Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.374
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 97(1): 227-252, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881552

RESUMEN

Unique to striated muscle cells, transverse tubules (t-tubules) are membrane organelles that consist of sarcolemma penetrating into the myocyte interior, forming a highly branched and interconnected network. Mature t-tubule networks are found in mammalian ventricular cardiomyocytes, with the transverse components of t-tubules occurring near sarcomeric z-discs. Cardiac t-tubules contain membrane microdomains enriched with ion channels and signaling molecules. The microdomains serve as key signaling hubs in regulation of cardiomyocyte function. Dyad microdomains formed at the junctional contact between t-tubule membrane and neighboring sarcoplasmic reticulum are critical in calcium signaling and excitation-contraction coupling necessary for beat-to-beat heart contraction. In this review, we provide an overview of the current knowledge in gross morphology and structure, membrane and protein composition, and function of the cardiac t-tubule network. We also review in detail current knowledge on the formation of functional membrane subdomains within t-tubules, with a particular focus on the cardiac dyad microdomain. Lastly, we discuss the dynamic nature of t-tubules including membrane turnover, trafficking of transmembrane proteins, and the life cycles of membrane subdomains such as the cardiac BIN1-microdomain, as well as t-tubule remodeling and alteration in diseased hearts. Understanding cardiac t-tubule biology in normal and failing hearts is providing novel diagnostic and therapeutic opportunities to better treat patients with failing hearts.


Asunto(s)
Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Sarcolema/metabolismo , Sarcolema/ultraestructura , Animales , Humanos
2.
Nature ; 556(7700): 239-243, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618819

RESUMEN

Cardiac tissues generated from human induced pluripotent stem cells (iPSCs) can serve as platforms for patient-specific studies of physiology and disease1-6. However, the predictive power of these models is presently limited by the immature state of the cells1, 2, 5, 6. Here we show that this fundamental limitation can be overcome if cardiac tissues are formed from early-stage iPSC-derived cardiomyocytes soon after the initiation of spontaneous contractions and are subjected to physical conditioning with increasing intensity over time. After only four weeks of culture, for all iPSC lines studied, such tissues displayed adult-like gene expression profiles, remarkably organized ultrastructure, physiological sarcomere length (2.2 µm) and density of mitochondria (30%), the presence of transverse tubules, oxidative metabolism, a positive force-frequency relationship and functional calcium handling. Electromechanical properties developed more slowly and did not achieve the stage of maturity seen in adult human myocardium. Tissue maturity was necessary for achieving physiological responses to isoproterenol and recapitulating pathological hypertrophy, supporting the utility of this tissue model for studies of cardiac development and disease.


Asunto(s)
Diferenciación Celular , Corazón/crecimiento & desarrollo , Células Madre Pluripotentes Inducidas/citología , Miocardio/citología , Miocitos Cardíacos/citología , Técnicas de Cultivo de Tejidos , Adulto , Calcio/metabolismo , Diferenciación Celular/genética , Metabolismo Energético/efectos de los fármacos , Corazón/efectos de los fármacos , Humanos , Isoproterenol/farmacología , Mitocondrias/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Sarcómeros/metabolismo , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34117120

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in ß-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Mutación/genética , Contracción Miocárdica/genética , Miosinas Ventriculares/genética , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Calcio/metabolismo , Línea Celular , Tamaño de la Célula , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Miofibrillas/metabolismo
4.
Nat Chem Biol ; 17(1): 39-46, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32989297

RESUMEN

Protein kinases control nearly every facet of cellular function. These key signaling nodes integrate diverse pathway inputs to regulate complex physiological processes, and aberrant kinase signaling is linked to numerous pathologies. While fluorescent protein-based biosensors have revolutionized the study of kinase signaling by allowing direct, spatiotemporally precise kinase activity measurements in living cells, powerful new molecular tools capable of robustly tracking kinase activity dynamics across diverse experimental contexts are needed to fully dissect the role of kinase signaling in physiology and disease. Here, we report the development of an ultrasensitive, second-generation excitation-ratiometric protein kinase A (PKA) activity reporter (ExRai-AKAR2), obtained via high-throughput linker library screening, that enables sensitive and rapid monitoring of live-cell PKA activity across multiple fluorescence detection modalities, including plate reading, cell sorting and one- or two-photon imaging. Notably, in vivo visual cortex imaging in awake mice reveals highly dynamic neuronal PKA activity rapidly recruited by forced locomotion.


Asunto(s)
Técnicas Biosensibles , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Miocitos Cardíacos/enzimología , Neuronas/enzimología , Imagen Óptica/métodos , Alprostadil/farmacología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dihidroxifenilalanina/farmacología , Dinoprostona/farmacología , Colorantes Fluorescentes/química , Expresión Génica , Biblioteca de Genes , Genes Reporteros , Péptido 1 Similar al Glucagón/farmacología , Células HEK293 , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Humanos , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Cultivo Primario de Células , Transducción de Señal
5.
Circ Res ; 128(2): 203-215, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33228470

RESUMEN

RATIONALE: The sarcolemma of cardiomyocytes contains many proteins that are essential for electromechanical function in general, and excitation-contraction coupling in particular. The distribution of these proteins is nonuniform between the bulk sarcolemmal surface and membrane invaginations known as transverse tubules (TT). TT form an intricate network of fluid-filled conduits that support electromechanical synchronicity within cardiomyocytes. Although continuous with the extracellular space, the narrow lumen and the tortuous structure of TT can form domains of restricted diffusion. As a result of unequal ion fluxes across cell surface and TT membranes, limited diffusion may generate ion gradients within TT, especially deep within the TT network and at high pacing rates. OBJECTIVE: We postulate that there may be an advective component to TT content exchange, wherein cyclic deformation of TT during diastolic stretch and systolic shortening serves to mix TT luminal content and assists equilibration with bulk extracellular fluid. METHODS AND RESULTS: Using electron tomography, we explore the 3-dimensional nanostructure of TT in rabbit ventricular myocytes, preserved at different stages of the dynamic cycle of cell contraction and relaxation. We show that cellular deformation affects TT shape in a sarcomere length-dependent manner and on a beat-by-beat time-scale. Using fluorescence recovery after photobleaching microscopy, we show that apparent speed of diffusion is affected by the mechanical state of cardiomyocytes, and that cyclic contractile activity of cardiomyocytes accelerates TT diffusion dynamics. CONCLUSIONS: Our data confirm the existence of an advective component to TT content exchange. This points toward a novel mechanism of cardiac autoregulation, whereby the previously implied increased propensity for TT luminal concentration imbalances at high electrical stimulation rates would be countered by elevated advection-assisted diffusion at high mechanical beating rates. The relevance of this mechanism in health and during pathological remodeling (eg, cardiac hypertrophy or failure) forms an exciting target for further research.


Asunto(s)
Acoplamiento Excitación-Contracción , Frecuencia Cardíaca , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Sarcolema/metabolismo , Potenciales de Acción , Animales , Difusión , Tomografía con Microscopio Electrónico , Femenino , Recuperación de Fluorescencia tras Fotoblanqueo , Miocitos Cardíacos/ultraestructura , Conejos , Sarcolema/ultraestructura
6.
Circ Res ; 128(3): 419-432, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33342222

RESUMEN

RATIONALE: The cardiac sodium channel NaV1.5 has a fundamental role in excitability and conduction. Previous studies have shown that sodium channels cluster together in specific cellular subdomains. Their association with intracellular organelles in defined regions of the myocytes, and the functional consequences of that association, remain to be defined. OBJECTIVE: To characterize a subcellular domain formed by sodium channel clusters in the crest region of the myocytes and the subjacent subsarcolemmal mitochondria. METHODS AND RESULTS: Through a combination of imaging approaches including super-resolution microscopy and electron microscopy we identified, in adult cardiac myocytes, a NaV1.5 subpopulation in close proximity to subjacent subsarcolemmal mitochondria; we further found that subjacent subsarcolemmal mitochondria preferentially host the mitochondrial NCLX (Na+/Ca2+ exchanger). This anatomic proximity led us to investigate functional changes in mitochondria resulting from sodium channel activity. Upon TTX (tetrodotoxin) exposure, mitochondria near NaV1.5 channels accumulated more Ca2+ and showed increased reactive oxygen species production when compared with interfibrillar mitochondria. Finally, crosstalk between NaV1.5 channels and mitochondria was analyzed at a transcriptional level. We found that SCN5A (encoding NaV1.5) and SLC8B1 (which encode NaV1.5 and NCLX, respectively) are negatively correlated both in a human transcriptome data set (Genotype-Tissue Expression) and in human-induced pluripotent stem cell-derived cardiac myocytes deficient in SCN5A. CONCLUSIONS: We describe an anatomic hub (a couplon) formed by sodium channel clusters and subjacent subsarcolemmal mitochondria. Preferential localization of NCLX to this domain allows for functional coupling where the extrusion of Ca2+ from the mitochondria is powered, at least in part, by the entry of sodium through NaV1.5 channels. These results provide a novel entry-point into a mechanistic understanding of the intersection between electrical and structural functions of the heart.


Asunto(s)
Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Señalización del Calcio , Línea Celular , Femenino , Humanos , Cinética , Masculino , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Mitocondrias Cardíacas/ultraestructura , Proteínas Mitocondriales/genética , Miocitos Cardíacos/ultraestructura , Canal de Sodio Activado por Voltaje NAV1.5/genética , Imagen Individual de Molécula , Intercambiador de Sodio-Calcio/genética , Superóxidos/metabolismo
8.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569379

RESUMEN

Myocardial injury causes death to cardiomyocytes and leads to heart failure. The adult mammalian heart has very limited regenerative capacity. However, the heart from early postnatal mammals and from adult lower vertebrates can fully regenerate after apical resection or myocardial infarction. Thus, it is of particular interest to decipher the mechanism underlying cardiac regeneration that preserves heart structure and function. RNA-binding proteins, as key regulators of post-transcriptional gene expression to coordinate cell differentiation and maintain tissue homeostasis, display dynamic expression in fetal and adult hearts. Accumulating evidence has demonstrated their importance for the survival and proliferation of cardiomyocytes following neonatal and postnatal cardiac injury. Functional studies suggest that RNA-binding proteins relay damage-stimulated cell extrinsic or intrinsic signals to regulate heart regenerative capacity by reprogramming multiple molecular and cellular processes, such as global protein synthesis, metabolic changes, hypertrophic growth, and cellular plasticity. Since manipulating the activity of RNA-binding proteins can improve the formation of new cardiomyocytes and extend the window of the cardiac regenerative capacity in mammals, they are potential targets of therapeutic interventions for cardiovascular disease. This review discusses our evolving understanding of RNA-binding proteins in regulating cardiac repair and regeneration, with the aim to identify important open questions that merit further investigations.


Asunto(s)
Regulación de la Expresión Génica , Corazón , Infarto del Miocardio , Miocitos Cardíacos , Proteínas de Unión al ARN , Regeneración , Proteínas de Unión al ARN/metabolismo , Regeneración/genética , Corazón/fisiología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Transcripción Genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Humanos , Animales
9.
Biochem Biophys Res Commun ; 595: 89-95, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35121232

RESUMEN

In cardiac muscle cells, heterodimeric integrin transmembrane receptors are known to serve as mechanotransducers, translating mechanical force to biochemical signaling. However, the roles of many individual integrins have still not been delineated. In this report, we demonstrate that Itga3b is localized to the sarcolemma of cardiomyocytes from 24 to 96 hpf. We further show that heterozygous and homozygous itga3b/bdf mutant embryos display a cardiomyopathy phenotype, with decreased cardiac contractility and reduced cardiomyocyte number. Correspondingly, proliferation of ventricular and atrial cardiomyoctyes and ventricular epicardial cells is decreased in itga3b mutant hearts. The contractile dysfunction of itga3b mutants can be attributed to cardiomyocyte sarcomeric disorganization, including thin myofilaments with blurred and shortened Z-discs. Together, our results reveal that Itga3b localizes to the myocardium sarcolemma, and it is required for cardiac contractility and cardiomyocyte proliferation.


Asunto(s)
Integrina alfa3/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Integrina alfa3/metabolismo , Microscopía Electrónica de Transmisión , Mutación , Contracción Miocárdica/genética , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/ultraestructura , Sarcolema/metabolismo , Sarcolema/ultraestructura , Sarcómeros/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
10.
Circ Res ; 126(3): e10-e26, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31822208

RESUMEN

Rationale: Mechanical forces are transduced to nuclear responses via the linkers of the nucleoskeleton and cytoskeleton (LINC) complex, which couples the cytoskeleton to the nuclear lamina and associated chromatin. While disruption of the LINC complex can cause cardiomyopathy, the relevant interactions that bridge the nucleoskeleton to cytoskeleton are poorly understood in the cardiomyocyte, where cytoskeletal organization is unique. Furthermore, while microtubules and desmin intermediate filaments associate closely with cardiomyocyte nuclei, the importance of these interactions is unknown. Objective: Here, we sought to determine how cytoskeletal interactions with the LINC complex regulate nuclear homeostasis in the cardiomyocyte. Methods and Results: To this end, we acutely disrupted the LINC complex, microtubules, actin, and intermediate filaments and assessed the consequences on nuclear morphology and genome organization in rat ventricular cardiomyocytes via a combination of super-resolution imaging, biophysical, and genomic approaches. We find that a balance of dynamic microtubules and desmin intermediate filaments is required to maintain nuclear shape and the fidelity of the nuclear envelope and lamina. Upon depletion of desmin (or nesprin [nuclear envelope spectrin repeat protein]-3, its binding partner in the LINC complex), polymerizing microtubules collapse the nucleus and drive infolding of the nuclear membrane. This results in DNA damage, a loss of genome organization, and broad transcriptional changes. The collapse in nuclear integrity is concomitant with compromised contractile function and may contribute to the pathophysiological changes observed in desmin-related myopathies. Conclusions: Disrupting the tethering of desmin to the nucleus results in a loss of nuclear homeostasis and rapid alterations to cardiomyocyte function. Our data suggest that a balance of forces imposed by intermediate filaments and microtubules is required to maintain nuclear structure and genome organization in the cardiomyocyte.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Matriz Nuclear/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Células Cultivadas , Desmina/genética , Desmina/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Microtúbulos/ultraestructura , Miocitos Cardíacos/ultraestructura , Matriz Nuclear/ultraestructura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Arterioscler Thromb Vasc Biol ; 41(9): 2454-2468, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34261327

RESUMEN

Objective: Extracellular vesicles (EVs) facilitate molecular transport across extracellular space, allowing local and systemic signaling during homeostasis and in disease. Extensive studies have described functional roles for EV populations, including during cardiovascular disease, but the in vivo characterization of endogenously produced EVs is still in its infancy. Because of their genetic tractability and live imaging amenability, zebrafish represent an ideal but under-used model to investigate endogenous EVs. We aimed to establish a transgenic zebrafish model to allow the in vivo identification, tracking, and extraction of endogenous EVs produced by different cell types. Approach and Results: Using a membrane-tethered fluorophore reporter system, we show that EVs can be fluorescently labeled in larval and adult zebrafish and demonstrate that multiple cell types including endothelial cells and cardiomyocytes actively produce EVs in vivo. Cell-type specific EVs can be tracked by high spatiotemporal resolution light-sheet live imaging and modified flow cytometry methods allow these EVs to be further evaluated. Additionally, cryo electron microscopy reveals the full morphological diversity of larval and adult EVs. Importantly, we demonstrate the utility of this model by showing that different cell types exchange EVs in the adult heart and that ischemic injury models dynamically alter EV production. Conclusions: We describe a powerful in vivo zebrafish model for the investigation of endogenous EVs in all aspects of cardiovascular biology and pathology. A cell membrane fluorophore labeling approach allows cell-type specific tracing of EV origin without bias toward the expression of individual protein markers and will allow detailed future examination of their function.


Asunto(s)
Sistema Cardiovascular/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Sistema Cardiovascular/embriología , Separación Celular , Microscopía por Crioelectrón , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Vesículas Extracelulares/genética , Vesículas Extracelulares/ultraestructura , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Larva/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
12.
J Cardiovasc Pharmacol ; 79(1): e75-e86, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740211

RESUMEN

ABSTRACT: The present study was intended to evaluate the effect of polyherbal formulation (PHF) made with 3 nutraceuticals, such as Piper nigrum, Terminalia paniculata, and Bauhinia purpurea on inflammation and oxidative stress in diabetic cardiomyopathy (DCM), which is induced by streptozotocin and nicotinamide administration in rats. We supplemented DCM rats with PHF (250 and 500 mg/kg/BW) for 45 days and evaluated their effects on oxidative stress markers, proinflammatory cytokines, and messenger RNA expressions of the nuclear factor erythroid 2-related factor-2 (Nrf-2) and its linked genes [heme oxygenase-1 (HO-1), superoxide dismutase, catalase] along with inflammatory genes [tumour necrosis factor α and nuclear factor kappa B (NF-κB)]. Our study demonstrated that PHF successfully attenuated inflammation and oxidative stress via messenger RNA upregulation of Nrf-2, HO-1, superoxide dismutase, and catalase and concomitantly with downregulation of tumour necrosis factor α and NF-κB. Conversely, PHF also protected hyperglycemia-mediated cardiac damage, which was confirmed with histopathological and scanning electron microscopy analysis. In conclusion, our results suggested that PHF successfully ameliorated hyperglycemia-mediated inflammation and oxidative stress via regulation of NF-κB/Nrf-2/HO-1 pathway. Therefore, these results recommend that PHF may be a prospective therapeutic agent for DCM.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cardiomiopatías Diabéticas/prevención & control , Hemo Oxigenasa (Desciclizante)/metabolismo , Hipoglucemiantes/farmacología , Mediadores de Inflamación/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Preparaciones de Plantas/farmacología , Animales , Glucemia/metabolismo , Citocinas/genética , Citocinas/metabolismo , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hemo Oxigenasa (Desciclizante)/genética , Masculino , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/ultraestructura , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Ratas Wistar , Transducción de Señal
13.
Proc Natl Acad Sci U S A ; 116(13): 5872-5877, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850523

RESUMEN

Nanoscale multipoint structure-function analysis is essential for deciphering the complexity of multiscale biological and physical systems. Atomic force microscopy (AFM) allows nanoscale structure-function imaging in various operating environments and can be integrated seamlessly with disparate probe-based sensing and manipulation technologies. Conventional AFMs only permit sequential single-point analysis; widespread adoption of array AFMs for simultaneous multipoint study is challenging owing to the intrinsic limitations of existing technological approaches. Here, we describe a prototype dispersive optics-based array AFM capable of simultaneously monitoring multiple probe-sample interactions. A single supercontinuum laser beam is utilized to spatially and spectrally map multiple cantilevers, to isolate and record beam deflection from individual cantilevers using distinct wavelength selection. This design provides a remarkably simplified yet effective solution to overcome the optical cross-talk while maintaining subnanometer sensitivity and compatibility with probe-based sensors. We demonstrate the versatility and robustness of our system on parallel multiparametric imaging at multiscale levels ranging from surface morphology to hydrophobicity and electric potential mapping in both air and liquid, mechanical wave propagation in polymeric films, and the dynamics of living cells. This multiparametric, multiscale approach provides opportunities for studying the emergent properties of atomic-scale mechanical and physicochemical interactions in a wide range of physical and biological networks.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Animales , Ratones , Miocitos Cardíacos/ultraestructura , Nanotecnología/métodos , Imagen Óptica/métodos , Polímeros/química , Relación Estructura-Actividad , Propiedades de Superficie
14.
J Mol Cell Cardiol ; 153: 86-92, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33359037

RESUMEN

Detailed knowledge of the ultrastructure of intracellular compartments is a prerequisite for our understanding of how cells function. In cardiac muscle cells, close apposition of transverse (t)-tubule (TT) and sarcoplasmic reticulum (SR) membranes supports stable high-gain excitation-contraction coupling. Here, the fine structure of this key intracellular element is examined in rabbit and mouse ventricular cardiomyocytes, using ultra-rapid high-pressure freezing (HPF, omitting aldehyde fixation) and electron microscopy. 3D electron tomograms were used to quantify the dimensions of TT, terminal cisternae of the SR, and the space between SR and TT membranes (dyadic cleft). In comparison to conventional aldehyde-based chemical sample fixation, HPF-preserved samples of both species show considerably more voluminous SR terminal cisternae, both in absolute dimensions and in terms of junctional SR to TT volume ratio. In rabbit cardiomyocytes, the average dyadic cleft surface area of HPF and chemically fixed myocytes did not differ, but cleft volume was significantly smaller in HPF samples than in conventionally fixed tissue; in murine cardiomyocytes, the dyadic cleft surface area was higher in HPF samples with no difference in cleft volume. In both species, the apposition of the TT and SR membranes in the dyad was more likely to be closer than 10 nm in HPF samples compared to CFD, presumably resulting from avoidance of sample shrinkage associated with conventional fixation techniques. Overall, we provide a note of caution regarding quantitative interpretation of chemically-fixed ultrastructures, and offer novel insight into cardiac TT and SR ultrastructure with relevance for our understanding of cardiac physiology.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Congelación , Ventrículos Cardíacos/ultraestructura , Miocitos Cardíacos/ultraestructura , Retículo Sarcoplasmático/ultraestructura , Animales , Acoplamiento Excitación-Contracción , Masculino , Ratones , Ratones Endogámicos C57BL , Presión , Conejos
15.
J Mol Cell Cardiol ; 150: 65-76, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098823

RESUMEN

Palmitic acid (PA)-induced myocardial injury is considered a critical contributor to the development of obesity and type 2 diabetes mellitus (T2DM)-related cardiomyopathy. However, the underlying mechanism has not been fully understood. Here, we demonstrated that PA induced the cell death of H9c2 cardiomyoblasts in a dose- and time-dependent manner, while different ferroptosis inhibitors significantly abrogated the cell death of H9c2 cardiomyoblasts and primary neonatal rat cardiomyocytes exposed to PA. Mechanistically, PA decreased the protein expression levels of both heat shock factor 1 (HSF1) and glutathione peroxidase 4 (GPX4) in a dose- and time-dependent manner, which were restored by different ferroptosis inhibitors. Overexpression of HSF1 not only alleviated PA-induced cell death and lipid peroxidation but also improved disturbed iron homeostasis by regulating the transcription of iron metabolism-related genes (e.g., Fth1, Tfrc, Slc40a1). Additionally, PA-blocked GPX4 protein expression was evidently restored by HSF1 overexpression. Inhibition of endoplasmic reticulum (ER) stress rather than autophagy contributed to HSF1-mediated GPX4 expression. Moreover, GPX4 overexpression protected against PA-induced ferroptosis, whereas knockdown of GPX4 reversed the anti-ferroptotic effect of HSF1. Consistent with the in vitro findings, PA-challenged Hsf1-/- mice exhibited more serious ferroptosis, increased Slc40a1 and Fth1 mRNA expression, decreased GPX4 and TFRC expression and enhanced ER stress in the heart compared with Hsf1+/+ mice. Altogether, HSF1 may function as a key defender against PA-induced ferroptosis in cardiomyocytes by maintaining cellular iron homeostasis and GPX4 expression.


Asunto(s)
Ferroptosis , Factores de Transcripción del Choque Térmico/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ácido Palmítico/farmacología , Animales , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Regulación de la Expresión Génica/efectos de los fármacos , Factores de Transcripción del Choque Térmico/genética , Hierro/metabolismo , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/ultraestructura , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Ratas Sprague-Dawley , Transcripción Genética/efectos de los fármacos
16.
J Cell Mol Med ; 25(3): 1661-1676, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33452765

RESUMEN

Myomesin-1 (encoded by MYOM1 gene) is expressed in almost all cross-striated muscles, whose family (together with myomesin-2 and myomesin-3) helps to cross-link adjacent myosin to form the M-line in myofibrils. However, little is known about its biological function, causal relationship and mechanisms underlying the MYOM1-related myopathies (especially in the heart). Regrettably, there is no MYMO1 knockout model for its study so far. A better and further understanding of MYOM1 biology is urgently needed. Here, we used CRISPR/Cas9 gene-editing technology to establish an MYOM1 knockout human embryonic stem cell line (MYOM1-/- hESC), which was then differentiated into myomesin-1 deficient cardiomyocytes (MYOM1-/- hESC-CMs) in vitro. We found that myomesin-1 plays an important role in sarcomere assembly, contractility regulation and cardiomyocytes development. Moreover, myomesin-1-deficient hESC-CMs can recapitulate myocardial atrophy phenotype in vitro. Based on this model, not only the biological function of MYOM1, but also the aetiology, pathogenesis, and potential treatments of myocardial atrophy caused by myomesin-1 deficiency can be studied.


Asunto(s)
Calcio/metabolismo , Conectina/deficiencia , Susceptibilidad a Enfermedades , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Miocitos Cardíacos/metabolismo , Alelos , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/metabolismo , Edición Génica , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad , Humanos , Imagen Molecular , Atrofia Muscular/patología , Miocitos Cardíacos/patología , Miocitos Cardíacos/ultraestructura , Fenotipo , Sarcómeros/metabolismo , Sarcómeros/ultraestructura
17.
J Cell Mol Med ; 25(19): 9154-9167, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34562065

RESUMEN

Accumulation of lipid droplets (LDs) induces cardiac dysfunctions in type 2 diabetes patients. Recent studies have shown that hydrogen sulphide (H2 S) ameliorates cardiac functions in db/db mice, but its regulation on the formation of LDs in cardiac tissues is unclear. Db/db mice were injected with NaHS (40 µmol·kg-1 ) for twelve weeks. H9c2 cells were treated with high glucose (40 mmol/L), oleate (200 µmol/L), palmitate (200 µmol/L) and NaHS (100 µmol/L) for 48 hours. Plasmids for the overexpression of wild-type Hrd1 and Hrd1 mutated at Cys115 were constructed. The interaction between Hrd1 and DGAT1 and DGAT2, the ubiquitylation level of DGAT1 and 2, the S-sulfhydration of Hrd1 were measured. Exogenous H2 S ameliorated the cardiac functions, decreased ER stress and reduced the number of LDs in db/db mice. Exogenous H2 S could elevate the ubiquitination level of DGAT 1 and 2 and increased the expression of Hrd1 in cardiac tissues of db/db mice. The S-sulfhydration of Hrd1 by NaHS enhanced the interaction between Hrd1 and DGAT1 and 2 to inhibit the formation of LD. Our findings suggested that H2 S modified Hrd1 S-sulfhydration at Cys115 to reduce the accumulation of LDs in cardiac tissues of db/db mice.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Miocardio/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Biomarcadores , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas/diagnóstico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Pruebas de Función Cardíaca , Hiperglucemia , Hiperlipidemias , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Procesamiento Proteico-Postraduccional , Proteoma , Proteómica/métodos , Ubiquitina-Proteína Ligasas/genética
18.
Circulation ; 142(24): 2338-2355, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33094644

RESUMEN

BACKGROUND: Gene regulatory networks control tissue homeostasis and disease progression in a cell type-specific manner. Ubiquitously expressed chromatin regulators modulate these networks, yet the mechanisms governing how tissue specificity of their function is achieved are poorly understood. BRD4 (bromodomain-containing protein 4), a member of the BET (bromo- and extraterminal domain) family of ubiquitously expressed acetyl-lysine reader proteins, plays a pivotal role as a coactivator of enhancer signaling across diverse tissue types in both health and disease and has been implicated as a pharmacological target in heart failure. However, the cell-specific role of BRD4 in adult cardiomyocytes remains unknown. METHODS: We combined conditional mouse genetics, unbiased transcriptomic and epigenomic analyses, and classic molecular biology and biochemical approaches to understand the mechanism by which BRD4 in adult cardiomyocyte homeostasis. RESULTS: Here, we show that cardiomyocyte-specific deletion of Brd4 in adult mice leads to acute deterioration of cardiac contractile function with mutant animals demonstrating a transcriptomic signature characterized by decreased expression of genes critical for mitochondrial energy production. Genome-wide occupancy data show that BRD4 enriches at many downregulated genes (including the master coactivators Ppargc1a, Ppargc1b, and their downstream targets) and preferentially colocalizes with GATA4 (GATA binding protein 4), a lineage-determining cardiac transcription factor not previously implicated in regulation of adult cardiac metabolism. BRD4 and GATA4 form an endogenous complex in cardiomyocytes and interact in a bromodomain-independent manner, revealing a new functional interaction partner for BRD4 that can direct its locus and tissue specificity. CONCLUSIONS: These results highlight a novel role for a BRD4-GATA4 module in cooperative regulation of a cardiomyocyte-specific gene program governing bioenergetic homeostasis in the adult heart.


Asunto(s)
Metabolismo Energético , Factor de Transcripción GATA4/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Animales , Metabolismo Energético/genética , Factor de Transcripción GATA4/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genotipo , Células HEK293 , Homeostasis , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/ultraestructura , Proteínas Nucleares/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fenotipo , Unión Proteica , Ratas Sprague-Dawley , Factores de Transcripción/genética , Transcriptoma , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda
19.
Circulation ; 141(11): 902-915, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31941365

RESUMEN

BACKGROUND: Diastolic dysfunction is a prevalent and therapeutically intractable feature of heart failure (HF). Increasing ventricular compliance can improve diastolic performance, but the viscoelastic forces that resist diastolic filling and become elevated in human HF are poorly defined. Having recently identified posttranslationally detyrosinated microtubules as a source of viscoelasticity in cardiomyocytes, we sought to test whether microtubules contribute meaningful viscoelastic resistance to diastolic stretch in human myocardium. METHODS: Experiments were conducted in isolated human cardiomyocytes and trabeculae. First, slow and rapid (diastolic) stretch was applied to intact cardiomyocytes from nonfailing and HF hearts and viscoelasticity was characterized after interventions targeting microtubules. Next, intact left ventricular trabeculae from HF patient hearts were incubated with colchicine or vehicle and subject to pre- and posttreatment mechanical testing, which consisted of a staircase protocol and rapid stretches from slack length to increasing strains. RESULTS: Viscoelasticity was increased during diastolic stretch of HF cardiomyocytes compared with nonfailing counterparts. Reducing either microtubule density or detyrosination reduced myocyte stiffness, particularly at diastolic strain rates, indicating reduced viscous forces. In myocardial tissue, we found microtubule depolymerization reduced myocardial viscoelasticity, with an effect that decreased with increasing strain. Colchicine reduced viscoelasticity at strains below, but not above, 15%, with a 2-fold reduction in energy dissipation upon microtubule depolymerization. Post hoc subgroup analysis revealed that myocardium from patients with HF with reduced ejection fraction were more fibrotic and elastic than myocardium from patients with HF with preserved ejection fraction, which were relatively more viscous. Colchicine reduced viscoelasticity in both HF with preserved ejection fraction and HF with reduced ejection fraction myocardium. CONCLUSIONS: Failing cardiomyocytes exhibit elevated viscosity and reducing microtubule density or detyrosination lowers viscoelastic resistance to diastolic stretch in human myocytes and myocardium. In failing myocardium, microtubules elevate stiffness over the typical working range of strains and strain rates, but exhibited diminishing effects with increasing length, consistent with an increasing contribution of the extracellular matrix or myofilament proteins at larger excursions. These studies indicate that a stabilized microtubule network provides a viscous impediment to diastolic stretch, particularly in HF.


Asunto(s)
Insuficiencia Cardíaca/patología , Microtúbulos/fisiología , Miocardio/ultraestructura , Miocitos Cardíacos/ultraestructura , Adulto , Anciano , Colchicina/farmacología , Diástole , Elasticidad , Femenino , Humanos , Masculino , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Persona de Mediana Edad , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Procesamiento Proteico-Postraduccional , Sesquiterpenos/farmacología , Estrés Mecánico , Volumen Sistólico , Tirosina/metabolismo , Disfunción Ventricular Izquierda/patología , Viscosidad
20.
J Cell Sci ; 132(3)2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30630894

RESUMEN

The junctional complexes that couple cardiomyocytes must transmit the mechanical forces of contraction while maintaining adhesive homeostasis. The adherens junction (AJ) connects the actomyosin networks of neighboring cardiomyocytes and is required for proper heart function. Yet little is known about the molecular composition of the cardiomyocyte AJ or how it is organized to function under mechanical load. Here, we define the architecture, dynamics and proteome of the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble stable AJs along intercellular contacts with organizational and structural hallmarks similar to mature contacts. We combine quantitative mass spectrometry with proximity labeling to identify the N-cadherin (CDH2) interactome. We define over 350 proteins in this interactome, nearly 200 of which are unique to CDH2 and not part of the E-cadherin (CDH1) interactome. CDH2-specific interactors comprise primarily adaptor and adhesion proteins that promote junction specialization. Our results provide novel insight into the cardiomyocyte AJ and offer a proteomic atlas for defining the molecular complexes that regulate cardiomyocyte intercellular adhesion. This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actomiosina/genética , Uniones Adherentes/metabolismo , Cadherinas/genética , Mecanotransducción Celular , Miocitos Cardíacos/metabolismo , Citoesqueleto de Actina/ultraestructura , Actomiosina/metabolismo , Uniones Adherentes/ultraestructura , Animales , Animales Recién Nacidos , Cadherinas/metabolismo , Adhesión Celular , Comunicación Celular , Regulación de la Expresión Génica , Ontología de Genes , Ratones , Anotación de Secuencia Molecular , Miocitos Cardíacos/ultraestructura , Cultivo Primario de Células , Unión Proteica , Mapeo de Interacción de Proteínas , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA