (FRAP) method showed that all light wavelengths increased the antioxidant activity of mycelial biomass, with the highest value under red light. Moreover, the ß-carotene/linoleic acid co-oxidation (BCLA) assay demonstrated that the antioxidant activity was affected by light cultivation. Mycelial biomass grown under all conditions exhibited antibacterial and antifungal activities. Thus, mycelial biomass cultivation of L. crinitus under light conditions may be a promising strategy for controlling the mycelial chemical composition and biomass yield.


Asunto(s)
Antiinfecciosos , Basidiomycota , Lentinula , Antioxidantes/farmacología , Antioxidantes/metabolismo , Biomasa , Lentinula/metabolismo , Basidiomycota/metabolismo , Fenoles/metabolismo
4.
Environ Res ; 216(Pt 3): 114765, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356661

RESUMEN

The focus point of this current work is to evaluate the anticancer and growth inhibitory efficacy of compounds 5α,8α-epidioxy-24ᶓ-methylcholesta-6,22-dien-3ß-ol (LT1), and Ergosta-5,7,22-trien-3ß-ol (LT2) of Lentinus tuberregium (Fr.) on three cell lines such as A673 (Rhabdomyosarcoma), MCF7 (breast cancer), and HCT116 (colorectal carcinoma) by MTT assay. LT1 and LT2 exerted maximal growth inhibition in the order as A673 > HCT116 > MCF7. Comparatively, LT1 was more potent in causing cell growth inhibition than LT2 in the A673 cancer cell line. Based on the MTT assay, A673 cells alone proceeded further as a model to evaluate the anticancer potential of LT1 and LT2 at three different semilogarithmic concentrations (3, 10, 30 µM). The cells exposed with compounds at 24 and 48 h were analyzed by flow cytometry. Exposure of LT1 at 3 and 10 µM concentrations for 24 h caused a G2-M arrest. At 10 µM concentration, cells also accumulated in the G0-G1 phase, indicating a G1 block. These effects were only transient as prolonged exposure (48 h) of LT1 treatment brought back the cell population to normalcy. Both the compounds only at 30 µM concentration have the potential to induce a hypodiploid peak (sub G0), indicating an induction of apoptosis which was explicit by nuclear condensation and fragmentation of nuclei in cells. The dose-dependent and compound-specific apoptotic induction was further confirmed by caspase activity higher in LT1 than LT2. The results highlight the significant growth inhibitory activity and anticancer potential of LT1 and LT2 which are recommended for further in-depth analysis.


Asunto(s)
Agaricales , Lentinula , Trientina , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular
5.
Mol Phylogenet Evol ; 173: 107494, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35490968

RESUMEN

Lentinula (Basidiomycota, Agaricales) includes the most widely cultivated mushroom in the world, Lentinula edodes, also known as shiitake (Japanese) or xiang-gu (Chinese). At present, nine species are recognized in the genus, based on morphology, mating criteria, and geographic distribution. However, analyses of internal transcribed spacers (ITS) of ribosomal RNA genes have suggested that there are cryptic lineages. We analyzed a global-scale phylogenetic dataset from 325 Lentinula individuals from 24 countries in Asia-Australasia and the Americas plus Madagascar, with 325 sequences of ITS, 80 LSU sequences, and 111 sequences of translation elongation factor (tef1-α) genes. We recovered 15 independent lineages (Groups 1-15) that may correspond to species. Lineages in Asia-Australasia (Groups 1-5) and the Americas plus Madagascar (Groups 6-15) formed sister clades. Four lineages are represented only by sequences from single individuals and require further molecular sampling, including L. aff. raphanica (Group 7), L. ixodes (Group 8), L. boryana (Group 12), and L. aff. aciculospora (Group 14). Groups 1 and 5 are here referred to L. edodes and L. aff. edodes, respectively. However, these groups most likely represent the same species and are only recognized as (unsupported) monophyletic lineages by maximum likelihood analyses of ITS alone. Other putative species resolved here include L. lateritia (Group 2), L. novae-zelandieae (Group 3), L. aff. lateritia (Group 4), L. raphanica (Group 6), L. aff. detonsa (Group 9), L. detonsa (Group 10), L. guzmanii sp. nov. (Group 11), L. aciculospora (Group 13), and L. madagasikarensis (Group 15). Groups 9-12 represent the "L. boryana complex". Molecular clock and historical biogeographic analyses suggest that the most recent common ancestor (MRCA) of Lentinula can be placed in the middle Oligocene, ca. 30 million years ago (Ma), and had a likely presence in neotropical America. The MRCA of Lentinula in the Americas and Madagascar lived ca. 22 Ma in the Neotropics and the MRCA of Lentinula in Asia-Australasia lived ca. 6 Ma in Oceania. Given the current knowledge about plate tectonics and paleoclimatic models of the last 30 Myr, our phylogenetic hypothesis suggests that the extant distribution of Lentinula is likely to have arisen, in large part, due to long-distance dispersal. Lentinula collections include at least four dubious taxa that need further taxonomic studies: L. reticeps from the USA (Ohio); L. guarapiensis from Paraguay; Lentinus puiggarii from Brazil (São Paulo); and "L. platinedodes" from Vietnam. Approximately ten of the fifteen Groups are reported on Fagaceae, which appears to be the ancestral substrate of Lentinula.


Asunto(s)
Basidiomycota , Lentinula , Hongos Shiitake , Brasil , Humanos , Filogenia , Hongos Shiitake/genética
6.
World J Microbiol Biotechnol ; 38(5): 74, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35298734

RESUMEN

Lentinus crinitus basidiocarps are an alternative to antimicrobials, but the stipe (24% basidiocarp) is discarded even with potential antimicrobial activity. This study evaluated the antimicrobial activity of L. crinitus basidiocarp pileus and stipe extracts against foodborne pathogens and food spoilage microorganisms. Basidiocarps of L. crinitus were grown in sugarcane bagasse and rice husks and the pileus and stipe methanolic extract was analyzed by broth microdilution method for antimicrobial activity against eight bacteria and eight fungi. The minimum bactericidal concentration values for pileus and stipe ranged from 0.40 to 0.50 mg mL- 1, for streptomycin from 0.10 to 0.50 mg mL- 1, and for ampicillin from 0.40 to 1.20 mg mL- 1. The minimum fungicidal concentration values for pileus and stipe ranged from 0.06 to 0.60 mg mL- 1, for bifonazole from 0.20 to 0.25 mg mL- 1, and for ketoconazole from 0.30 to 3.50 mg mL- 1. Extracts had bacteriostatic, bactericidal, fungistatic and fungicidal activity against all microorganisms, but with greater efficiency and specificity for some microorganisms. Both pileus and stipe are promising and sustainable alternatives for use in food, agricultural, and pharmaceutical industries.


Asunto(s)
Antiinfecciosos , Saccharum , Antiinfecciosos/química , Celulosa , Cuerpos Fructíferos de los Hongos , Lentinula , Pruebas de Sensibilidad Microbiana
7.
Biochemistry ; 60(47): 3633-3643, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34738811

RESUMEN

The copper-dependent lytic polysaccharide monooxygenases (LPMOs) are receiving attention because of their role in the degradation of recalcitrant biomass and their intriguing catalytic properties. The fundamentals of LPMO catalysis remain somewhat enigmatic as the LPMO reaction is affected by a multitude of LPMO- and co-substrate-mediated (side) reactions that result in a complex reaction network. We have performed kinetic studies with two LPMOs that are active on soluble substrates, NcAA9C and LsAA9A, using various reductants typically employed for LPMO activation. Studies with NcAA9C under "monooxygenase" conditions showed that the impact of the reductant on catalytic activity is correlated with the hydrogen peroxide-generating ability of the LPMO-reductant combination, supporting the idea that a peroxygenase reaction is taking place. Indeed, the apparent monooxygenase reaction could be inhibited by a competing H2O2-consuming enzyme. Interestingly, these fungal AA9-type LPMOs were found to have higher oxidase activity than bacterial AA10-type LPMOs. Kinetic analysis of the peroxygenase activity of NcAA9C on cellopentaose revealed a fast stoichiometric conversion of high amounts of H2O2 to oxidized carbohydrate products. A kcat value of 124 ± 27 s-1 at 4 °C is 20 times higher than a previously described kcat for peroxygenase activity on an insoluble substrate (at 25 °C) and some 4 orders of magnitude higher than typical "monooxygenase" rates. Similar studies with LsAA9A revealed differences between the two enzymes but confirmed fast and specific peroxygenase activity. These results show that the catalytic site arrangement of LPMOs provides a unique scaffold for highly efficient copper redox catalysis.


Asunto(s)
Biodegradación Ambiental , Proteínas Fúngicas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Biomasa , Dominio Catalítico , Cobre/química , Cobre/metabolismo , Pruebas de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Peróxido de Hidrógeno/metabolismo , Cinética , Lentinula/enzimología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/aislamiento & purificación , Neurospora crassa/enzimología , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
8.
New Phytol ; 232(3): 1337-1349, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34389999

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes of industrial and biological importance. In particular, LPMOs play important roles in fungal lifestyle. No inhibitors of LPMOs have yet been reported. In this study, a diverse library of 100 plant extracts was screened for LPMO activity-modulating effects. By employing protein crystallography and LC-MS, we successfully identified a natural LPMO inhibitor. Extract screening revealed a significant LPMO inhibition by methanolic extract of Cinnamomum cassia (cinnamon), which inhibited LsAA9A LPMO from Lentinus similis in a concentration-dependent manner. With a notable exception, other microbial LPMOs from families AA9 and AA10 were also inhibited by this cinnamon extract. The polyphenol cinnamtannin B1 was identified as the inhibitory component by crystallography. Cinnamtannin B1 was bound to the surface of LsAA9A at two distinct binding sites: one close to the active site and another at a pocket on the opposite side of the protein. Independent characterization of cinnamon extract by LC-MS and subsequent activity measurements confirmed that the compound inhibiting LsAA9A was cinnamtannin B1. The results of this study show that specific natural LPMO inhibitors of plant origin exist in nature, providing the opportunity for future exploitation of such compounds within various biotechnological contexts.


Asunto(s)
Oxigenasas de Función Mixta , Extractos Vegetales , Proteínas Fúngicas , Lentinula , Extractos Vegetales/farmacología , Polisacáridos
9.
Mol Biol Rep ; 48(1): 41-55, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33454908

RESUMEN

Mosquito-transmitted diseases like zika, dengue, chikungunya, and yellow fever are known to affect human health worldwide. Numerous synthetic insecticides have been used as vector control for these diseases, but there is the challenge of environmental toxicity and vector resistance. This study investigated the medicinal and insecticidal potential of Lentinus squarrosulus against Aedes aegypti. The fruiting bodies were identified morphologically as well as using internal transcribed spacer (ITS) sequences for its molecular characterization. Genomic deoxyribonucleic acid (DNA) yield was confirmed with NanoDrop Spectrophotometer ND-1000 and amplified with ITSl and ITS4 primers. The amplicons were sequenced and the National Center for Biotechnology Information (NCBI) database identified the nucleotides. Its ethanol extract was subjected to phytochemical screening and gas chromatography mass spectrometry (GC-MS) analysis and tested against the pupa and fourth instar larva of Aedes aegypti with percentage mortality monitored. The Macrofungus was identified morphologically and confirmed with molecular characterization as Lentinus squarrosulus (LS). The gene sequence was deposited in GenBank (Accession number MK629662.1). GC-MS analysis showed that its ethanol extract has 25 bioactive compounds with 9,12-Octadecadienoic acid, ethyl ester having the highest percentage of 43.32% as well as methyl-2-oxo-1-pyrrolidine acetate and 17-octadecynoic acid having the lowest percentage (0.09%). The macrofungus contained varied concentrations of phytochemicals including phenols (159 mg/g GAE), tannins (1.6 mg/g TAE), and flavonoids (31.4 mg/g QE). The ethanol extract had significant potent effects on Aedes aegypti larva and pupa which could be due to the occurrence and abundance of 9,12-octadecadienoic acid in LS. The LC50 of the extract for larvicidal and pupicidal activities were 2.95 mg/mL and 3.55 mg/mL, respectively, while its LC90 were 6.31 mg/mL and 5.75 mg/mL respectively. Lentinus squarrosulus had insecticidal effects against the Aedes aegypti larva and pupa and possessed great potential as a source of alternative medicine and eco-friendly insecticides.


Asunto(s)
Aedes/efectos de los fármacos , Lentinula/química , Extractos Vegetales/farmacología , Virosis/prevención & control , Aedes/patogenicidad , Animales , Etanol/química , Cromatografía de Gases y Espectrometría de Masas , Humanos , Insecticidas/química , Insecticidas/farmacología , Larva/efectos de los fármacos , Larva/patogenicidad , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/patogenicidad , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Virosis/epidemiología
10.
Appl Microbiol Biotechnol ; 105(18): 6779-6792, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34459954

RESUMEN

Bioprospecting for innovative basidiomycete cytochrome P450 enzymes (P450s) is highly desirable due to the fungi's enormous enzymatic repertoire and outstanding ability to degrade lignin and detoxify various xenobiotics. While fungal metagenomics is progressing rapidly, the biocatalytic potential of the majority of these annotated P450 sequences usually remains concealed, although functional profiling identified several P450 families with versatile substrate scopes towards various natural products. Functional knowledge about the CYP5035 family, for example, is largely insufficient. In this study, the families of the putative P450 sequences of the four white-rot fungi Polyporus arcularius, Polyporus brumalis, Polyporus squamosus and Lentinus tigrinus were assigned, and the CYPomes revealed an unusual enrichment of CYP5035, CYP5136 and CYP5150. By computational analysis of the phylogeny of the former two P450 families, the evolution of their enrichment could be traced back to the Ganoderma macrofungus, indicating their evolutionary benefit. In order to address the knowledge gap on CYP5035 functionality, a representative subgroup of this P450 family of P. arcularius was expressed and screened against a test set of substrates. Thereby, the multifunctional enzyme CYP5035S7 converting several plant natural product classes was discovered. Aligning CYP5035S7 to 102,000 putative P450 sequences of 36 fungal species from Joint Genome Institute-provided genomes located hundreds of further CYP5035 family members, which subfamilies were classified if possible. Exemplified by these specific enzyme analyses, this study gives valuable hints for future bioprospecting of such xenobiotic-detoxifying P450s and for the identification of their biocatalytic potential. KEY POINTS: • The P450 families CYP5035 and CYP5136 are unusually enriched in P. arcularius. • Functional screening shows CYP5035 assisting in the fungal detoxification mechanism. • Some Polyporales encompass an unusually large repertoire of detoxification P450s.


Asunto(s)
Basidiomycota , Polyporales , Basidiomycota/genética , Sistema Enzimático del Citocromo P-450/genética , Evolución Molecular , Genoma Fúngico , Lentinula , Filogenia , Polyporales/genética , Polyporus
11.
An Acad Bras Cienc ; 93(1): e20191153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33787685

RESUMEN

Bisphenol A is an endocrine interfering compound, produced and used on a large scale worldwide. Chemical and biologic methods can be used to remove it from the environment. Biological methods are considered less costly, safer and, according to green chemistry definitions, an environmentally correct method. Considering the use of a crude enzyme broth, without any downstream process, the costs could be mostly reduced. Thus, the removal of bisphenol A by Pleurotus sajor-caju crude enzyme broth was investigated. Initially, the agro-industrial wastes were characterized and, the composition of the culture medium and the bioreactor culture conditions were defined. The enzyme produced in the highest concentration was characterized and the crude broth used in the bisphenol A removal assays. The OXI45 culture medium presented the highest laccase activity (1,850.7 U L-1, 350 rpm). Greater laccase stability was observed at 20 - 40 oC and pHs 5 - 7. Vanillin and ferulic acid (considered mediator compounds) were identified in the crude broth, probably helping on the obtention of the high value of removal effectiveness (0.052 mg U-1 h-1). The results indicate the potential use of the Pleurotus sajor-caju crude enzyme broth to obtain an enzymatic formulation for application in the environmental area.


Asunto(s)
Pleurotus , Compuestos de Bencidrilo , Lacasa , Lentinula , Fenoles
12.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502353

RESUMEN

Since laccase acts specifically in lignin, the major contributor to biomass recalcitrance, this biocatalyst represents an important alternative to the pretreatment of lignocellulosic biomass. Therefore, this study investigates the laccase pretreatment and climate change effects on the hydrolytic performance of Panicum maximum. Through a Trop-T-FACE system, P. maximum grew under current (Control (C)) and future climate conditions: elevated temperature (2 °C more than the ambient canopy temperature) combined with elevated atmospheric CO2 concentration(600 µmol mol-1), name as eT+eC. Pretreatment using a laccase-rich crude extract from Lentinus sajor caju was optimized through statistical strategies, resulting in an increase in the sugar yield of P. maximum biomass (up to 57%) comparing to non-treated biomass and enabling hydrolysis at higher solid loading, achieving up to 26 g L-1. These increments are related to lignin removal (up to 46%) and lignin hydrophilization catalyzed by laccase. Results from SEM, CLSM, FTIR, and GC-MS supported the laccase-catalyzed lignin removal. Moreover, laccase mitigates climate effects, and no significant differences in hydrolytic potential were found between C and eT+eC groups. This study shows that crude laccase pretreatment is a potential and sustainable method for biorefinery solutions and helped establish P. maximum as a promising energy crop.


Asunto(s)
Lacasa/metabolismo , Lignina/química , Panicum/crecimiento & desarrollo , Biomasa , Carbohidratos , Cambio Climático , Hidrólisis/efectos de los fármacos , Lacasa/química , Lentinula , Lignina/metabolismo , Azúcares
13.
World J Microbiol Biotechnol ; 37(4): 69, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33748875

RESUMEN

Two edible mushrooms Calocybe indica and Pleurotus sajor-caju were chosen as parent strains in this study to approach the concept of hybridization through the protoplast fusion technique. Protoplast fusion in presence of polyethylene glycol (PEG) was conducted between the parent strains and by further double selection screening method, six somatic hybrid lines were developed. Those fruit bodies of the hybrid lines showed phenotypic resemblance with Pleurotus sajor-caju when grown on paddy straw under favorable conditions. The hybridity of the newly developed somatic hybrid strains was established by barrage reaction, morphological traits, fruitbody parameter and, inter single sequence repeat (ISSR) profiling. One-way analysis of variance (ANOVA) was used for the analysis of phenotypic data of hybrid lines and parents. Five ISSR primers were used to generate 51 amplified DNA fragments ranged between 250 and 3000 bp in size in six hybrids and two parents with 90.19% polymorphism. Some of the hybrids contain some non-parental bands which indicate that recombination might happen in the hybrid genome hence confirming the hybridity of newly developed strains. The dendrogram was created using the Average Linkage (Between Groups) method based on ISSR profiling and genetic distance between parent-hybrids and hybrid-hybrid was analyzed by Jaccard's proximity matrix. A definite improvement in nutritional properties and biological activity was observed in the study. Due to ease in their cultivation, it can play a significant role in the rural economic development.


Asunto(s)
Agaricales/química , Agaricales/genética , Hibridación Genética , Pleurotus/genética , Protoplastos , Agaricales/crecimiento & desarrollo , Biomasa , Análisis de los Alimentos , Lentinula/genética , Fenotipo , Pleurotus/química , Pleurotus/crecimiento & desarrollo
14.
Biochemistry ; 59(36): 3347-3358, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32818374

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that cleave polysaccharide substrates oxidatively. First discovered because of their action on recalcitrant crystalline substrates (chitin and cellulose), a number of LPMOs are now reported to act on soluble substrates, including oligosaccharides. However, crystallographic complexes with oligosaccharides have been reported for only a single LPMO so far, an enzyme from the basidiomycete fungus Lentinus similis (LsAA9_A). Here we present a more detailed comparative study of LsAA9_A and an LPMO from the ascomycete fungus Collariella virescens (CvAA9_A) with which it shares 41.5% sequence identity. LsAA9_A is considerably more thermostable than CvAA9_A, and the structural basis for the difference has been investigated. We have compared the patterns of oligosaccharide cleavage and the patterns of binding in several new crystal structures explaining the basis for the product preferences of the two enzymes. Obtaining structural information about complexes of LPMOs with carbohydrates has proven to be very difficult in general judging from the structures reported in the literature thus far, and this can be attributed only partly to the low affinity for small substrates. We have thus evaluated the use of differential scanning fluorimetry as a guide to obtaining complex structures. Furthermore, an analysis of crystal packing of LPMOs and glycoside hydrolases corroborates the hypothesis that active site occlusion is a very significant problem for LPMO-substrate interaction analysis by crystallography, due to their relatively flat and extended substrate binding sites.


Asunto(s)
Proteínas Fúngicas/metabolismo , Lentinula/enzimología , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Oligosacáridos/metabolismo , Sordariales/enzimología , Temperatura , Sitios de Unión , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Estabilidad de Enzimas , Proteínas Fúngicas/química , Oxidación-Reducción , Conformación Proteica , Especificidad por Sustrato
15.
Analyst ; 145(6): 2168-2175, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32104793

RESUMEN

With their multiple biological activities and health benefit effects, polysaccharides from medicine and food dual purpose plants (MFDPPPs) have been extensively applied in many fields, including in medical treatments, stock farming, and cosmetics. However, to date, quality issues of MFDPPPs and technologies for the analysis of polysaccharides have posed challenges to chemists. Reported herein is a rapid and high-throughput quality control method for analyzing MFDPPPs, based on matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). For the analysis of illegally added and doped substances, ferroferric oxide nanoparticles were employed as the MALDI matrix to avoid small molecule interference. Qualitatively, high sensitivity was obtained for both illegal drugs and glucose. Quantitatively, the best linear response (R2 > 0.99) was attained in the concentration range from 0.005 to 1 mg mL-1 for glucose. For the analysis of polysaccharides, 2,5-dihydroxybenzoic acid/N-methylaniline was employed as the MALDI matrix to increase the detection sensitivity and mass range coverage. Furthermore, the established method was successfully applied to the analysis of supplements from Astragalus polysaccharides and Lentinan real samples, showing its potential in quality control for MFDPPPs.


Asunto(s)
Polisacáridos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Compuestos de Anilina/química , Fabaceae/química , Contaminación de Alimentos/análisis , Gentisatos/química , Glucosa/análisis , Lentinula/química , Límite de Detección , Nanopartículas de Magnetita/química , Control de Calidad
16.
Biotechnol Lett ; 42(10): 1975-1984, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32458293

RESUMEN

OBJECTIVES: The synergistic effects between cellulases and lytic polysaccharide monooxygenases (LPMOs) were investigated systematically in terms of their degree of synergy (DS) on amorphous and crystalline cellulose. Synergy curves were obtained for enzyme pairs containing a cellulase from Trichoderma reesei (Cel6A and Cel7A) and three LPMOs from Thermoascus aurantiacus (TaAA9A), Lentinus similis (LsAA9A) and Thielavia terrestris (TtAA9E). RESULTS: The synergistic experiments showed that the three LPMOs significantly improved the hydrolytic efficiency of Cel6A, on both cellulosic substrates; a more pronounced effect being seen for TtAA9E on amorphous cellulose at low cellulase:LPMO ratios. In contrast, the highly processive, reducing-end acting Cel7A synergised with the C1-C4 oxidising LPMOs, TaAA9A and LsAA9A, but was inhibited by the presence of C1-oxidizing TtAA9E. CONCLUSIONS: The degree of synergy exhibited by the cellulase-LPMO mixtures was enzyme- and substrate-specific. The observed Cel7A inhibition, rather than synergy, by the C1-oxidizing LPMO, TtAA9E, warrants further investigations.


Asunto(s)
Celulasas , Celulosa , Proteínas Fúngicas , Oxigenasas de Función Mixta , Ascomicetos/enzimología , Celulasas/química , Celulasas/metabolismo , Celulosa/análisis , Celulosa/química , Celulosa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hidrólisis , Lentinula/enzimología , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo
17.
Molecules ; 25(13)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645899

RESUMEN

Herbal medicines are widely used worldwide and much appreciated because of their fewer side effects and the ability to fight diseases at the root cause. Active 'phyto' ingredients require a scientific approach and a mechanism to distribute components at the target site for better therapeutic results. Nanotechnology, on the other hand, has created new hope for cancer treatment but is still far from being proven in clinical settings. This article combines a unique approach to synthesis with the use of Pleurotus sajor-caju, followed by microwave irritation of silver and gold nanoparticles that ensures the capping of the active phyto ingredient and further enhances the effects of nanomedicine to fight colon cancer, thus opening a new era of what we call herbonanoceutics. The article also compares the characteristics and properties of silver (Au) and gold (Ag) nanoparticles synthesized by an in house developed novel microwave-assisted rapid green synthesis method. The as-prepared Ag NPs and Au NPs were compared using ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Our comparative study revealed that both assemblies display face-centred cubic structures (FCCs) and are nanocrystalline in nature. The advantage of the approach was that the sizes of gold and silver were identical in range with a similar distribution pattern. This has helped us to study the activity against colon cancer cell line (HCT-116) without incoherence since size plays a key role in the application. More specifically, morphological changes, cell viability, the production of reactive oxygen species (ROS) and the fragmentation of DNA have been further reported to assess better the results obtained with the two metals. Our results suggest that the newly adopted synthesis method may ensure the dual benefits from phyto ingredients which further enhances the effectiveness of advanced nanomedicine.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Oro , Lentinula/química , Nanopartículas del Metal , Plata , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Oro/química , Oro/farmacología , Células HCT116 , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Microondas , Plata/química , Plata/farmacología
18.
BMC Genomics ; 20(1): 121, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30736734

RESUMEN

BACKGROUND: Lentinula edodes is one of the most popular edible mushroom species in the world and contains useful medicinal components, such as lentinan. The light-induced formation of brown film on the vegetative mycelial tissues of L. edodes is an important process for ensuring the quantity and quality of this edible mushroom. To understand the molecular mechanisms underlying this critical developmental process in L. edodes, we characterized the morphological phenotypic changes in a strain, Chamaram, associated with abnormal brown film formation and compared its genome-wide transcriptional features. RESULTS: In the present study, we performed genome-wide transcriptome analyses of different vegetative mycelium growth phenotypes, namely, early white, normal brown, and defective dark yellow partial brown films phenotypes which were exposed to different light conditions. The analysis revealed the identification of clusters of genes specific to the light-induced brown film phenotypes. These genes were significantly associated with light sensing via photoreceptors such as FMN- and FAD-bindings, signal transduction by kinases and GPCRs, melanogenesis via activation of tyrosinases, and cell wall degradation by glucanases, chitinases, and laccases, which suggests these processes are involved in the formation of mycelial browning in L. edodes. Interestingly, hydrophobin genes such as SC1 and SC3 exhibited divergent expression levels in the normal and abnormal brown mycelial films, indicating the ability of these genes to act in fruiting body initiation and formation of dikaryotic mycelia. Furthermore, we identified the up-regulation of glycoside hydrolase domain-containing genes in the normal brown film but not in the abnormal film phenotype, suggesting that cell wall degradation in the normal brown film phenotype is crucial in the developmental processes related to the initiation and formation of fruiting bodies. CONCLUSIONS: This study systematically analysed the expression patterns of light-induced browning-related genes in L. edodes. Our findings provide information for further investigations of browning formation mechanisms in L. edodes and a foundation for future L. edodes breeding.


Asunto(s)
Perfilación de la Expresión Génica , Lentinula/genética , Lentinula/metabolismo , Micelio/genética , Micelio/metabolismo , Pigmentación/genética , Genes Fúngicos/genética , Lentinula/efectos de la radiación , Luz , Micelio/efectos de la radiación , Fenotipo , Pigmentación/efectos de la radiación
19.
Lett Appl Microbiol ; 68(2): 182-187, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30516831

RESUMEN

The application of solid-state fermentation offers an alternative to conventional, submerged approaches for a variety of bioconversion processes, including animal feeds, biofuels and fungal bioproducts. Optimizing solid-state fermentation under low moisture conditions could significantly impact the proportion of dry biomass that could be processed and improve the commercial viability of this approach, because of reduced input costs and higher yields of final products. Pleurotus erygnii that appeared to show tolerance to low moisture conditions was grown on saturated and desaturated wheat straw. Pleurotus erygnii showed insignificant fibre degradation although showed significantly lower biomass decomposition on desaturated wheat straw. Fibre decomposition by the fungus on wheat straw containing wheat bran showed marginally higher decomposition when saturated although there was no difference in biomass decomposition. The levels of delignification achieved were similar under different saturation conditions. It would appear that the fungus effectively decomposed fibre under low moisture conditions often resulting in lower biomass losses. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, a white rot fungus, Pleurotus erygnii, effectively decomposed fibre under low moisture conditions when grown on wheat straw at similar levels under higher moisture conditions. However, the addition of wheat bran to wheat straw created a heterogeneous system that appeared to allow P. erygnii to thrive under much lower moisture conditions although lower levels of fibre decomposition was obtained. These factors could influence the preparation of solid-state fermentation.


Asunto(s)
Fibras de la Dieta/metabolismo , Lignina/metabolismo , Pleurotus/metabolismo , Triticum/metabolismo , Triticum/microbiología , Alimentación Animal/microbiología , Animales , Biomasa , Metabolismo de los Hidratos de Carbono , Carbohidratos , Coriolaceae/metabolismo , Fermentación , Ganoderma/metabolismo , Lentinula/metabolismo
20.
J Environ Manage ; 244: 235-246, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31125874

RESUMEN

Laccase mediated bio-delignification has shown promising results for the removal of lignin from bio-wastes and for providing a sustainable future for using of lignocellulosic materials in different industries. This study reports an extracellular laccase from Lentinus tigrinus with delignification capability. The production of laccase was enhanced through a solid-state fermentation on the pistachio shell bio-waste to 172.0 U mg-1 (8.2-fold) by one-factor-at-a-time optimizing of fermentation conditions. Laccase was purified using a new synthetic affinity resin yielding a specific activity of 543.6 U mg-1 and a 23.9-fold purification. The purified laccase was then immobilized covalently on the large pore magnetic SBA-15. Compared to free enzyme, immobilized enzyme maintained more stable at pH 2.0-11.0 and 25-55 °C, and against organic solvents, surfactants, metal ions, and inhibitors. The activity of both forms of the enzyme was increased with Cu2+, Ca+2, cetyltrimethylammonium bromide, and ethyl acetate. A 0.72 V redox potential caused enzyme specificity to various substrates. 80% of lignin content of the bio-waste was removed by 50 U mL-1 of immobilized enzyme after 8 h fermentation and delignification efficiency was greatly increased by applying higher enzyme dosages, surfactants, and organic solvents. In addition, residual activity was more than 50% after 20 cycles of delignification. The results of delignification were confirmed by GC-MS, SEM, and composition analysis of pistachio shells. This study illustrated the notable promise of the enzyme for biotechnological and environmental applications.


Asunto(s)
Lentinula , Pistacia , Enzimas Inmovilizadas , Lacasa , Lignina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA