Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.607
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(43): e2207693119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252039

RESUMEN

Although the onset time of chemical reactions can be manipulated by mechanical, electrical, and optical methods, its chemical control remains highly challenging. Herein, we report a chemical timer approach for manipulating the emission onset time of chemiluminescence (CL) reactions. A mixture of Mn2+, NaHCO3, and a luminol analog with H2O2 produced reactive oxygen species (ROS) radicals and other superoxo species (superoxide containing complex) with high efficiency, accompanied by strong and immediate CL emission. Surprisingly, the addition of thiourea postponed CL emission in a concentration-dependent manner. The delay was attributed to a slow-generation-scavenging mechanism, which was found to be generally applicable not only to various types of CL reagents and ROS radical scavengers but also to popular chromogenic reactions. The precise regulation of CL kinetics was further utilized in dynamic chemical coding with improved coding density and security. This approach provides a powerful platform for engineering chemical reaction kinetics using chemical timers, which is of application potential in bioassays, biosensors, CL microscopic imaging, microchips, array chips, and informatics.


Asunto(s)
Luminiscencia , Luminol , Peróxido de Hidrógeno , Mediciones Luminiscentes/métodos , Especies Reactivas de Oxígeno , Superóxidos , Tiourea
2.
J Am Chem Soc ; 146(9): 5927-5939, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38381576

RESUMEN

Deep-tissue optical imaging and photodynamic therapy (PDT) remain a big challenge for the diagnosis and treatment of cancer. Chemiluminescence (CL) has emerged as a promising tool for biological imaging and in vivo therapy. The development of covalent-binding chemiluminescence agents with high stability and high chemiluminescence resonance energy transfer (CRET) efficiency is urgent. Herein, we design and synthesize an unprecedented chemiluminescent conjugated polymer PFV-Luminol, which consists of conjugated polyfluorene vinylene (PFV) main chains and isoluminol-modified side chains. Notably, isoluminol groups with chemiluminescent ability are covalently linked to main chains by amide bonds, which dramatically narrow their distance, greatly improving the CRET efficiency. In the presence of pathologically high levels of various reactive oxygen species (ROS), especially singlet oxygen (1O2), PFV-Luminol emits strong fluorescence and produces more ROS. Furthermore, we construct the PFV-L@PEG-NPs and PFV-L@PEG-FA-NPs nanoparticles by self-assembly of PFV-Luminol and amphiphilic copolymer DSPE-PEG/DSPE-PEG-FA. The chemiluminescent PFV-L@PEG-NPs nanoparticles exhibit excellent capabilities for in vivo imaging in different inflammatory animal models with great tissue penetration and resolution. In addition, PFV-L@PEG-FA-NPs nanoparticles show both sensitive in vivo chemiluminescence imaging and efficient chemiluminescence-mediated PDT for antitumors. This study paves the way for the design of chemiluminescent probes and their applications in the diagnosis and therapy of diseases.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Especies Reactivas de Oxígeno , Polímeros/química , Luminol , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Inflamación/diagnóstico por imagen , Inflamación/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química
3.
Anal Chem ; 96(1): 514-521, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38145394

RESUMEN

Modulating the photon emission of the luminophore for boosting chemiluminescence (CL) response is very crucial for the construction of highly sensitive sensors via the introduction of functionalized materials. Herein, the integration of the emitter and coreactant accelerator into one entity is realized by simply assembling cucurbit[7]uril (CB[7]) on the surface of gold nanoparticles (AuNPs) through simple assembly via a Au-O bond. The loaded CB[7] on the AuNPs improves their catalytic capacity for the generation of hydroxyl radicals(•OH). Moreover, the host-guest recognition interaction between luminol and CB[7] enables the capture of luminol on AuNPs efficiently. Also, the intramolecular electron-transfer reaction between the luminol and •OH enables the CL response more effectively in the entity, which greatly boosts photon emission ca 100 folds compared with the individual luminol/H2O2. The host-guest recognition between luminol and CB[7] is revealed by Fourier transform infrared spectroscopy, electrochemical, and thermogravimetric characterization. Moreover, the proposed CL system is successfully used for the sensitive and selective determination of dopamine (DA) based on a synergistic quenching mechanism including the competition quenching and radical-scavenging effect from DA. The present amplified strategy by integrating recognized and amplified elements within one entity simplifies the sensing process and holds great potential for sensitive analysis based on the self-enhanced strategies.


Asunto(s)
Luminol , Nanopartículas del Metal , Luminol/química , Nanopartículas del Metal/química , Oro/química , Dopamina , Luminiscencia , Peróxido de Hidrógeno/química , Mediciones Luminiscentes/métodos
4.
Anal Chem ; 96(8): 3655-3661, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38362869

RESUMEN

Chemiluminescence is a powerful analytical technique with many advantages, while aptamers are well-known as good molecular recognition units. However, many aptamer-based chemiluminescence assays employed interface sensing, which often needed several immobilization, separation, and washing steps. To minimize the risks of contamination and false-positive, we for the first time proposed a photocatalytic aptamer chemiluminescent system for a homogeneous, label-free, generic assay of small molecules. After binding to a DNA aptamer, thioflavin T has a unique photocatalytic oxidase activity to activate the system's luminol chemiluminescence. Then, the specific binding between the aptamer and target molecules will compete with the above process. Therefore, we can realize the efficient assay of different analytes including estradiol and adenosine. Such a homogeneous chemiluminescent system allowed a direct assay of small molecules with limits of detection in a nM level. Several control tests were carried out to avoid possible false-positive results, which were originated from the interactions between analytes and sensing interfaces previously. This homogeneous chemiluminescent system provides a useful strategy to reliably assay various analytes in the pharmacy or biology field.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Mediciones Luminiscentes/métodos , Luminol/química , Adenosina
5.
Anal Chem ; 96(23): 9704-9712, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38819721

RESUMEN

Due to the commonly low content of biomarkers in diseases, increasing the sensitivity of electrochemiluminescence (ECL) systems is of great significance for in vitro ECL diagnosis and biodetection. Although dissolved O2 (DO) has recently been considered superior to H2O2 as a coreactant in the most widely used luminol ECL systems owing to its improved stability and less biotoxicity, it still has unsatisfactory ECL performance because of its ultralow reactivity. In this study, an effective plasmonic luminol-DO ECL system has been developed by complexing luminol-capped Ag nanoparticles (AgNPs) with plasma-treated Fe single-atom catalysts (Fe-SACs) embedded in graphitic carbon nitride (g-CN) (pFe-g-CN). Under optimal conditions, the performance of the resulting ECL system could be markedly increased up to 1300-fold compared to the traditional luminol-DO system. Further investigations revealed that duple binding sites of pFe-g-CN and plasmonically induced hot holes that disseminated from AgNPs to g-CN surfaces lead to facilitate significantly the luminous reaction process of the system. The proposed luminol-DO ECL system was further employed for the stable and ultrasensitive detection of prostate-specific antigen in a wide linear range of 1.0 fg/mL to 1 µg/mL, with a pretty low limit of detection of 0.183 fg/mL.


Asunto(s)
Técnicas Electroquímicas , Hierro , Mediciones Luminiscentes , Luminol , Nanopartículas del Metal , Oxígeno , Plata , Luminol/química , Catálisis , Oxígeno/química , Nanopartículas del Metal/química , Hierro/química , Plata/química , Humanos , Antígeno Prostático Específico/metabolismo , Antígeno Prostático Específico/química , Grafito/química , Límite de Detección , Dominio Catalítico , Compuestos de Nitrógeno/química
6.
Anal Chem ; 96(25): 10264-10273, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38869321

RESUMEN

Herein, we, for the first time, synthesize silver nanoparticles (Ag NPs) within the nanochannels of amino group-functionalized vertically ordered mesoporous silica films (NH2-VMSF) and investigate their coreaction accelerator role in the luminol-dissolved oxygen (O2) electrochemical stripping chemiluminescence (ESCL) system. The synthesized Ag NPs are capable of electrocatalytic reduction of O2 to superoxide radicals, and meanwhile, sliver ions (Ag+) electrochemically stripped from Ag NPs can promote the amount of luminol anion radicals, generating the boosted ECL intensity of the luminol-dissolved O2 system. This proposed Ag NPs@NH2-VMSF on the indium tin oxide electrode was applied to construct the ESCL aptasensor for quantitative determination of prostate-specific antigen (PSA), yielding a low detection limit [0.19 pg/mL (S/N = 3)] and a broad linear dynamic range (1 pg/mL to 100 ng/mL). Furthermore, good analytical performance of PSA in serum with satisfactory recoveries and low relative standard deviation values is achieved by our developed ESCL aptasensor, rendering it a convenient and sensitive method for PSA determination in clinical applications and further broadening the strategy of ESCL techniques.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Electroquímicas , Mediciones Luminiscentes , Luminol , Nanopartículas del Metal , Oxígeno , Dióxido de Silicio , Plata , Dióxido de Silicio/química , Luminol/química , Plata/química , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Oxígeno/química , Humanos , Técnicas Biosensibles , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/análisis , Límite de Detección , Electrodos , Luminiscencia
7.
Anal Chem ; 96(17): 6659-6665, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38635916

RESUMEN

The enhancement of sensitivity in biological analysis detection can reduce the probability of false positives of the biosensor. In this work, a novel self-on controlled-release electrochemiluminescence (CRE) biosensor was designed by multiple signal amplification and framework-enhanced stability strategies. As a result, the changes of the ECL signal were enhanced before and after the controlled-release process, achieving sensitive detection of prostate-specific antigen (PSA). Specifically, for one thing, Fe3O4@CeO2-NH2 with two paths for enhancing the generation of coreactant radicals was used as the coreaction accelerator to boost ECL performance. For another, due to the framework stability, zeolitic imidazolate framework-8-NH2 (ZIF-8-NH2) was combined with luminol to make the ECL signal more stable. Based on these strategies, the constructed CRE biosensor showed a strong self-on effect in the presence of PSA and high sensitivity in a series of tests. The detection range and limit of detection (LOD) were 5 fg/mL to 10 ng/mL and 2.8 fg/mL (S/N = 3), respectively, providing a feasible approach for clinical detection of PSA.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Mediciones Luminiscentes , Antígeno Prostático Específico , Antígeno Prostático Específico/análisis , Antígeno Prostático Específico/sangre , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Humanos , Límite de Detección , Masculino , Cerio/química , Luminol/química
8.
Anal Chem ; 96(19): 7763-7771, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38699865

RESUMEN

Given its pivotal role in modulating various pathological processes, precise measurement of nitric oxide (●NO) levels in physiological solutions is imperative. The key techniques include the ozone-based chemiluminescence (CL) reactions, amperometric ●NO sensing, and Griess assay, each with its advantages and drawbacks. In this study, a hemin/H2O2/luminol CL reaction was employed for accurately detecting ●NO in diverse solutions. We investigated how the luminescence kinetics was influenced by ●NO from two donors, nitrite and peroxynitrite, while also assessing the impact of culture medium components and reactive species quenchers. Furthermore, we experimentally and theoretically explored the mechanism of hemin oxidation responsible for the initiation of light generation. Although both hemin and ●NO enhanced the H2O2/luminol-based luminescence reactions with distinct kinetics, hemin's interference with ●NO/peroxynitrite- modulated their individual effects. Leveraging the propagated signal due to hemin, the ●NO levels in solution were estimated, observing parallel changes to those detected via amperometric detection in response to varying concentrations of the ●NO-donor. The examined reactions aid in comprehending the mechanism of ●NO/hemin/H2O2/luminol interactions and how these can be used for detecting ●NO in solution with minimal sample size demands. Moreover, the selectivity across different solutions can be improved by incorporating certain quenchers for reactive species into the reaction.


Asunto(s)
Hemina , Sondas Moleculares , Óxido Nítrico , Hemina/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Cinética , Mediciones Luminiscentes , Luminol/química , Sondas Moleculares/química , Óxido Nítrico/análisis , Oxidación-Reducción , Ácido Peroxinitroso/análisis , Ácido Peroxinitroso/química , Soluciones
9.
Plant Physiol ; 191(2): 1416-1434, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461917

RESUMEN

Biphasic production of reactive oxygen species (ROS) has been observed in plants treated with avirulent bacterial strains. The first transient peak corresponds to pattern-triggered immunity (PTI)-ROS, whereas the second long-lasting peak corresponds to effector-triggered immunity (ETI)-ROS. PTI-ROS are produced in the apoplast by plasma membrane-localized NADPH oxidases, and the recognition of an avirulent effector increases the PTI-ROS regulatory module, leading to ETI-ROS accumulation in the apoplast. However, how apoplastic ETI-ROS signaling is relayed to the cytosol is still unknown. Here, we found that in the absence of cytosolic ascorbate peroxidase 1 (APX1), the second phase of ETI-ROS accumulation was undetectable in Arabidopsis (Arabidopsis thaliana) using luminol-based assays. In addition to being a scavenger of cytosolic H2O2, we discovered that APX1 served as a catalyst in this chemiluminescence ROS assay by employing luminol as an electron donor. A horseradish peroxidase (HRP)-mimicking APX1 mutation (APX1W41F) further enhanced its catalytic activity toward luminol, whereas an HRP-dead APX1 mutation (APX1R38H) reduced its luminol oxidation activity. The cytosolic localization of APX1 implies that ETI-ROS might accumulate in the cytosol. When ROS were detected using a fluorescent dye, green fluorescence was observed in the cytosol 6 h after infiltration with an avirulent bacterial strain. Collectively, these results indicate that ETI-ROS eventually accumulate in the cytosol, and cytosolic APX1 catalyzes luminol oxidation and allows monitoring of the kinetics of ETI-ROS in the cytosol. Our study provides important insights into the spatial dynamics of ROS accumulation in plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Especies Reactivas de Oxígeno , Ascorbato Peroxidasas/genética , Proteínas de Arabidopsis/genética , Luminol , Citosol , Peróxido de Hidrógeno , Arabidopsis/microbiología
10.
Int J Legal Med ; 138(3): 1109-1116, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37996553

RESUMEN

The estimation of the postmortem interval (PMI) is one of the key challenges for forensic anthropologists. Although there are several methods referenced for this purpose, none is sufficiently effective. One of the main reasons justifying the complexity of this task is the influence of several taphonomic factors.The study of the Luminol technique has stood out as a promising method for estimating PMI, complementing the existing methods, since it is an economic, easy and reproducible method that operates as a presumptive test. However, it is not known which taphonomic factors can influence the results obtained by this technique.The aim of this study is to test the influence of taphonomic factors, such as temperature, humidity, soil type and pH, on the estimation of the PMI by the Luminol technique.In order to test the influence of the referred factors, a sample consisting of 30 clavicles, with known and similar PMI, collected from autopsies, was distributed as evenly as possible by six vases and buried with different decomposition conditions for a period of 12 months. After the exhumation and sample preparation, the Luminol technique was applied.It was possible to clearly observe differences in the results. Thus, according to our research, it is possible to conclude that the results obtained by the application of Luminol are influenced by taphonomic factors. Therefore, the context in which a body is found should always be considered for applying this technique.


Asunto(s)
Luminol , Cambios Post Mortem , Humanos , Autopsia , Exhumación , Temperatura , Patologia Forense/métodos
11.
Analyst ; 149(5): 1496-1501, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38315553

RESUMEN

Cathodic electrochemiluminescence (ECL) of a luminol (or its analogues)-dissolved oxygen (O2) system is an ideal alternative to ECL of the traditional luminol-hydrogen peroxide (H2O2) system, which can efficiently avoid the self-decomposition of H2O2 at room temperature. However, the mechanism for the generation of cathodic ECL by the luminol (or its analogues)-O2 system is still ambiguous. Herein, we report the study of cathodic ECL generation by the L012-O2 system at a glassy carbon electrode (GCE). The types of reactive oxygen species (ROS) involved generated during ECL reactions were verified. A possible reaction mechanism for the system was proposed and the rate constants of related reactions were estimated. Furthermore, several intermediates of L012 involved in the proposed pathways were validated by electrochemistry-coupled mass spectrometry. Finally, the cathodic ECL system was successfully used for measuring the antioxidant capacity of commercial juice with Trolox as a standard.


Asunto(s)
Antioxidantes , Técnicas Biosensibles , Luminol/química , Peróxido de Hidrógeno/química , Mediciones Luminiscentes/métodos , Electrodos , Oxígeno/química , Técnicas Electroquímicas , Límite de Detección
12.
Analyst ; 149(9): 2756-2761, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38563766

RESUMEN

New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 µM and with a limit of detection of 10 µM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.


Asunto(s)
Técnicas Electroquímicas , Mediciones Luminiscentes , Mediciones Luminiscentes/métodos , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Electrodos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Límite de Detección , Glucemia/análisis , Tecnología Inalámbrica , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Luminol/química
13.
Luminescence ; 39(5): e4775, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745525

RESUMEN

A new smartphone-based chemiluminescence method has been introduced for the quantitative analysis of CL-20 (Hexanitroazaisowuertzitan) explosive. The solvent mixture, oxidizer agent, and concentration of the reactants were optimized using statistical procedures. CL-20 explosive showed a quenching effect on the chemiluminescence intensity of the luminol-NaClO reaction in the solvent mixture of DMSO/H2O. A smartphone was used as a detector to record the light intensity of chemiluminescence reaction as a video file. The recorded video file was converted to an analytical signal as intensity luminescence-time curve by a written code in MATLAB software. Dynamic range and limit of detection of the proposed method were obtained 2.0-240.0 and 1.1 mg⋅L-1, respectively, in optimized concentrations 1.5 × 10-3 mol⋅L-1 luminol and 1.0 × 10-2 mol⋅L-1 NaClO. Precursors TADB, HBIW, and TADNIW in CL-20 explosive synthesis did not show interference in measurement the CL-20 purity. The analysis of CL-20 spiked samples of soil and water indicated the satisfactory ability of the method in the analysis of real samples. The interaction of CL-20 molecules and OCl- ions is due to quench of chemiluminescence reaction of the luminol-NaClO.


Asunto(s)
Mediciones Luminiscentes , Luminol , Teléfono Inteligente , Mediciones Luminiscentes/métodos , Mediciones Luminiscentes/instrumentación , Luminol/química , Sustancias Explosivas/análisis , Luminiscencia , Límite de Detección
14.
Luminescence ; 39(4): e4745, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644416

RESUMEN

This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol-O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10-7 to 1.00 × 10-3 mol L-1, 1.00 × 10-7 to 1.00 × 10-4 mol L-1, and 4.00 × 10-6 to 2.00 × 10-4 mol L-1 with detection limits (3σ) of 3.54 × 10-7, 1.08 × 10-8, and 2.63 × 10-6 mol L-1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.


Asunto(s)
Cefazolina , Compuestos Ferrosos , Imipramina , Mediciones Luminiscentes , Luminol , Clorhidrato de Venlafaxina , Cefazolina/análisis , Cefazolina/química , Clorhidrato de Venlafaxina/análisis , Clorhidrato de Venlafaxina/química , Imipramina/análisis , Imipramina/química , Mediciones Luminiscentes/métodos , Luminol/química , Nanoestructuras/química , Luminiscencia
15.
Luminescence ; 39(5): e4764, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684508

RESUMEN

Ultrasensitive, selective, and non-invasive detection of fibrin in human serum is critical for disease diagnosis. So far, the development of high-performance and ultrasensitive biosensors maintains core challenges for biosensing. Herein, we designed a novel ribbon nanoprobe for ultrasensitive detection of fibrin. The probe contains gold nanoparticles (AuNPs) that can not only link with homing peptide Cys-Arg-Glu-Lys-Ala (CREKA) to recognize fibrin but also carry long DNA belts to form G-quadruplex-based DNAzyme, catalyzing the chemiluminescence of luminol-hydrogen peroxide (H2O2) reaction. Combined with the second amplification procedure of rolling circle amplification (RCA), the assay exhibits excellent sensitivity with a detection limit of 0.04 fmol L-1 fibrin based on the 3-sigma. Furthermore, the biosensor shows high specificity on fibrin in samples because the structure of antibody-fibrin-homing peptide was employed to double recognize fibrin. Altogether, the simple and inexpensive approach may present a great potential for reliable detection of biomarkers.


Asunto(s)
Técnicas Biosensibles , Fibrina , Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Fibrina/química , Fibrina/análisis , Humanos , ADN Catalítico/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Límite de Detección , Luminol/química , G-Cuádruplex
16.
Mikrochim Acta ; 191(5): 269, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630309

RESUMEN

A molecularly-imprinted electrochemiluminescence sensor was constructed for the determination of fenpropathrin (FPT) by molecular imprinting technology. In this sensing platform, the introduction of CdS@MWCNTs significantly enhanced the initial ECL signal of the luminol-O2 system. Specifically, MWCNTs was used as a carrier to adsorb more CdS, in which CdS acted as a co-reaction promoter for luminescence. Molecularly imprinted polymer (MIP) containing specific recognition sites of FPT was used as the material for selective recognition. With increasing amount of FPT the ECL signal decreased. Under the optimum conditions, the ECL response was linearly related to the logarithm of FPT concentration. The developed ECL sensor allowed for sensitive determination of FPT and exhibited a wide linear range from 1.0 × 10- 10 mol L- 1 to 1.0 × 10- 6 mol L- 1. The limit of detection was 3.3 × 10- 11 mol L- 1 (S/N = 3). It can be used for the detection of FPT in vegetable samples.


Asunto(s)
Luminiscencia , Impresión Molecular , Piretrinas , Luminol , Polímeros Impresos Molecularmente
17.
Mikrochim Acta ; 191(3): 151, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386184

RESUMEN

A novel luminol derivative of N-(1,4-dioxo-1,2,3,4-tetrahydrophthalazin-5-yl)acrylamide (DTA) with excellent luminescence efficiency was designed and synthesized. Furthermore, a molecularly imprinted electrochemiluminescence sensor (MIECLS) was fabricated to detect ultratrace levels of human serum albumin (HSA) with high sensitivity and selectivity via a click reaction. The molecularly imprinted polymers (MIPs) were formed on the electrode surface via electropolymerization with HSA as a template molecule and catechol as a monomer. In the detection process, the -SH group of HSA on the electrode and the C = C bond of acryloyl group in DTA formed a new C-S bond via the Michael addition reaction to construct the MIECLS. The higher the concentration of HSA, the greater electrochemiluminescence (ECL) intensity measured. Taking advantage of MIECLS for ECL detection (scanning potential, - 0.4 to 0.5 V), there was a good linear relationship between ECL intensity and the logarithm of HSA concentration in the range 5 × 10-9 to 1 × 10-13 mg mL-1. The limit of detection (LOD) of the sensor was 1.05 × 10-15 mg mL-1. The sensor exhibited outstanding selectivity and stability. The sensor was applied to detect HSA in human serum with good recoveries of 97.7-105.2%. The concentration of HSA was detected by electrochemical method using the gating effect of MIP.


Asunto(s)
Acrilamida , Luminol , Humanos , Técnicas Electroquímicas , Electrodos , Albúmina Sérica Humana
18.
Mikrochim Acta ; 191(2): 111, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252316

RESUMEN

A simple and ultrasensitive sandwich-type electrochemiluminescence (ECL) immunosensor has been developed using porous three-dimensional gold nanoparticles (Au NPs) iron(Fe)-zinc(Zn) metal-organic frameworks (Au NPs-FeZn-MOFs@luminol) as high-efficiency ECL signal probes with Fe single-atom catalysts (SACs) (Fe-N-C SACs) as potentially advanced coreaction accelerators and dissolved oxygen as a coreaction agent to realize an H2O2-free amplification method for detecting carcinoembryonic antigen (CEA). The cathodic ECL of luminol, which was usually negligible, increased first. Because the Fe-N-C SACs exhibited an outstanding catalytic performance and a unique electronic structure, different reactive oxygen species (ROS) were generated via the oxygen reduction reaction. ROS oxidized the luminol anions to luminol anion radicals, preventing the time-consuming luminol electrochemical oxidation. Furthermore, the luminol anion radicals generated in situ reacted with ROS to produce potent cathodic ECL emissions. The immunosensor exhibited favorable analytical accuracy (detection range: 0.1 pg mL-1 - 80 ng mL-1), and its detection limit for serum samples was 0.031 pg mL-1 (S/N = 3). Consequently, the proposed strategy offers a new approach for early screening of CEA.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Antígeno Carcinoembrionario , Oro , Inmunoensayo , Luminol , Especies Reactivas de Oxígeno , Hierro , Aniones
19.
Anal Chem ; 95(48): 17937-17944, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37991222

RESUMEN

Oxygen vacancy is one intrinsic defect in metal oxide materials. Interestingly, we herein found that the surface oxygen vacancy can significantly enhance the catalytic activity of Co3O4 nanowires in the luminol-H2O2 chemiluminescence (CL) reaction. 0.1 ng/mL Co3O4 nanowires containing 51.3% surface oxygen vacancies possessed ca. 2.5-fold catalytic activity of free Co2+ (the best metal ionic catalyst for the luminol-H2O2 CL reaction). The superior catalytic efficiency is attributed to the enhanced adsorption of H2O2 by surface oxygen vacancies, which in turn accelerates the cleavage of O-O bonds and generates •OH radicals. More importantly, the surface oxygen vacancy-rich Co3O4 nanowires retained about 90% catalytic activity after modification with antibodies. The surface oxygen vacancy-rich Co3O4 nanowires were used to label the secondary antibody, and one sandwich-type CL immunoassay of carcinoembryonic antigen was established. The detection limit was 0.3 ng/mL with a linear range of 1-10 ng/mL. This proof-of-concept work proves that surface oxygen vacancy-rich Co3O4 nanowires are suitable for labeling biomolecules in CL bioanalysis and biosensing.


Asunto(s)
Luminol , Nanocables , Luminol/química , Peróxido de Hidrógeno/análisis , Oxígeno , Luminiscencia , Inmunoensayo , Anticuerpos
20.
Anal Chem ; 95(37): 14143-14149, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37675866

RESUMEN

High-performance electrochemiluminescence is a significant approach for the examination of disease biomarkers, and the utilization of innovative electrochemiluminescence detection systems represents a viable strategy to enhance the efficacy of ECL analysis. In this work, the biomimetic engineering metal-organic framework (MOF-818) has realized the ultrasensitive ECL immunoassay of disease markers based on the guidance of the free radical scavenging strategy provided by the antioxidant cascade. Initially, we synthesized a hydrogen-bonded organic framework (HOF) consisting of luminol and three active ligands based on simple room-temperature self-assembly. The luminol-HOF (L-HOF) showed more stable and brighter ECL luminescence activity than the monomer due to the nano-confinement enhancement of the coordinated luminol units. Subsequently, MOF-818 with biomimetic superoxide dismutase (SOD) and catalase (CAT) activities were recruited for the first time as quenching agents for sandwich immunoassay mode. The enzyme activity leads to the reverse transformation of superoxide anion radicals (O2-) and further antioxidant decomposition, decreasing in the responsiveness of luminol ECL signals. Using carcinoembryonic antigen (CEA) as an analytical model, a detection limit of 0.457 pg/mL was obtained within a detection range of 0.001-50 ng/mL. We believe that this novel sandwich sensing model based on enzyme activity provides a meaningful potential tool for precise detection, expanding the broader application of nanoenzymes in analysis.


Asunto(s)
Antioxidantes , Estructuras Metalorgánicas , Biomimética , Luminol , Hidrógeno , Inmunoensayo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA