Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32621799

RESUMEN

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Asunto(s)
Cicatriz/metabolismo , Colágeno Tipo V/deficiencia , Colágeno Tipo V/metabolismo , Lesiones Cardíacas/metabolismo , Contracción Miocárdica/genética , Miofibroblastos/metabolismo , Animales , Cicatriz/genética , Cicatriz/fisiopatología , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Fibrosis/genética , Fibrosis/metabolismo , Regulación de la Expresión Génica/genética , Integrinas/antagonistas & inhibidores , Integrinas/genética , Integrinas/metabolismo , Isoproterenol/farmacología , Masculino , Mecanotransducción Celular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Fuerza Atómica/instrumentación , Microscopía Electrónica de Transmisión , Contracción Miocárdica/efectos de los fármacos , Miofibroblastos/citología , Miofibroblastos/patología , Miofibroblastos/ultraestructura , Análisis de Componente Principal , Proteómica , RNA-Seq , Análisis de la Célula Individual
2.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-37886839

RESUMEN

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Asunto(s)
Lesiones Cardíacas , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Animales , Humanos , Ratones , Animales Recién Nacidos , Proliferación Celular , Corazón , Lesiones Cardíacas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mamíferos , Miocitos Cardíacos/metabolismo , Regeneración , Versicanos/genética , Versicanos/metabolismo
3.
J Mol Cell Cardiol ; 192: 79-93, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761990

RESUMEN

Ferroptosis is an iron-dependent programmed cell death form resulting from lipid peroxidation damage, it plays a key role in organ damage and tumor development from various causes. Sepsis leads to severe host response after infection with high mortality. The long non-coding RNAs (LncRNAs) are involved in different pathophysiological mechanisms of multiple diseases. Here, we used cecal ligation and puncture (CLP) operation to mimic sepsis induced myocardial injury (SIMI) in mouse model, and LncRNAs and mRNAs were profiled by Arraystar mouse LncRNA Array V3.0. Based on the microarray results, 552 LncRNAs and 520 mRNAs were differentially expressed in the sham and CLP groups, among them, LncRNA Lcn2-204 was the highest differentially expressed up-regulated LncRNA. Iron metabolism disorder was involved in SIMI by bioinformatics analysis, meanwhile, myocardial iron content and lipocalin-2 (Lcn2) protein expressions were increased. The CNC network comprised 137 positive interactions and 138 negative interactions. Bioinformatics analysis showed several iron-related terms were enriched and six genes (Scara5, Tfrc, Lcn2, Cp, Clic5, Ank1) were closely associated with iron metabolism. Then, we constructed knockdown LncRNA Lcn2-204 targeting myocardium and found that it ameliorated cardiac injury in mouse sepsis model through modulating iron overload and ferroptosis. In addition, we found that LncRNA Lcn2-204 was involved in the regulation of Lcn2 expression in septic myocardial injury. Based on these findings, we conclude that iron overload and ferroptosis are the key mechanisms leading to myocardial injury in sepsis, knockdown of LncRNA Lcn2-204 plays the cardioprotective effect through inhibition of iron overload, ferroptosis and Lcn2 expression. It may provide a novel therapeutic approach to ameliorate sepsis-induced myocardial injury.


Asunto(s)
Ferroptosis , Técnicas de Silenciamiento del Gen , Sobrecarga de Hierro , Lipocalina 2 , Miocardio , ARN Largo no Codificante , Sepsis , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ferroptosis/genética , Sepsis/complicaciones , Sepsis/genética , Sepsis/metabolismo , Ratones , Lipocalina 2/metabolismo , Lipocalina 2/genética , Masculino , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/complicaciones , Miocardio/metabolismo , Miocardio/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hierro/metabolismo , Lesiones Cardíacas/etiología , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/genética , Perfilación de la Expresión Génica
4.
Biochem Biophys Res Commun ; 690: 149244, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029488

RESUMEN

BACKGROUND: CRC is a common but serious complication or sequela of tumor treatment, and new coping strategies are urgently needed. SV is a classic clinical cardiovascular protective drug, which has been widely used in the treatment of heart failure, hypertension and other diseases. It has good therapeutic effect in other cardiovascular diseases such as diabetes cardiomyopathy, ischemic cardiomyopathy and vascular disease, but it has not been proved by research that SV can prevent and treat CRC. METHOD: In this study, DOX was used to induce a rat CRC model and evaluate the therapeutic effect of SV on it. Subsequently, R software was applied to analyze the control group, SV group, and DOX group in databases GSE207283 and GSE22369, and to screen for common differentially expressed genes. Use the DAVID website for enrichment analysis and visualization. Use STRING website to analyze and visualize protein interaction networks of key genes. Finally, experimental verification was conducted on key genes. RESULT: Our research results show that SV has a protective effect on DOX induced myocardial injury by alleviating Weight loss, increasing Ejection fraction, and reducing the level of biomarkers of myocardial injury. Meanwhile, SV can effectively alleviate the above abnormalities. Bioinformatics and KEGG pathway analysis showed significant enrichment of metabolic and MAPK signaling pathways, suggesting that they may be the main regulatory pathway for SV treatment of CRC. Subsequent studies have also confirmed that SV can inhibit DOX induced myocardial injury through the MAPK signaling pathway, and alleviate DOX induced oxidative stress and inflammatory states. CONCLUSION: Our research indicates that SV is a potential drug for treating CRC and preliminarily elucidates its molecular mechanism of regulating the MAPK pathway to improve oxidative stress and inflammation.


Asunto(s)
Cardiomiopatías , Lesiones Cardíacas , Ratas , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Doxorrubicina/farmacología , Apoptosis , Estrés Oxidativo , Transducción de Señal , Lesiones Cardíacas/metabolismo , Valsartán/uso terapéutico , Valsartán/metabolismo , Valsartán/farmacología , Cardiomiopatías/patología , Inflamación/patología , Biología Computacional , Miocitos Cardíacos/metabolismo
5.
Circ Res ; 131(10): e135-e150, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36252111

RESUMEN

BACKGROUND: Mesenchymal stem cell (MSC)-derived exosomes are well recognized immunomodulating agents for cardiac repair, while the detailed mechanisms remain elusive. The Pericardial drainage pathway provides the heart with immunosurveillance and establishes a simplified model for studying the mechanisms underlying the immunomodulating effects of therapeutic exosomes. METHODS: Myocardial infarction (MI) models with and without pericardiectomy (corresponding to Tomy MI and NonTomy MI) were established to study the functions of pericardial drainage pathway in immune activation of cardiac-draining mediastinal lymph node (MLN). Using the NonTomy MI model, MSC exosomes or vehicle PBS was intrapericardially injected for MI treatment. Via cell sorting and RNA-seq (RNA-sequencing) analysis, the differentially expressed genes were acquired for integrated pathway analysis to identify responsible mechanisms. Further, through functional knockdown/inhibition studies, application of cytokines and neutralizing antibodies, western blot, flow cytometry, and cytokine array, the molecular mechanisms were studied. In addition, the therapeutic efficacy of intrapericardially injected exosomes for MI treatment was evaluated through functional and histological analyses. RESULTS: We show that the pericardial draining pathway promoted immune activation in the MLN following MI. Intrapericardially injected exosomes accumulated in the MLN and induced regulatory T cell differentiation to promote cardiac repair. Mechanistically, uptake of exosomes by major histocompatibility complex (MHC)-II+ antigen-presenting cells (APCs) induced Foxo3 activation via the protein phosphatase (PP)-2A/p-Akt/forkhead box O3 (Foxo3) pathway. Foxo3 dominated APC cytokines (IL-10, IL-33, and IL-34) expression and built up a regulatory T cell (Treg)-inducing niche in the MLN. The differentiation of Tregs as well as their cardiac deployment were elevated, which contributed to cardiac inflammation resolution and cardiac repair. CONCLUSIONS: This study reveals a novel mechanism underlying the immunomodulation effects of MSC exosomes and provides a promising candidate (PP2A/p-Akt/Foxo3 signaling pathway) with a favorable delivery route (intrapericardial injection) for cardiac repair.


Asunto(s)
Exosomas , Lesiones Cardíacas , Células Madre Mesenquimatosas , Infarto del Miocardio , Humanos , Exosomas/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Lesiones Cardíacas/metabolismo
6.
Dig Dis Sci ; 69(7): 2477-2487, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38753240

RESUMEN

BACKGROUND: Severe acute pancreatitis (SAP) is a potential fatal gastrointestinal disease that is usually complicated by myocardial injury and dysfunction. Due to the lack of understanding of the mechanism of SAP-associated cardiac injury (SACI), there is still no complete treatment. AIMS: To explore the alleviative effect and anti-ferroptosis mechanism against SACI of glycyrrhizin (GL), an inhibitor of oxidative stress. METHODS: The SAP model was established by perfusing 5% sodium taurocholate into biliopancreatic duct in rats. H&E staining and serum assays were used to assess the injury changes of pancreas and heart. Echocardiography was used to evaluate the cardiac function. Transmission electron microscopy (TEM) and oxidative stress assays were used to investigate the ferroptosis-related morphological and biochemical changes. Western blot and immunofluorescence were performed to analyzed the expression of ferroptosis-related proteins. RESULTS: Significant myocardial impairment was found in SAP rats according to increased histopathological scores, serum creatine kinase-MB (CK-MB) and cardiac troponin-I (cTnI) levels, and a decreased fractional shortening and ejection fraction. The decreased mitochondrial cristae and significant expression changes of ferroptosis-related proteins confirmed the presence of ferroptosis in SACI. GL treatment attenuated above-mentioned cardiac tissues damage by inhibiting ferroptosis via restoring the expression of Nrf2 and HO-1 in vivo and in vitro. Treating with ML385 (a Nrf2 inhibitor) or transfecting with siRNA-Nrf2 reversed the protective effect of GL. CONCLUSIONS: Our findings demonstrate the involvement of ferroptosis in SACI and suggest a potential role for GL in the treatment of SACI by supressing ferroptosis via Keap1/Nrf2/HO-1 pathway.


Asunto(s)
Ferroptosis , Ácido Glicirrínico , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Pancreatitis , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ferroptosis/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratas , Masculino , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Pancreatitis/metabolismo , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Hemo Oxigenasa (Desciclizante)/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/tratamiento farmacológico
7.
Int Heart J ; 65(1): 109-118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296563

RESUMEN

Ivabradine (IVA) reduces heart rate by inhibiting hyperpolarization-activated cyclic nucleotide-gated channels (HCNs), which play a role in the promotion of pacemaker activity in cardiac sinoatrial node cells. HCNs are highly expressed in neural and myocardial tissues and are involved in the modulation of inflammatory neuropathic pain. However, whether IVA exerts any effect on myocardial inflammation in the pathogenesis of heart failure is unclear. We employed single-cell RNA sequencing (scRNA-seq) in porcine cardiac myosin-induced experimental autoimmune myocarditis rat model to determine the effects and mechanisms of IVA. Lewis rats (n = 32) were randomly divided into the normal, control, high-dose-IVA, and low-dose-IVA groups. Heart rate and blood pressure were measured on days 0 and 21, respectively. Echocardiography was performed on day 22, and inflammation of the myocardium was evaluated via histopathological examination. Western blot was employed to detect the expression of HCN1-4, MinK-related protein 1 (MiRP1), matrix metalloproteinase 2 (MMP-2), MMP-9, and transforming growth factor-ß (TGF-ß). Furthermore, enzyme-linked immunosorbent assay was performed to measure serum IL-1, IL-6, and TNF-α. The relative mRNA levels of collagen I, collagen III, and α-smooth muscle actin (α-SMA) were determined via qRT-PCR. We found that IVA reduced the total number of cells infiltrated into the myocardium, particularly in the subset of fibroblasts, endocardia, and monocytes. IVA administration ameliorated cardiac inflammation and reduced collagen production. Results of the echocardiography indicated that left ventricular internal diameter at end-systole LVIDs increased whereas left ventricular ejection fraction and left ventricular fractional shortening decreased in the control group. IVA improved cardiac performance. The expression of HCN4 and MiRP1 protein and the level of serum IL-1, IL-6, and TNF-α were decreased by IVA treatment. In conclusion, HCNs and the helper proteins were increased in the profile of myocardial inflammation. HCNs may be involved in the regulation of myocardial inflammation by inhibiting immune cell infiltration. Our findings can contribute to the development of IVA-based combination therapies for the future treatment of cardiac inflammation and heart failure.


Asunto(s)
Insuficiencia Cardíaca , Lesiones Cardíacas , Miocarditis , Ratas , Animales , Porcinos , Ivabradina/farmacología , Ivabradina/uso terapéutico , Miocarditis/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Volumen Sistólico , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Función Ventricular Izquierda , Ratas Endogámicas Lew , Miocardio/patología , Insuficiencia Cardíaca/metabolismo , Inflamación/metabolismo , Lesiones Cardíacas/metabolismo , Colágeno/metabolismo , Interleucina-1/metabolismo
8.
J Mol Cell Cardiol ; 182: 86-91, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517369

RESUMEN

Although the myocardial renewal rate in the adult mammalian heart is quite low, recent studies have identified genetic variants which can impact the degree of cardiomyocyte cell cycle reentry. Here we use the compound interest law to model the level of regenerative growth over time in mice exhibiting different rates of cardiomyocyte cell cycle reentry following myocardial injury. The modeling suggests that the limited ability of S-phase adult cardiomyocytes to progress through cytokinesis, rather than the ability to reenter the cell cycle per se, is a major contributor to the low levels of intrinsic regenerative growth in the adult myocardium.


Asunto(s)
Lesiones Cardíacas , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Miocardio/metabolismo , Corazón , Ciclo Celular , Lesiones Cardíacas/metabolismo , Citocinesis , Proliferación Celular , Mamíferos
9.
J Mol Cell Cardiol ; 176: 68-83, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36739942

RESUMEN

Cardiac remodeling has no established therapies targeting inflammation. CD4+ T-cell subsets have been reported to play significant roles in healing process after ischemic myocardial injury, but their detailed mechanisms of activation remain unknown. To explore immune reactions during cardiac remodeling, we applied a non-surgical model of coronary heart disease (CHD) induced by a high-fat diet (HFD-CHD) in SR-BI-/-/ApoeR61h/h mice. Flow cytometry analyses throughout the period of progressive cardiac dysfunction revealed that CD4+ T Helper 1 (Th1) cells were predominantly activated in T-cell subsets. Probucol was reported to attenuate cardiac dysfunction after coronary artery ligation model (ligation-MI) in rats. To determine whether probucol suppress cardiac remodeling after HFD-CHD, we treated SR-BI-/-/ApoeR61h/h mice with probucol. We found treatment with probucol in HFD-CHD mice reduced cardiac dysfunction, with attenuated activation of Th1 cells. RNA-seq analyses revealed that probucol suppressed the expression of CXCR3, a Th1-related chemokine receptor, in the heart. XCR1+ cDC1 cells, which highly expresses the CXCR3 ligands CXCL9 and CXCL10, were predominantly activated after HFD-CHD. XCR1+ cDC1 lineage skewing of pre-DC progenitors was observed in bone marrow, with subsequent systemic expansion of XCR1+ cDC1 cells after HFD-CHD. Activation of CXCR3+ Th1 cell and XCR1+ cDC1 cells was also observed in ligation-MI. Notably, post-MI depletion of XCR1+ cDC1 cells suppressed CXCR3+ Th1 cell activation and prevented cardiac dysfunction. In patient autopsy samples, CXCR3+ Th1 and XCR1+ cDC1 cells infiltrated the infarcted area. In this study, we identified a critical role of XCR1+ cDC1-activated CXCR3+ Th1 cells in ischemic cardiac remodeling.


Asunto(s)
Cardiopatías , Lesiones Cardíacas , Ratones , Ratas , Animales , Células TH1 , Probucol/metabolismo , Remodelación Ventricular , Cardiopatías/metabolismo , Células Dendríticas , Lesiones Cardíacas/metabolismo
10.
Dev Biol ; 487: 57-66, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35490764

RESUMEN

Over the past 20 years, various zebrafish injury models demonstrated efficient heart regeneration after cardiac tissue loss. However, no established coronary vessel injury methods exist in the zebrafish model, despite coronary endothelial dysfunction occurring in most patients with acute coronary syndrome. This is due to difficulties performing surgery on small coronary vessels and a lack of genetic tools to precisely manipulate coronary cells in zebrafish. We determined that the Notch ligand gene deltaC regulatory sequences drive gene expression in zebrafish coronary endothelial cells, enabling us to overcome these obstacles. We created a deltaC fluorescent reporter line and visualized robust coronary growth during heart development and regeneration. Importantly, this reporter facilitated the visualization of coronary growth without an endocardial background. Moreover, we visualized robust coronary growth on the surface of juvenile hearts and regrowth in the wounded area of adult hearts ex vivo. With this approach, we observed growth inhibition by reported vascular growth antagonists of the VEGF, EGF and Notch signaling pathways. Furthermore, we established a coronary genetic ablation system and observed that severe coronary endothelial cell loss resulted in fish death, whereas fish survived mild coronary cell loss. Coronary cell depletion triggered regenerative responses, which resulted in the restoration of damaged cardiac tissues within several weeks. Overall, our work demonstrated the efficacy of using deltaC regulatory elements for high-resolution visualization of the coronary endothelium; screening small molecules for coronary growth effects; and revealed complete recovery in adult zebrafish after coronary-induced heart damage.


Asunto(s)
Lesiones Cardíacas , Pez Cebra , Animales , Proliferación Celular , Células Endoteliales/metabolismo , Corazón/fisiología , Lesiones Cardíacas/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Toxicol Appl Pharmacol ; 473: 116610, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385478

RESUMEN

Cytochrome P450 2J2 (CYP2J2) enzyme is widely expressed in aortic endothelial cells and cardiac myocytes and affects cardiac function, but the underlying mechanism is still unclear. Based on CYP2J knockout (KO) rats, we have directly studied the metabolic regulation of CYP2J on cardiac function during aging. The results showed that CYP2J deficiency significantly reduced the content of epoxyeicosatrienoic acids (EETs) in plasma, aggravated myocarditis, myocardial hypertrophy, as well as fibrosis, and inhibited the mitochondrial energy metabolism signal network Pgc-1α/Ampk/Sirt1. With the increase of age, the levels of 11,12-EET and 14,15-EET in plasma of KO rats decreased significantly, and the heart injury was more serious. Interestingly, we found that after CYP2J deletion, the heart initiated a self-protection mechanism by upregulating cardiac mechanism factors Myh7, Dsp, Tnni3, Tnni2, and Scn5a, as well as mitochondrial fusion factors Mfn2 and Opa1. However, this protective effect disappeared with aging. In conclusion, CYP2J deficiency not only reduces the amount of EETs, but also plays a dual regulatory role in cardiac function.


Asunto(s)
Citocromo P-450 CYP2J2 , Lesiones Cardíacas , Ratas , Animales , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacología , Células Endoteliales/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Miocitos Cardíacos , Lesiones Cardíacas/metabolismo
12.
J Biochem Mol Toxicol ; 37(8): e23393, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37409694

RESUMEN

Doxorubicin (DOX), an effective and broad-spectrum anthracycline antibiotic, is widely used in the treatment of numerous malignancies. However, dose-dependent cardiotoxicity limits the clinical application of DOX, and the molecular mechanisms are still unknown. In this study, we used the BK receptor B1/B2 double-knockout (B1B2 -/- ) mice to observe the role of BK receptor in cardiotoxicity induced by DOX and the underlying mechanisms. DOX induced myocardial injury with increased serum levels of AST, CK, and LDH, upregulated tissue expression of bradykinin B1/B2 receptor, FABP4 and iNOS, and downregulated expression of eNOS. However, these altered releases of myocardial enzyme and the expression level of iNOS were significantly prevented in the B1B2-/- mice. We concluded that the activation of both B1 and B2 receptors of BK were involved in the DOX-induced acute myocardial injury, possibly mediated through iNOS signaling pathways.


Asunto(s)
Cardiotoxicidad , Lesiones Cardíacas , Ratones , Animales , Cardiotoxicidad/metabolismo , Receptores de Bradiquinina/metabolismo , Receptores de Bradiquinina/uso terapéutico , Doxorrubicina/toxicidad , Miocardio/metabolismo , Transducción de Señal , Lesiones Cardíacas/metabolismo , Estrés Oxidativo , Apoptosis , Miocitos Cardíacos/metabolismo
13.
Curr Cardiol Rep ; 25(7): 631-640, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249739

RESUMEN

PURPOSE OF REVIEW: Recent technological advances have identified distinct subpopulations and roles of the cardiac innate immune cells, specifically macrophages and neutrophils. Studies on distinct metabolic pathways of macrophage and neutrophil in cardiac injury are expanding. Here, we elaborate on the roles of cardiac macrophages and neutrophils in concomitance with their metabolism in normal and diseased hearts. RECENT FINDINGS: Single-cell techniques combined with fate mapping have identified the clusters of innate immune cell subpopulations present in the resting and diseased hearts. We are beginning to know about the presence of cardiac resident macrophages and their functions. Resident macrophages perform cardiac homeostatic roles, whereas infiltrating neutrophils and macrophages contribute to tissue damage during cardiac injury with eventual role in repair. Prior studies show that metabolic pathways regulate the phenotypes of the macrophages and neutrophils during cardiac injury. Profiling the metabolism of the innate immune cells, especially of resident macrophages during chronic and acute cardiac diseases, can further the understanding of cardiac immunometabolism.


Asunto(s)
Lesiones Cardíacas , Macrófagos , Humanos , Macrófagos/fisiología , Monocitos/fisiología , Corazón , Neutrófilos/fisiología , Lesiones Cardíacas/metabolismo , Inmunidad Innata
14.
Artículo en Zh | MEDLINE | ID: mdl-37524671

RESUMEN

Objective: To investigate the protective effect and its possible mechanism of A-kinase anchored protein 1 (AKAP1) on the myocardial injury induced by highland hypobaric hypoxia. Methods: From January 2021 to May 2022, male C57BL/6 SPF grade mice were divided into wild type control (WT) group and highland hypobaric hypoxia (HH) group with 6 mice in each group. HH group simulated 6000 m altitude with low pressure oxygen chamber for 4 weeks to build the model. Primary myocardial cells of SD rats were divided into normoxia control group and hypoxia experimental group (n=3). Cell models were constructed in a three-gas hypoxia incubator with 1% oxygen concentration for 24 h. AKAP1 protein and mRNA expression in myocardial tissue and cells were detected by western blotting, immunohistochemistry and quantitative real-time polymerase chain reaction (qPCR). After myocardial point injection of the AKAP1 or the control adenovirus, the mice were divided into 3 groups (n=6) : WT group, highland hypobaric hypoxia overexpression control group (HH+Ad-Ctrl group) and highland hypobaric hypoxia overexpression experimental group (HH+Ad-AKAP1 group). The cardiac function of mice was detected by noninvasive M-type ultrasonic cardiomotive, myocardial fibrosis was detected by Masson and Sirius Red staining, and cardiomyocyte hypertrophy was detected by wheat germ agglutinin. After the expression of AKAP1 in primary cardiomyocytes was downregulated by siRNA and upregulated by adenovirus, the cells were divided into three groups (n=3) : normoxia control group, hypoxia interference control group (hypoxia+siCtrl group), hypoxia AKAP1 knockdown group (hypoxia+siAKAP1 group) ; normoxia control group, hypoxia overexpression control group (hypoxia+Ad-Ctrl group), hypoxia AKAP1 overexpression group (hypoxia+Ad-AKAP1 group). Apoptosis was detected by flow cytometry, AKAP1, apoptosis-related protein and mRNA expression levels were detected by western blotting and qPCR, mitochondrial membrane potential was detected by JC-1 staining, and mitochondrial reactive oxygen specie (ROS) level was detected by MitoSOX. Results: The expression of AKAP1 in cardiac muscle of HH group was lower than that in the WT group, and the expression of AKAP1 in hypoxia experimental group was lower than that in normoxia control group (P<0.01). Compared with WT group, the left ventricular ejection fraction and fraction shortening of left ventricle in HH+Ad-Ctrl group were decreased (P<0.01), myocardial fibrosis and hypertrophy were aggravated (P<0.01), and the expression of B-cell lymphoma-2 (BCL-2) was decreased, the expressions of BCL-2-associated X protein (BAX), Caspase 3 and Caspase 9 were increased (P<0.01). After AKAP1 overexpression, compared with HH+Ad-Ctrl group, the left ventricular ejection fraction and left ventricular fraction shortening were increased in HH+Ad-AKAP1 group (P<0.01), myocardial fibrosis and hypertrophy were reduced (P<0.01), and the expression of BCL-2 was increased, the expressions of BAX, Caspase 3 and Caspase 9 were decreased (P<0.01). Compared with normoxia control group, the expression of BCL-2 in hypoxia+siCtrl group was decreased, the expressions of BAX, Caspase 3, Caspase 9 were increased, the apoptosis level was increased (P<0.01), the mitochondrial membrane potential was decreased and the production of ROS was increased (P<0.01). After AKAP1 knockdown, compared with hypoxia+siCtrl group, the expression of BCL-2 in hypoxia+siAKAP1 group was decreased, the expressions of BAX, Caspase 3, Caspase 9 were increased, the apoptosis level was increased (P<0.01), mitochondrial membrane potential was decreased, and the production of ROS was increased (P<0.01). After AKAP1 overexpression, compared with hypoxia+Ad-Ctrl group, the expression of BCL-2 in hypoxia+Ad-AKAP1 group was increased, the expressions of BAX, Caspase 3 and Caspase 9 were decreased (P<0.05), the apoptosis level was decreased (P<0.01), and the mitochondrial membrane potential was enhanced, and the production of ROS was decreased (P<0.01) . Conclusion: The downregulation of AKAP1 in cardiomyocytes under highland hypobaric hypoxia may lead to the decrease of mitochondrial membrane potential and the increase of ROS generation, leading to the apoptosis of cardiomyocytes, and thus aggravating the myocardial injury at highland hypobaric hypoxia.


Asunto(s)
Lesiones Cardíacas , Función Ventricular Izquierda , Ratas , Ratones , Masculino , Animales , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Ratas Sprague-Dawley , Proteína X Asociada a bcl-2/metabolismo , Volumen Sistólico , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos , Hipoxia/metabolismo , Hipoxia/patología , Apoptosis , Lesiones Cardíacas/metabolismo , Oxígeno/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patología , Fibrosis , ARN Mensajero/metabolismo
15.
Dev Biol ; 472: 30-37, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33444612

RESUMEN

Zebrafish have a remarkable ability to regenerate the myocardium after injury by proliferation of pre-existing cardiomyocytes. Fibroblast growth factor (FGF) signaling is known to play a critical role in zebrafish heart regeneration through promotion of neovascularization of the regenerating myocardium. Here, we define an additional function of FGF signaling in the zebrafish myocardium after injury. We find that FGF signaling is active in a small fraction of cardiomyocytes before injury, and that the number of FGF signaling-positive cardiomyocytes increases after amputation-induced injury. We show that ERK phosphorylation is prominent in endothelial cells, but not in cardiomyocytes. In contrast, basal levels of phospho-AKT positive cardiomyocytes are detected before injury, and the ratio of phosphorylated AKT-positive cardiomyocytes increases after injury, indicating a role of AKT signaling in cardiomyocytes following injury. Inhibition of FGF signaling reduced the number of phosphorylated AKT-positive cardiomyocytes and increased cardiomyocyte death without injury. Heart injury did not induce cardiomyocyte death; however, heart injury in combination with inhibition of FGF signaling caused significant increase in cardiomyocyte death. Pharmacological inhibition of AKT signaling after heart injury also caused increased cardiomyocyte death. Our data support the idea that FGF-AKT signaling-dependent cardiomyocyte survival is necessary for subsequent heart regeneration.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cromonas/farmacología , Factores de Crecimiento de Fibroblastos/genética , Lesiones Cardíacas/metabolismo , Morfolinas/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Regeneración/efectos de los fármacos
16.
Circulation ; 144(7): 528-538, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34167318

RESUMEN

BACKGROUND: Although the 99th percentile is the recommended diagnostic threshold for myocardial infarction, some guidelines also advocate the use of higher troponin thresholds to rule in myocardial infarction at presentation. It is unclear whether the magnitude or change in troponin concentration can differentiate causes of myocardial injury and infarction in practice. METHODS: In a secondary analysis of a multicenter randomized controlled trial, we identified 46 092 consecutive patients presenting with suspected acute coronary syndrome without ST-segment-elevation myocardial infarction. High-sensitivity cardiac troponin I concentrations at presentation and on serial testing were compared between patients with myocardial injury and infarction. The positive predictive value and specificity were determined at the sex-specific 99th percentile upper reference limit and rule-in thresholds of 64 ng/L and 5-fold of the upper reference limit for a diagnosis of type 1 myocardial infarction. RESULTS: Troponin was above the 99th percentile in 8188 patients (18%). The diagnosis was type 1 or type 2 myocardial infarction in 50% and 14% and acute or chronic myocardial injury in 20% and 16%, respectively. Troponin concentrations were similar at presentation in type 1 (median [25th-75th percentile] 91 [30-493] ng/L) and type 2 (50 [22-147] ng/L) myocardial infarction and in acute (50 [26-134] ng/L) and chronic (51 [31-130] ng/L) myocardial injury. The 99th percentile and rule-in thresholds of 64 ng/L and 5-fold upper reference limit gave a positive predictive value of 57% (95% CI, 56%-58%), 59% (58%-61%), and 62% (60%-64%) and a specificity of 96% (96%-96%), 96% (96%-96%), and 98% (97%-98%), respectively. The absolute, relative, and rate of change in troponin concentration were highest in patients with type 1 myocardial infarction (P<0.001 for all). Discrimination improved when troponin concentration and change in troponin were combined compared with troponin concentration at presentation alone (area under the curve, 0.661 [0.642-0.680] versus 0.613 [0.594-0.633]). CONCLUSIONS: Although we observed important differences in the kinetics, cardiac troponin concentrations at presentation are insufficient to distinguish type 1 myocardial infarction from other causes of myocardial injury or infarction in practice and should not guide management decisions in isolation. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01852123.


Asunto(s)
Biomarcadores , Lesiones Cardíacas/diagnóstico , Lesiones Cardíacas/metabolismo , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Troponina/sangre , Anciano , Diagnóstico Diferencial , Femenino , Lesiones Cardíacas/etiología , Humanos , Cinética , Masculino , Persona de Mediana Edad , Infarto del Miocardio/etiología , Ensayos Clínicos Controlados Aleatorios como Asunto , Infarto del Miocardio con Elevación del ST/diagnóstico , Infarto del Miocardio con Elevación del ST/etiología , Infarto del Miocardio con Elevación del ST/metabolismo , Sensibilidad y Especificidad , Troponina I/sangre , Troponina I/metabolismo
17.
Cell Physiol Biochem ; 56(4): 401-417, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36001774

RESUMEN

BACKGROUND/AIMS: Doxorubicin (DOXO) is a potent chemotherapeutic drug that is used in the treatment of a large number of cancers. Despite its important chemotherapeutic characteristics, its usage is limited because of the serious side effects; the most noticeable is cardiotoxicity which can manifest acutely or years after completion of treatment leading to left ventricular dysfunction, dilated cardiomyopathy and heart failure. Nootkatone (NK) is a recognized bioactive compound isolated from the heartwood of Cupressus nootkatensis and has been reported to have antiseptic, antioxidant, and anti-allergic activities. METHODS: Male C57B6/J mice were used for mice model of DOXO-cardiac toxicity. Mice were given either DOXO or NK or DOXO+NK or vehicle (normal saline) after which the mice again had free access to food and water. Heart and plasma samples were collected 5 days after DOXO administration and were used for immunohistochemistry, electron microscopy and enzyme linked immunosorbent assay (ELISA). RESULTS: There were significant reduction in inflammatory markers in hearts of DOXO-NK- treated mice when compared with DOXO-treated mice. Moreover, there were significant increase in antioxidant proteins and reduction of oxidative stress in hearts of DOXO-NK-treated mice when compared with DOXO-treated mice. There was a significant reduction in myocardial damage as shown by significant reduction of troponin I in DOXO-NK- treated mice when compared with DOXO-treated mice. CONCLUSION: Nootkatone improves DOXO-induced myocardial injury through modulation of NF-κB signals and reduction of oxidative stress.


Asunto(s)
Lesiones Cardíacas , FN-kappa B , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Cardiotoxicidad/metabolismo , Doxorrubicina , Lesiones Cardíacas/metabolismo , Masculino , Ratones , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Sesquiterpenos Policíclicos
18.
Nature ; 534(7605): 119-23, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251288

RESUMEN

Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair.


Asunto(s)
Antioxidantes/metabolismo , Lesiones Cardíacas/metabolismo , Proteínas de Homeodominio/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Factores de Transcripción/metabolismo , Cicatrización de Heridas/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Proteínas de Ciclo Celular , Modelos Animales de Enfermedad , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/genética , Femenino , Depuradores de Radicales Libres/metabolismo , Lesiones Cardíacas/genética , Lesiones Cardíacas/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Vía de Señalización Hippo , Proteínas de Homeodominio/genética , Masculino , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Regeneración/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética , Proteínas Señalizadoras YAP , Proteína del Homeodomínio PITX2
19.
J Cell Mol Med ; 25(16): 7760-7771, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34180125

RESUMEN

Lymphangiogenesis is possibly capable of attenuating hypertension-induced cardiac injury. Sirtuin 3 (SIRT3) is an effective mitochondrial deacetylase that has the potential to modulate this process; however, its role in hypertension-induced cardiac lymphangiogenesis to date has not been investigated. Our experiments were performed on 8-week-old wild-type (WT), SIRT3 knockout (SIRT3-KO) and SIRT3 overexpression (SIRT3-LV) mice infused with angiotensin II (Ang II) (1000 ng/kg per minute) or saline for 28 days. After Ang II infusion, SIRT3-KO mice developed a more severe cardiac remodelling, less lymphatic capillaries and lower expression of lymphatic marker when compared to wild-type mice. In comparison, SIRT3-LV restored lymphangiogenesis and attenuated cardiac injury. Furthermore, lymphatic endothelial cells (LECs) exposed to Ang II in vitro exhibited decreased migration and proliferation. Silencing SIRT3 induced functional decrease in LECs, while SIRT3 overexpression LECs facilitated. Moreover, SIRT3 may up-regulate lymphangiogenesis by affecting vascular endothelial growth factor receptor 3 (VEGFR3) and ERK pathway. These findings suggest that SIRT3 could promote lymphangiogenesis and attenuate hypertensive cardiac injury.


Asunto(s)
Angiotensina II/toxicidad , Células Endoteliales/patología , Lesiones Cardíacas/patología , Hipertensión/complicaciones , Linfangiogénesis , Sirtuina 3/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Lesiones Cardíacas/etiología , Lesiones Cardíacas/metabolismo , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Noqueados , Sirtuina 3/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Vasoconstrictores/toxicidad
20.
J Cell Mol Med ; 25(20): 9740-9752, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34533278

RESUMEN

Nitazoxanide (NTZ) is a broad-spectrum antiparasitic and antiviral drug (thiazole). However, although NTZ has been extensively used, there are no reports concerning its toxicology in vertebrates. This study used the zebrafish as a vertebrate model to evaluate the safety of NTZ and to analyse the related molecular mechanisms. The experimental results showed that zebrafish embryos exposed to NTZ had cardiac malformation and dysfunction. NTZ also significantly inhibited proliferation and promoted apoptosis in cardiomyocytes. Transcriptomic analysis used compared gene expression levels between zebrafish embryos in the NTZ treatment and the control groups identified 200 upregulated genes and 232 downregulated genes. Analysis by Kyoto encyclopaedia of genes and genomes (KEGG) and gene ontology (GO) showed that signal pathways on cardiomyocyte development were inhibited while the oxidative stress pathways were activated. Further experiments showed that NTZ increased the content of reactive oxygen species (ROS) in the hearts of zebrafish. Antioxidant gadofullerene nanoparticles (GFNPs) significantly alleviated the developmental toxicity to the heart, indicating that NTZ activated the oxidative stress response to cause embryonic cardiomyocyte injury in zebrafish. This study provides evidence that NTZ causes developmental abnormalities in the cardiovascular system of zebrafish.


Asunto(s)
Lesiones Cardíacas/etiología , Lesiones Cardíacas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Nitrocompuestos/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Tiazoles/efectos adversos , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Cardiotoxicidad , Biología Computacional/métodos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA