RESUMEN
Leaf fungal microbiomes can be fundamental drivers of host plant success, as they contain pathogens that devastate crop plants and taxa that enhance nutrient uptake, discourage herbivory, and antagonize pathogens. We measured leaf fungal diversity with amplicon sequencing across an entire growing season in a diversity panel of switchgrass (Panicum virgatum). We also sampled a replicated subset of genotypes across 3 additional sites to compare the importance of time, space, ecology, and genetics. We found a strong successional pattern in the microbiome shaped both by host genetics and environmental factors. Further, we used genome-wide association (GWA) mapping and RNA sequencing to show that 3 cysteine-rich receptor-like kinases (crRLKs) were linked to a genetic locus associated with microbiome structure. We confirmed GWAS results in an independent set of genotypes for both the internal transcribed spacer (ITS) and large subunit (LSU) ribosomal DNA markers. Fungal pathogens were central to microbial covariance networks, and genotypes susceptible to pathogens differed in their expression of the 3 crRLKs, suggesting that host immune genes are a principal means of controlling the entire leaf microbiome.
Asunto(s)
Micobioma , Panicum , Estudio de Asociación del Genoma Completo , Genotipo , Micobioma/genética , Panicum/genética , Panicum/microbiología , Hojas de la Planta/genéticaRESUMEN
Host genetics and the environment influence which fungal microbes colonize a plant. A new study in PLOS Biology finds that the relative influence of these factors changes throughout the development of the biofuel crop switchgrass growing in field settings.
Asunto(s)
Micobioma , Panicum , Genotipo , Micobioma/genética , Panicum/genética , Panicum/crecimiento & desarrollo , Panicum/microbiología , Desarrollo de la Planta , Hojas de la Planta/genéticaRESUMEN
The skin and its microbiome function to protect the host from pathogen colonization and environmental stressors. In this study, using the Wisconsin Miniature Swine™ model, we characterize the porcine skin fungal and bacterial microbiomes, identify bacterial isolates displaying antifungal activity, and use whole-genome sequencing to identify biosynthetic gene clusters encoding for secondary metabolites that may be responsible for the antagonistic effects on fungi. Through this comprehensive approach of paired microbiome sequencing with culturomics, we report the discovery of novel species of Corynebacterium and Rothia. Further, this study represents the first comprehensive evaluation of the porcine skin mycobiome and the evaluation of bacterial-fungal interactions on this surface. Several diverse bacterial isolates exhibit potent antifungal properties against opportunistic fungal pathogens in vitro. Genomic analysis of inhibitory species revealed a diverse repertoire of uncharacterized biosynthetic gene clusters suggesting a reservoir of novel chemical and biological diversity. Collectively, the porcine skin microbiome represents a potential unique source of novel antifungals.
Asunto(s)
Hongos , Microbiota , Piel , Animales , Piel/microbiología , Porcinos/microbiología , Microbiota/genética , Hongos/genética , Hongos/efectos de los fármacos , Antifúngicos/farmacología , Antibiosis , Micobioma/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Corynebacterium/genética , Corynebacterium/efectos de los fármacos , Porcinos Enanos/microbiología , Familia de Multigenes , Secuenciación Completa del Genoma , Metabolismo Secundario/genéticaRESUMEN
BACKGROUND: Amplicon-based mycobiome analysis has the potential to identify all fungal species within a sample and hence could provide a valuable diagnostic assay for use in clinical mycology settings. In the last decade, the mycobiome has been increasingly characterised by targeting the internal transcribed spacer (ITS) regions. Although ITS targets give broad coverage and high sensitivity, they fail to provide accurate quantitation as the copy number of ITS regions in fungal genomes is highly variable even within species. To address these issues, this study aimed to develop a novel NGS fungal diagnostic assay using an alternative amplicon target. METHODS: Novel universal primers were designed to amplify a highly diverse single copy and uniformly sized DNA target (Tef1) to enable mycobiome analysis on the Illumina iSeq100 which is a low cost, small footprint and simple to use next-generation sequencing platform. To enable automated analysis and rapid results, a streamlined bioinformatics workflow and sequence database were also developed. Sequencing of mock fungal communities was performed to compare the Tef1 assay and established ITS1-based method. The assay was further evaluated using clinical respiratory samples and the feasibility of using internal spike-in quantitative controls was assessed. RESULTS: The Tef1 assay successfully identified and quantified Aspergillus, Penicillium, Candida, Cryptococcus, Rhizopus, Fusarium and Lomentospora species from mock communities. The Tef1 assay was also capable of differentiating closely related species such as A. fumigatus and A. fischeri. In addition, it outperformed ITS1 at identifying A. fumigatus and other filamentous pathogens in mixed fungal communities (in the presence or absence of background human DNA). The assay could detect as few as 2 haploid genome equivalents of A. fumigatus from clinical respiratory samples. Lastly, spike-in controls were demonstrated to enable semi-quantitation of A. fumigatus load in clinical respiratory samples using sequencing data. CONCLUSIONS: This study has developed and tested a novel metabarcoding target and found the assay outperforms ITS1 at identifying clinically relevant filamentous fungi. The assay is a promising diagnostic candidate that could provide affordable NGS analysis to clinical mycology laboratories.
Asunto(s)
Micobioma , Micosis , Humanos , Micobioma/genética , ADN de Hongos/genética , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodosRESUMEN
Rocky habitats, globally distributed ecosystems, harbour diverse biota, including numerous endemic and endangered species. Vascular plants thriving in these environments face challenging abiotic conditions, requiring diverse morphological and physiological adaptations. Their engagement with the surrounding microbiomes is, however, equally vital for their adaptation, fitness, and long-term survival. Nevertheless, there remains a lack of understanding surrounding this complex interplay within this fascinating biotic ecosystem. Using microscopic observations and metabarcoding analyses, we examined the fungal abundance and diversity in the root system of the rock-dwelling West Carpathian endemic shrub, Daphne arbuscula (Thymelaeaceae). We explored the diversification of root-associated fungal communities in relation to microclimatic variations across the studied sites. We revealed extensive colonization of the Daphne roots by diverse taxonomic fungal groups attributed to different ecological guilds, predominantly plant pathogens, dark septate endophytes (DSE), and arbuscular mycorrhizal fungi (AMF). Notably, differences in taxonomic composition and ecological guilds emerged between colder and warmer microenvironments. Apart from omnipresent AMF, warmer sites exhibited a prevalence of plant pathogens, while colder sites were characterized by a dominance of DSE. This mycobiome diversification, most likely triggered by the environment, suggests that D. arbuscula populations in warmer areas may be more vulnerable to fungal diseases, particularly in the context of global climate change.
Asunto(s)
Daphne , Ecosistema , Micorrizas , Raíces de Plantas , Micorrizas/genética , Micorrizas/clasificación , Raíces de Plantas/microbiología , Daphne/microbiología , Daphne/genética , Micobioma/genética , Hongos/clasificación , Hongos/genética , Endófitos/genética , Adaptación Fisiológica/genéticaRESUMEN
Microbes typically secrete a plethora of molecules to promote niche colonization. Soil-dwelling microbes are well-known producers of antimicrobials that are exploited to outcompete microbial coinhabitants. Also, plant pathogenic microbes secrete a diversity of molecules into their environment for niche establishment. Upon plant colonization, microbial pathogens secrete so-called effector proteins that promote disease development. While such effectors are typically considered to exclusively act through direct host manipulation, we recently reported that the soil-borne, fungal, xylem-colonizing vascular wilt pathogen Verticillium dahliae exploits effector proteins with antibacterial properties to promote host colonization through the manipulation of beneficial host microbiota. Since fungal evolution preceded land plant evolution, we now speculate that a subset of the pathogen effectors involved in host microbiota manipulation evolved from ancient antimicrobial proteins of terrestrial fungal ancestors that served in microbial competition prior to the evolution of plant pathogenicity. Here, we show that V. dahliae has co-opted an ancient antimicrobial protein as effector, named VdAMP3, for mycobiome manipulation in planta. We show that VdAMP3 is specifically expressed to ward off fungal niche competitors during resting structure formation in senescing mesophyll tissues. Our findings indicate that effector-mediated microbiome manipulation by plant pathogenic microbes extends beyond bacteria and also concerns eukaryotic members of the plant microbiome. Finally, we demonstrate that fungal pathogens can exploit plant microbiome-manipulating effectors in a life stage-specific manner and that a subset of these effectors has evolved from ancient antimicrobial proteins of fungal ancestors that likely originally functioned in manipulation of terrestrial biota.
Asunto(s)
Péptidos Antimicrobianos/genética , Ascomicetos/genética , Micobioma/genética , Antibacterianos/metabolismo , Antiinfecciosos/metabolismo , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Evolución Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Interacciones Huésped-Patógeno , Micobioma/inmunología , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Verticillium/metabolismo , Xilema/metabolismoRESUMEN
Fungal communities are diverse and abundant in coastal waters, yet, their ecological roles and adaptations remain largely unknown. To address these gaps, ITS2 metabarcoding and metatranscriptomic analyses were used to capture the whole suite of fungal diversity and their metabolic potential in water column and sediments in the Yellow Sea during August and October 2019. ITS2 metabarcoding described successfully the abundance of Dikarya during August and October at the different examined habitats, but strongly underrepresented or failed to identify other fungal taxa, including zoosporic and early-diverging lineages, that were abundant in the mycobiome as uncovered by metatranscriptomes. Metatranscriptomics also revealed enriched expression of genes annotated to zoosporic fungi (e.g., chytrids) mainly in the surface water column in October. This enriched expression was correlated with the two-fold increase in chlorophyll-a intensity attributed to phytoplanktonic species which are known to be parasitized by chytrids. The concurrent high expression of genes related to calcium signalling and GTPase activity suggested that these metabolic traits facilitate the parasitic lifestyle of chytrids. Similarly, elevated expression of phagosome genes annotated to Rozellomycota, an early-diverging fungal phylum not fully detected with ITS2 metabarcoding, suggested that this taxon utilizes a suite of feeding modes, including phagotrophy in this coastal setting. Our data highlight the necessity of using combined approaches to accurately describe the community structure of coastal mycobiome. We also provide in-depth insights into the fungal ecological roles in coastal waters, and report potential metabolic mechanisms utilized by fungi to cope with environmental stresses that occur during distinct seasonal months in coastal ecosystems.
Asunto(s)
Ecosistema , Micobioma , Hongos/genética , Micobioma/genética , China , Microbiología del Agua , Agua de Mar/microbiologíaRESUMEN
Root-associated fungi could play a role in determining both the positive relationship between plant diversity and productivity in experimental grasslands, and its strengthening over time. This hypothesis assumes that specialized pathogenic and mutualistic fungal communities gradually assemble over time, enhancing plant growth more in species-rich than in species-poor plots. To test this hypothesis, we used high-throughput amplicon sequencing to characterize root-associated fungal communities in experimental grasslands of 1 and 15 years of age with varying levels of plant species richness. Specifically, we tested whether the relationship between fungal communities and plant richness and productivity becomes stronger with the age of the experimental plots. Our results showed that fungal diversity increased with plant diversity, but this relationship weakened rather than strengthened over the two time points. Contrastingly, fungal community composition showed increasing associations with plant diversity over time, suggesting a gradual build-up of specific fungal assemblages. Analyses of different fungal guilds showed that these changes were particularly marked in pathogenic fungi, whose shifts in relative abundance are consistent with the pathogen dilution hypothesis in diverse plant communities. Our results suggest that root-associated fungal pathogens play more specific roles in determining the diversity-productivity relationship than other root-associated plant symbionts.
Asunto(s)
Micobioma , Micobioma/genética , Raíces de Plantas/microbiología , Hongos/genética , Plantas , Simbiosis/genética , Microbiología del SueloRESUMEN
Global forests are increasingly being threatened by altered climatic conditions and increased attacks by pests and pathogens. The complex ecological interactions among pathogens, microbial communities, tree hosts and the environment are important drivers of forest dynamics. Little is known about the ecology of forest pathology and related microbial communities in temperate forests of the southern hemisphere. In this study, we used next-generation sequencing to characterize sapwood-inhabiting fungal communities in North Patagonian Nothofagus forests and assessed patterns of diversity of taxa and ecological guilds across climatic, site and host variables (health condition and compartment) as a contribution to Nothofagus autecology. The diversity patterns inferred through the metabarcoding analysis were similar to those obtained through culture-dependent approaches. However, we detected additional heterogeneity and greater richness with culture-free methods. Host species was the strongest driver of fungal community structure and composition, while host health status was the weakest. The relative impacts of site, season, plant compartment and health status were different for each tree species; these differences can be interpreted as a matter of water availability. For Nothofagus dombeyi, which is distributed across a wide range of climatic conditions, site was the strongest driver of community composition. The microbiome of N. pumilio varied more with season and temperature, a relevant factor for forest conservation in the present climate change scenario. Both species carry a number of potential fungal pathogens in their sapwood, whether they exhibit symptoms or not. Our results provide insight into the diversity of fungi associated with the complex pathobiome of the dominant Nothofagus species in southern South America.
Los bosques del mundo están cada vez más amenazados por las condiciones climáticas alteradas y el aumento de los ataques de plagas y patógenos. Las complejas interacciones ecológicas entre los patógenos, las comunidades microbianas, los árboles hospedantes y el medio ambiente son impulsores importantes de la dinámica forestal. Poco se sabe sobre la ecología de la patología forestal y las comunidades microbianas relacionadas en los bosques templados del hemisferio sur. En este estudio, utilizamos la secuenciación Illumina para caracterizar las comunidades de hongos que habitan en la albura en los bosques de Nothofagus de la Patagonia Norte y evaluamos los patrones de diversidad de taxones y gremios ecológicos a través de variables climáticas, de sitio y de hospedante (identidad, condición de salud y compartimento) como una contribución a la autoecología de los Nothofagus. Los patrones de diversidad inferidos a través del análisis metabarcoding fueron similares a los obtenidos a través de enfoques dependientes de cultivo. Sin embargo, detectamos mayor heterogeneidad y mayor riqueza con métodos independientes de cultivo. La especie hospedante fue el modelador más fuerte de la estructura y composición de la comunidad fúngica, mientras que el estado de salud del hospedante fue el más débil. El impacto relativo del sitio, la estación, el compartimento y el estado de salud fueron diferentes para cada especie de árbol; estas diferencias pueden interpretarse en clave de disponibilidad de agua. Para N. dombeyi, que se distribuye a lo largo de una amplia gama de condiciones climáticas, el sitio fue el principal modelador de la composición de la comunidad. El micobioma de Nothofagus pumilio varió más con la estación y la temperatura, un factor relevante para la conservación de los bosques en el escenario actual de cambio climático. Ambas especies portan una serie de patógenos fúngicos potenciales en su albura, ya sea que muestren síntomas o no. Nuestros resultados brindan una idea de la diversidad de hongos asociados con el complejo patobioma de las especies dominantes de Nothofagus en el sur de América del Sur.
Asunto(s)
Micobioma , Micobioma/genética , Biodiversidad , Bosques , Árboles/microbiología , América del Sur , Hongos/genética , Microbiología del SueloRESUMEN
Symbiotic fungi mediate important energy and nutrient transfers in terrestrial ecosystems. Environmental change can lead to shifts in communities of symbiotic fungi, but the consequences of these shifts for nutrient dynamics among symbiotic partners are poorly understood. Here, we assessed variation in carbon (C), nitrogen (N) and phosphorus (P) in tissues of arbuscular mycorrhizal (AM) fungi and a host plant (Medicago sativa) in response to experimental warming and drought. We linked compositional shifts in AM fungal communities in roots and soil to variation in hyphal chemistry by using high-throughput DNA sequencing and joint species distribution modelling. Compared to plants, AM hyphae was 43% lower in (C) and 24% lower in (N) but more than nine times higher in (P), with significantly lower C:N, C:P and N:P ratios. Warming and drought resulted in increases in (P) and reduced C:P and N:P ratios in all tissues, indicating fungal P accumulation was exacerbated by climate-associated stress. Warming and drought modified the composition of AM fungal communities, and many of the AM fungal genera that were linked to shifts in mycelial chemistry were also negatively impacted by climate variation. Our study offers a unified framework to link climate change, fungal community composition, and community-level functional traits. Thus, our study provides insight into how environmental change can alter ecosystem functions via the promotion or reduction of fungal taxa with different stoichiometric characteristics and responses.
Asunto(s)
Micobioma , Micorrizas , Ecosistema , Micobioma/genética , Sequías , Raíces de Plantas/microbiología , Suelo/química , Plantas/microbiología , Microbiología del Suelo , Hongos/genéticaRESUMEN
High-throughput sequencing has substantially improved our understanding of fungal diversity. However, the short read (<500 bp) length of current second-generation sequencing approaches provides limited taxonomic and phylogenetic resolution for species discrimination. Longer sequences containing more information are highly desired to provide greater taxonomic resolution. Here, we amplified full-length rRNA operons (~5.5 kb) and established a corresponding fungal rRNA operon database for ONT sequences (FRODO), which contains ONT sequences representing eight phyla, 41 classes, 109 orders, 256 families, 524 genera and 1116 species. We also benchmarked the optimal method for sequence classification and determined that the RDP classifier based on our FRODO database was capable of improving the classification of ONT reads, with an average of 98%-99% reads correctly classified at the genus or species level. We investigated the applicability of our approach in three representative mycobiomes, namely, the soil, marine and human gut mycobiomes, and found that the gut contains the largest number of unknown species (over 90%), followed by the marine (42%) and soil (33.8%) mycobiomes. We also observed a distinct difference in the composition of the marine and soil mycobiomes, with the highest richness and diversity detected in soils. Overall, our study provides a systematic approach for mycobiome studies and revealed that the previous methods might have underestimated the diversity of mycobiome species. Future application of this method will lead to a better understanding of the taxonomic and functional diversity of fungi in environmental and health-related mycobiomes.
Asunto(s)
Micobioma , Secuenciación de Nanoporos , Humanos , Micobioma/genética , Operón de ARNr , Filogenia , Suelo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hongos/genéticaRESUMEN
Fungi can be found in almost all ecosystems. Some of them can even survive in harsh, anthropogenically transformed environments, such as post-industrial soils. In order to verify how the soil fungal diversity may be changed by pollution, two soil samples from each of the 28 post-industrial sites were collected. Each soil sample was characterized in terms of concentration of heavy metals and petroleum derivatives. To identify soil fungal communities, fungal internal transcribed spacer 2 (ITS2) amplicon was sequenced for each sample using Illumina MiSeq platform. There were significant differences in the community structure and taxonomic diversity among the analysed samples. The highest taxon richness and evenness were observed in the non-polluted sites, and lower numbers of taxa were identified in multi-polluted soils. The presence of monocyclic aromatic hydrocarbons, gasoline and mineral oil was determined as the factors driving the differences in the mycobiome. Furthermore, in the culture-based selection experiment, two main groups of fungi growing on polluted media were identified - generalists able to live in the presence of pollution, and specialists adapted to the usage of BTEX as a sole source of energy. Our selection experiment proved that it is long-term soil contamination that shapes the community, rather than temporary addition of pollutant.
Asunto(s)
Micobioma , Contaminantes del Suelo , Ecosistema , Hongos/genética , Micobioma/genética , Suelo/química , Microbiología del SueloRESUMEN
Dead wood quantity and quality is important for forest biodiversity, by determining wood-inhabiting fungal assemblages. We therefore evaluated how fungal communities were regulated by stem traits and compartments (i.e. bark, outer- and inner wood) of 14 common temperate tree species. Fresh logs were incubated in a common garden experiment in a forest site in the Netherlands. After 1 and 4 years of decay, the fungal composition of different compartments was assessed using Internal Transcribed Spacer amplicon sequencing. We found that fungal alpha diversity differed significantly across tree species and stem compartments, with bark showing significantly higher fungal diversity than wood. Gymnosperms and Angiosperms hold different fungal communities, and distinct fungi were found between inner wood and other compartments. Stem traits showed significant afterlife effects on fungal communities; traits associated with accessibility (e.g. conduit diameter), stem chemistry (e.g. C, N, lignin) and physical defence (e.g. density) were important factors shaping fungal community structure in decaying stems. Overall, stem traits vary substantially across stem compartments and tree species, thus regulating fungal communities and the long-term carbon dynamics of dead trees.
Asunto(s)
Micobioma , Árboles , Biodiversidad , Bosques , Hongos/genética , Micobioma/genética , Árboles/microbiología , Madera/microbiologíaRESUMEN
The factors shaping the composition of the tree mycobiome are still under investigation. We tested the effects of host genotype, site, host phenotypic traits, and air fungal spore communities on the assembly of the fungi inhabiting Norway spruce needles. We used Norway spruce clones and spore traps within the collection sites and characterized both needle and air mycobiome communities by high-throughput sequencing of the ITS2 region. The composition of the needle mycobiome differed between Norway spruce clones, and clones with high genetic similarity had a more similar mycobiome. The needle mycobiome also varied across sites and was associated with the composition of the local air mycobiome and climate. Phenotypic traits such as diameter at breast height or crown health influenced the needle mycobiome to a lesser extent than host genotype and air mycobiome. Altogether, our results suggest that the needle mycobiome is mainly driven by the host genotype in combination with the composition of the local air spore communities. Our work highlights the role of host intraspecific variation in shaping the mycobiome of trees and provides new insights on the ecological processes structuring fungal communities inhabiting woody plants.
Asunto(s)
Micobioma , Picea , Hongos/genética , Genotipo , Micobioma/genética , Picea/genética , Picea/microbiología , Esporas Fúngicas/genética , Árboles/microbiologíaRESUMEN
The mechanisms underlying microbial community dynamics and co-occurrence patterns along ecological succession are crucial for understanding ecosystem recovery but remain largely unexplored. Here, we investigated community dynamics and taxa co-occurrence patterns in bacterial and fungal communities across a well-established chronosequence of post-mining lands spanning 54 years of recovery. Bacterial community structures became increasingly phylogenetically clustered with soil age at early successional stages and varied less at later successional stages. The dynamics of bacterial community phylogenetic structures were determined by the changes in the soil vegetation cover along succession. The dynamics of fungal community phylogenetic structures did not significantly correlate with soil age, soil properties or vegetation cover, and were mainly attributed to stochastic processes. Along succession, the common decrease in the bacterial co-occurrence complexity and in the average pairwise phylogenetic distances between co-occurring bacteria implied a decrease in potential bacterial cooperation. The increased complexity of fungal co-occurrence along succession was independent of phylogenetic relatedness between co-occurring fungi. This study provides new sights into ecological mechanisms underlying bacterial and fungal community succession.
Asunto(s)
Ecosistema , Micobioma , Bacterias/genética , Micobioma/genética , Filogenia , Suelo/química , Microbiología del SueloRESUMEN
Fungal species have numerous important environmental functions. Where these functions occur will depend on how fungi are spatially distributed, but the spatial structures of fungal communities are largely unknown, especially in understudied hyperdiverse tropical tree canopy systems. Here we explore fungal communities in a Costa Rican tropical rainforest canopy, with a focus on local-scale spatial structure and substrate specificity of fungi. Samples of ~1 cm3 were collected from 135 points along five adjacent tree branches, with intersample distances from 1 to 800 cm, and dissected into four substrates: outer host tree bark, inner bark, dead bryophytes and living bryophytes. We sequenced the ITS2 region to characterize total fungal communities. Fungal community composition and diversity varied among substrate types, even when multiple substrates were in direct contact. Fungi were most diverse in living bryophytes, with 39% of all operational taxonomic units (OTUs) found exclusively in this substrate, and the least diverse in inner bark. Fungal communities had significant positive spatial autocorrelation and distance decay of similarity only at distances less than 1 m. Similarity among samples declined by half in less than 10 cm, and even at these short distances, similarities were low with few OTUs shared among samples. These results indicate that community turnover is high and occurs at very small spatial scales, with any two locations sharing very few fungi in common. High heterogeneity of fungal communities in space and among substrates may have implications for the distributions, population dynamics and diversity of other tree canopy organisms, including epiphytic plants.
Asunto(s)
Micobioma , Biodiversidad , Hongos/genética , Micobioma/genética , Plantas/microbiología , Bosque Lluvioso , ÁrbolesRESUMEN
Dispersal is a key force in the assembly of fungal communities and the air is the dominant route of dispersal for most fungi. Understanding the dynamics of airborne fungi is important for determining their source and for helping to prevent fungal disease. This understanding is important in the San Joaquin Valley of California, which is home to 4.2 million people and where the airborne fungus Coccidioides is responsible for the most important fungal disease of otherwise healthy humans, coccidioidomycosis. The San Joaquin Valley is the most productive agricultural region in the United States, with the principal crops grown therein susceptible to fungal pathogens. Here, we characterize the fungal community in soil and air on undeveloped and agricultural land in the San Joaquin Valley using metabarcoding of the internal transcribed spacer 2 variable region of fungal rDNA. Using 1,002 individual samples, we report one of the most extensive studies of fungi sampled simultaneously from air and soil using modern sequencing techniques. We find that the air mycobiome in the San Joaquin Valley is distinct from the soil mycobiome, and that the assemblages of airborne fungi from sites as far apart as 160 km are far more similar to one another than to the fungal communities in nearby soils. Additionally, we present evidence that airborne fungi in the San Joaquin Valley are subject to dispersal limitation and cyclical intra-annual patterns of community composition. Our findings are broadly applicable to understanding the dispersal of airborne fungi and the taxonomic structure of airborne fungal assemblages.
Asunto(s)
Micobioma , California , ADN Ribosómico , Hongos/genética , Humanos , Micobioma/genética , Suelo , Microbiología del SueloRESUMEN
The development of high-throughput sequencing (HTS) technologies has greatly improved our capacity to identify fungi and unveil their ecological roles across a variety of ecosystems. Here we provide an overview of current best practices in metabarcoding analysis of fungal communities, from experimental design through molecular and computational analyses. By reanalysing published data sets, we demonstrate that operational taxonomic units (OTUs) outperform amplified sequence variants (ASVs) in recovering fungal diversity, a finding that is particularly evident for long markers. Additionally, analysis of the full-length ITS region allows more accurate taxonomic placement of fungi and other eukaryotes compared to the ITS2 subregion. Finally, we show that specific methods for compositional data analyses provide more reliable estimates of shifts in community structure. We conclude that metabarcoding analyses of fungi are especially promising for integrating fungi into the full microbiome and broader ecosystem functioning context, recovery of novel fungal lineages and ancient organisms as well as barcoding of old specimens including type material.
Asunto(s)
Microbiota , Micobioma , Biodiversidad , Código de Barras del ADN Taxonómico/métodos , Hongos/genética , Microbiota/genética , Micobioma/genética , Proyectos de InvestigaciónRESUMEN
BACKGROUND: Although intestinal fungi are known to interact with the immune system, the relationship between intestinal fungi and childhood celiac disease (CeD), an immune-mediated condition, has rarely been reported. AIMS: The aim of this study was to describe gut fungal profiles in a cohort of children with new-onset CeD. METHODS: Mucosal and fecal samples were collected from children with CeD and controls and subjected to metagenomics analysis of fungal microbiota communities. DNA libraries were sequenced using Illumina HiSeq platform 2 × 150 bp. Bioinformatic analysis was performed to quantify the relative abundance of fungi. Shannon alpha diversity metrics and beta diversity principal coordinate (PCo) analyses were calculated, and DESeq tests were performed between celiac and non-celiac groups. RESULTS: Overall more abundant taxa in samples of children with CeD included Tricholomataceae, Saccharomycetaceae, Saccharomycetes Saccharomyces cerevisiae, and Candida, whereas less abundant taxa included Pichiaceae, Pichia kudriavzevii, Pneumocystis, and Pneumocystis jirovecii. Alpha diversity between CeD and control individuals did not differ significantly, and beta diversity PCo analysis showed overlap of samples from CeD and controls for both fecal or mucosal samples; however, there was a clear separation between mucosal and fecal overall samples CONCLUSIONS: We report fungal dysbiosis in children with CeD, suggesting a possible role in the pathogenesis of CeD. Further larger, controlled, prospective and longitudinal studies are needed to verify the results of this study and clarify the functional role of fungi in CeD.
Asunto(s)
Enfermedad Celíaca , Disbiosis , Hongos , Micobioma , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/epidemiología , Enfermedad Celíaca/microbiología , Enfermedad Celíaca/fisiopatología , Niño , Disbiosis/diagnóstico , Disbiosis/microbiología , Heces/microbiología , Femenino , Hongos/clasificación , Hongos/inmunología , Hongos/aislamiento & purificación , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Metagenómica/métodos , Fenómenos Microbiológicos , Micobioma/genética , Micobioma/inmunología , Arabia Saudita/epidemiologíaRESUMEN
BACKGROUND: Straw retention is a substitute for chemical fertilizers, which effectively maintain organic matter and improve microbial communities on agricultural land. The purpose of this study was to provide sufficient information on soil fungal community networks and their functions in response to straw retention. Hence, we used quantitative real-time PCR (qRT-PCR), Illumina MiSeq (ITS rRNA) and FUNGuild to examine ITS rRNA gene populations, soil fungal succession and their functions under control (CK) and sugarcane straw retention (SR) treatments at different soil layers (0-10, 10-20, 20-30, and 30-40 cm) in fallow fields. RESULT: The result showed that SR significantly enhanced ITS rRNA gene copy number and Shannon index at 0-10 cm soil depth. Fungi abundance, OTUs number and ACE index decreased with the increasing soil depth. The ANOSIM analysis revealed that the fungal community of SR significantly differed from that of CK. Similarly, significant difference was also observed between topsoil (0-20 cm) and subsoil (20-40 cm). Compared with CK, SR decreased the relative abundance of the pathogen, while increased the proportion of saprotroph. Regarding soil depth, pathogen relative abundance in topsoil was lower than that in subsoil. Besides, both sugarcane straw retention and soil depths (topsoil and subsoil) significantly altered the co-occurrence patterns and fungal keystone taxa closely related to straw decomposition. Furthermore, both SR and topsoil had higher average clustering coefficients (aveCC), negative edges and varied modularity. CONCLUSIONS: Overall, straw retention improved α-diversity, network structure and fungal community, while reduced soil pathogenic microbes across the entire soil profile. Thus, retaining straw to improve fungal composition, community stability and their functions, in addition to reducing soil-borne pathogens, can be an essential agronomic practice in developing a sustainable agricultural system.