Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.793
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 25(8): 617-638, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38589640

RESUMEN

The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.


Asunto(s)
Fibrosis , Miofibroblastos , Cicatrización de Heridas , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Animales , Fibrosis/metabolismo , Cicatrización de Heridas/fisiología , Transducción de Señal , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Epigénesis Genética
2.
Annu Rev Immunol ; 31: 107-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516981

RESUMEN

Fibrosis is the production of excessive amounts of connective tissue, i.e., scar formation, in the course of reactive and reparative processes. Fibrosis develops as a consequence of various underlying diseases and presents a major diagnostically and therapeutically unsolved problem. In this review, we postulate that fibrosis is always a sequela of inflammatory processes and that the many different causes of fibrosis all channel into the same final stereotypical pathways. During the inflammatory phase, both innate and adaptive immune mechanisms are operative. This concept is exemplified by fibrotic diseases that develop as a consequence of tissue damage, primary inflammatory diseases, fibrotic alterations induced by foreign body implants, "spontaneous" fibrosis, and tumor-associated fibrotic changes.


Asunto(s)
Fibroblastos/inmunología , Fibroblastos/patología , Miofibroblastos/inmunología , Miofibroblastos/patología , Inmunidad Adaptativa , Animales , Proliferación Celular , Transdiferenciación Celular/inmunología , Fibrosis , Humanos , Inmunidad Innata , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología
3.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32621799

RESUMEN

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Asunto(s)
Cicatriz/metabolismo , Colágeno Tipo V/deficiencia , Colágeno Tipo V/metabolismo , Lesiones Cardíacas/metabolismo , Contracción Miocárdica/genética , Miofibroblastos/metabolismo , Animales , Cicatriz/genética , Cicatriz/fisiopatología , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Fibrosis/genética , Fibrosis/metabolismo , Regulación de la Expresión Génica/genética , Integrinas/antagonistas & inhibidores , Integrinas/genética , Integrinas/metabolismo , Isoproterenol/farmacología , Masculino , Mecanotransducción Celular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Fuerza Atómica/instrumentación , Microscopía Electrónica de Transmisión , Contracción Miocárdica/efectos de los fármacos , Miofibroblastos/citología , Miofibroblastos/patología , Miofibroblastos/ultraestructura , Análisis de Componente Principal , Proteómica , RNA-Seq , Análisis de la Célula Individual
4.
Annu Rev Cell Dev Biol ; 34: 333-355, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30028641

RESUMEN

Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Inflamación/genética , Neoplasias/genética , Células Estrelladas Pancreáticas/metabolismo , Transdiferenciación Celular/genética , Células Estrelladas Hepáticas/patología , Humanos , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Neoplasias/patología , Páncreas/lesiones , Páncreas/metabolismo , Páncreas/patología , Células Estrelladas Pancreáticas/patología , Microambiente Tumoral/genética , Cicatrización de Heridas
5.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34407391

RESUMEN

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Asunto(s)
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular/fisiología , Fibroblastos/patología , Humanos , Ratones , Miofibroblastos/patología , Fibrosis Pulmonar/patología , Transducción de Señal/fisiología
6.
Nature ; 610(7931): 356-365, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198802

RESUMEN

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Células Estrelladas Hepáticas , Neoplasias Hepáticas , Animales , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Proliferación Celular , Colágeno Tipo I/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Progresión de la Enfermedad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Factor de Crecimiento de Hepatocito/metabolismo , Hepatocitos , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/patología , Ratones , Miofibroblastos/patología
7.
Nature ; 608(7921): 174-180, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35732739

RESUMEN

Heart failure encompasses a heterogeneous set of clinical features that converge on impaired cardiac contractile function1,2 and presents a growing public health concern. Previous work has highlighted changes in both transcription and protein expression in failing hearts3,4, but may overlook molecular changes in less prevalent cell types. Here we identify extensive molecular alterations in failing hearts at single-cell resolution by performing single-nucleus RNA sequencing of nearly 600,000 nuclei in left ventricle samples from 11 hearts with dilated cardiomyopathy and 15 hearts with hypertrophic cardiomyopathy as well as 16 non-failing hearts. The transcriptional profiles of dilated or hypertrophic cardiomyopathy hearts broadly converged at the tissue and cell-type level. Further, a subset of hearts from patients with cardiomyopathy harbour a unique population of activated fibroblasts that is almost entirely absent from non-failing samples. We performed a CRISPR-knockout screen in primary human cardiac fibroblasts to evaluate this fibrotic cell state transition; knockout of genes associated with fibroblast transition resulted in a reduction of myofibroblast cell-state transition upon TGFß1 stimulation for a subset of genes. Our results provide insights into the transcriptional diversity of the human heart in health and disease as well as new potential therapeutic targets and biomarkers for heart failure.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Núcleo Celular , Perfilación de la Expresión Génica , Insuficiencia Cardíaca , Análisis de la Célula Individual , Sistemas CRISPR-Cas , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Estudios de Casos y Controles , Núcleo Celular/genética , Células Cultivadas , Técnicas de Inactivación de Genes , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , RNA-Seq , Transcripción Genética , Factor de Crecimiento Transformador beta1
8.
Nature ; 589(7841): 281-286, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176333

RESUMEN

Kidney fibrosis is the hallmark of chronic kidney disease progression; however, at present no antifibrotic therapies exist1-3. The origin, functional heterogeneity and regulation of scar-forming cells that occur during human kidney fibrosis remain poorly understood1,2,4. Here, using single-cell RNA sequencing, we profiled the transcriptomes of cells from the proximal and non-proximal tubules of healthy and fibrotic human kidneys to map the entire human kidney. This analysis enabled us to map all matrix-producing cells at high resolution, and to identify distinct subpopulations of pericytes and fibroblasts as the main cellular sources of scar-forming myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single-cell RNA sequencing and ATAC-seq (assay for transposase-accessible chromatin using sequencing) experiments in mice, and spatial transcriptomics in human kidney fibrosis, to shed light on the cellular origins and differentiation of human kidney myofibroblasts and their precursors at high resolution. Finally, we used this strategy to detect potential therapeutic targets, and identified NKD2 as a myofibroblast-specific target in human kidney fibrosis.


Asunto(s)
Linaje de la Célula , Fibrosis/patología , Túbulos Renales/patología , Miofibroblastos/patología , Insuficiencia Renal Crónica/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Mesodermo/citología , Mesodermo/patología , Ratones , Miofibroblastos/metabolismo , Pericitos/citología , Pericitos/patología , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Análisis de la Célula Individual , Transcriptoma
9.
Hum Mol Genet ; 33(12): 1090-1104, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38538566

RESUMEN

RATIONALE: Pathogenic (P)/likely pathogenic (LP) SMAD3 variants cause Loeys-Dietz syndrome type 3 (LDS3), which is characterized by arterial aneurysms, dissections and tortuosity throughout the vascular system combined with osteoarthritis. OBJECTIVES: Investigate the impact of P/LP SMAD3 variants with functional tests on patient-derived fibroblasts and vascular smooth muscle cells (VSMCs), to optimize interpretation of SMAD3 variants. METHODS: A retrospective analysis on clinical data from individuals with a P/LP SMAD3 variant and functional analyses on SMAD3 patient-derived VSMCs and SMAD3 patient-derived fibroblasts, differentiated into myofibroblasts. RESULTS: Individuals with dominant negative (DN) SMAD3 variant in the MH2 domain exhibited more major events (66.7% vs. 44.0%, P = 0.054), occurring at a younger age compared to those with haploinsufficient (HI) variants. The age at first major event was 35.0 years [IQR 29.0-47.0] in individuals with DN variants in MH2, compared to 46.0 years [IQR 40.0-54.0] in those with HI variants (P = 0.065). Fibroblasts carrying DN SMAD3 variants displayed reduced differentiation potential, contrasting with increased differentiation potential in HI SMAD3 variant fibroblasts. HI SMAD3 variant VSMCs showed elevated SMA expression and altered expression of alternative MYH11 isoforms. DN SMAD3 variant myofibroblasts demonstrated reduced extracellular matrix formation compared to control cell lines. CONCLUSION: Distinguishing between P/LP HI and DN SMAD3 variants can be achieved by assessing differentiation potential, and SMA and MYH11 expression. The differences between DN and HI SMAD3 variant fibroblasts and VSMCs potentially contribute to the differences in disease manifestation. Notably, myofibroblast differentiation seems a suitable alternative in vitro test system compared to VSMCs.


Asunto(s)
Fibroblastos , Estudios de Asociación Genética , Síndrome de Loeys-Dietz , Músculo Liso Vascular , Proteína smad3 , Humanos , Proteína smad3/genética , Proteína smad3/metabolismo , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patología , Masculino , Femenino , Fibroblastos/metabolismo , Adulto , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Diferenciación Celular/genética , Línea Celular , Miocitos del Músculo Liso/metabolismo , Estudios Retrospectivos , Fenotipo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Mutación
10.
Circ Res ; 134(7): 875-891, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38440901

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is a connective tissue disease that can serve as a model to study vascular changes in response to inflammation, autoimmunity, and fibrotic remodeling. Although microvascular changes are the earliest histopathologic manifestation of SSc, the vascular pathophysiology remains poorly understood. METHODS: We applied spatial proteomic approaches to deconvolute the heterogeneity of vascular cells at the single-cell level in situ and characterize cellular alterations of the vascular niches of patients with SSc. Skin biopsies of patients with SSc and control individuals were analyzed by imaging mass cytometry, yielding a total of 90 755 cells including 2987 endothelial cells and 4096 immune cells. RESULTS: We identified 7 different subpopulations of blood vascular endothelial cells (VECs), 2 subpopulations of lymphatic endothelial cells, and 3 subpopulations of pericytes. A novel population of CD34+;αSMA+ (α-smooth muscle actin);CD31+ VECs was more common in SSc, whereas endothelial precursor cells were decreased. Co-detection by indexing and tyramide signal amplification confirmed these findings. The microenvironment of CD34+;αSMA+;CD31+ VECs was enriched for immune cells and myofibroblasts, and CD34+;αSMA+;CD31+ VECs expressed markers of endothelial-to-mesenchymal transition. The density of CD34+;αSMA+;CD31+ VECs was associated with clinical progression of fibrosis in SSc. CONCLUSIONS: Using spatial proteomics, we unraveled the heterogeneity of vascular cells in control individuals and patients with SSc. We identified CD34+;αSMA+;CD31+ VECs as a novel endothelial cell population that is increased in patients with SSc, expresses markers for endothelial-to-mesenchymal transition, and is located in close proximity to immune cells and myofibroblasts. CD34+;αSMA+;CD31+ VEC counts were associated with clinical outcomes of progressive fibrotic remodeling, thus providing a novel cellular correlate for the crosstalk of vasculopathy and fibrosis.


Asunto(s)
Células Progenitoras Endoteliales , Esclerodermia Sistémica , Humanos , Proteómica , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/patología , Fibrosis , Miofibroblastos/patología
11.
Circ Res ; 135(3): 453-469, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38899461

RESUMEN

BACKGROUND: Cardiac fibroblast activation contributes to adverse remodeling, fibrosis, and dysfunction in the pressure-overloaded heart. Although early fibroblast TGF-ß (transforming growth factor-ß)/Smad (small mother against decapentaplegic)-3 activation protects the pressure-overloaded heart by preserving the matrix, sustained TGF-ß activation is deleterious, accentuating fibrosis and dysfunction. Thus, endogenous mechanisms that negatively regulate the TGF-ß response in fibroblasts may be required to protect from progressive fibrosis and adverse remodeling. We hypothesized that Smad7, an inhibitory Smad that restrains TGF-ß signaling, may be induced in the pressure-overloaded myocardium and may regulate fibrosis, remodeling, and dysfunction. METHODS: The effects of myofibroblast-specific Smad7 loss were studied in a mouse model of transverse aortic constriction, using echocardiography, histological analysis, and molecular analysis. Proteomic studies in S7KO (Smad7 knockout) and overexpressing cells were used to identify fibroblast-derived mediators modulated by Smad7. In vitro experiments using cultured cardiac fibroblasts, fibroblasts populating collagen lattices, and isolated macrophages were used to dissect the molecular signals responsible for the effects of Smad7. RESULTS: Following pressure overload, Smad7 was upregulated in cardiac myofibroblasts. TGF-ß and angiotensin II stimulated fibroblast Smad7 upregulation via Smad3, whereas GDF15 (growth differentiation factor 15) induced Smad7 through GFRAL (glial cell line-derived neurotrophic factor family receptor α-like). MFS7KO (myofibroblast-specific S7KO) mice had increased mortality, accentuated systolic dysfunction and dilative remodeling, and accelerated diastolic dysfunction in response to transverse aortic constriction. Increased dysfunction in MFS7KO hearts was associated with accentuated fibrosis and increased MMP (matrix metalloproteinase)-2 activity and collagen denaturation. Secretomic analysis showed that Smad7 loss accentuates secretion of structural collagens and matricellular proteins and markedly increases MMP2 secretion. In contrast, Smad7 overexpression reduced MMP2 levels. In fibroblasts populating collagen lattices, the effects of Smad7 on fibroblast-induced collagen denaturation and pad contraction were partly mediated via MMP2 downregulation. Surprisingly, MFS7KO mice also exhibited significant macrophage expansion caused by paracrine actions of Smad7 null fibroblasts that stimulate macrophage proliferation and fibrogenic activation. Macrophage activation involved the combined effects of the fibroblast-derived matricellular proteins CD5L (CD5 antigen-like), SPARC (secreted protein acidic and rich in cysteine), CTGF (connective tissue growth factor), ECM1 (extracellular matrix protein 1), and TGFBI (TGFB induced). CONCLUSIONS: The antifibrotic effects of Smad7 in the pressure-overloaded heart protect from dysfunction and involve not only reduction in collagen deposition but also suppression of MMP2-mediated matrix denaturation and paracrine effects that suppress macrophage activation through inhibition of matricellular proteins.


Asunto(s)
Fibrosis , Ratones Noqueados , Miofibroblastos , Proteína smad7 , Remodelación Ventricular , Animales , Proteína smad7/metabolismo , Proteína smad7/genética , Ratones , Miofibroblastos/metabolismo , Miofibroblastos/patología , Células Cultivadas , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta/metabolismo , Masculino , Fibroblastos/metabolismo , Fibroblastos/patología , Transducción de Señal , Miocardio/metabolismo , Miocardio/patología
12.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072048

RESUMEN

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Mecanotransducción Celular , Miofibroblastos , Proteína de Unión al Calcio S100A4 , Animales , Ratones , Transdiferenciación Celular , Fibrosis , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismo
13.
J Biol Chem ; 300(6): 107385, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759730

RESUMEN

Non-muscle myosin 2 (NM2) is known to play an important role in myofibroblast transdifferentiation, a hallmark of fibrotic disorders. In a recent JBC article, Southern et al. demonstrate that endogenous S100A4, a calcium- and NM2-binding protein acts as a mechanoeffector in this process. Since extracellular S100A4 is also involved in fibrogenesis by triggering the inflammatory response, this small protein appears to contribute to fibrosis via at least two distinct mechanisms.


Asunto(s)
Fibrosis , Proteína de Unión al Calcio S100A4 , Proteínas S100 , Humanos , Proteína de Unión al Calcio S100A4/metabolismo , Proteína de Unión al Calcio S100A4/genética , Fibrosis/metabolismo , Animales , Proteínas S100/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Transdiferenciación Celular , Ratones , Miosina Tipo II/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(13): e2120336119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35320046

RESUMEN

SignificanceTissue fibrotic diseases, for example of the liver and lung, represent a huge unmet medical need. In this study, using single-cell RNA sequencing, cytometry by time of flight (CyTOF), tissue imaging, and functional assays, we identify a complex vascular niche in Dupuytren's disease (DD), a common localized fibrotic condition of the palm, where early-disease-stage tissue can be accessed readily. We uncover a population of myofibroblast precursors within the pericyte compartment and demonstrate that the endothelium instructs the differentiation of functionally distinct stromal cells, thereby orchestrating discrete microenvironments in the fibrotic milieu. Together, these findings provide a basis for the concept of targeting blood vessel signaling to control the progression of human fibrosis.


Asunto(s)
Contractura de Dupuytren , Miofibroblastos , Contractura de Dupuytren/genética , Contractura de Dupuytren/patología , Fibrosis , Humanos , Miofibroblastos/patología , Fenotipo , Células del Estroma , Microambiente Tumoral
15.
Semin Cell Dev Biol ; 128: 130-136, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35400564

RESUMEN

Systemic sclerosis (SSc, scleroderma) is a complex disease with a pathogenic triad of autoimmunity, vasculopathy, and fibrosis involving the skin and multiple internal organs [1]. Because fibrosis accounts for as much as 45% of all deaths worldwide and appears to be increasing in prevalence [2], understanding its pathogenesis and progression is an urgent scientific challenge. Fibroblasts and myofibroblasts are the key effector cells executing physiologic tissue repair on one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify innate immune signaling via toll-like receptors (TLRs) as a key driver of persistent fibrotic response in SSc. Repeated injury triggers the in-situ generation of "damage-associated molecular patterns" (DAMPs) or danger signals. Sensing of these danger signals by TLR4 on resident cells elicits potent stimulatory effects on fibrotic gene expression and myofibroblast differentiation triggering the self-limited tissue repair response to self-sustained pathological fibrosis characteristic of SSc. Our unbiased survey for DAMPs associated with SSc identified extracellular matrix glycoprotein tenascin-C as one of the most highly up-regulated ECM proteins in SSc skin and lung biopsies [3,4]. Furthermore, tenascin C is responsible for driving sustained fibroblasts activation, thereby progression of fibrosis [3]. This review summarizes recent studies examining the regulation and complex functional role of tenascin C, presenting tenascin-TLR4 axis in pathological fibrosis, and novel anti-fibrotic approaches targeting their signaling.


Asunto(s)
Esclerodermia Sistémica , Tenascina , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Esclerodermia Sistémica/genética , Piel/metabolismo , Tenascina/genética , Receptor Toll-Like 4/metabolismo
16.
J Biol Chem ; 299(3): 102934, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36690273

RESUMEN

Fibrosis is mainly triggered by inflammation in various tissues, such as heart and liver tissues, and eventually leads to their subsequent dysfunction. Fibrosis is characterized by the excessive accumulation of extracellular matrix proteins (e.g., collagens) produced by myofibroblasts. The well-developed actin cytoskeleton of myofibroblasts, one of the main features differentiating them from resident fibroblasts in tissues under inflammatory conditions, contributes to maintaining their ability to produce excessive extracellular matrix proteins. However, the molecular mechanisms via which the actin cytoskeleton promotes the production of fibrosis-related genes in myofibroblasts remain unclear. In this study, we found, via single-cell analysis, that developmentally regulated brain protein (drebrin), an actin-binding protein, was specifically expressed in cardiac myofibroblasts with a well-developed actin cytoskeleton in fibrotic hearts. Moreover, our immunocytochemistry analysis revealed that drebrin promoted actin cytoskeleton formation and myocardin-related transcription factor-serum response factor signaling. Comprehensive single-cell analysis and RNA-Seq revealed that the expression of collagen triple helix repeat containing 1 (Cthrc1), a fibrosis-promoting secreted protein, was regulated by drebrin in cardiac myofibroblasts via myocardin-related transcription factor-serum response factor signaling. Furthermore, we observed the profibrotic effects of drebrin exerted via actin cytoskeleton formation and the Cthrc1 expression regulation by drebrin in liver myofibroblasts (hepatic stellate cells). Importantly, RNA-Seq demonstrated that drebrin expression levels increased in human fibrotic heart and liver tissues. In summary, our results indicated that the well-developed actin cytoskeleton and Cthrc1 expression due to drebrin in myofibroblasts promoted cardiac and hepatic fibrosis, suggesting that drebrin is a therapeutic target molecule for fibrosis.


Asunto(s)
Citoesqueleto de Actina , Proteínas de la Matriz Extracelular , Fibrosis , Miofibroblastos , Neuropéptidos , Humanos , Citoesqueleto de Actina/metabolismo , Miofibroblastos/patología , Fibrosis/fisiopatología , Análisis de Expresión Génica de una Sola Célula , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Diferenciación Celular/fisiología , Transducción de Señal , Células Estrelladas Hepáticas/metabolismo , Cardiopatías/fisiopatología , Cirrosis Hepática/fisiopatología
17.
Curr Opin Rheumatol ; 36(1): 52-60, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37582200

RESUMEN

PURPOSE OF REVIEW: Tissue fibrosis is an increasingly prevalent condition associated with various diseases and heavily impacting on global morbidity and mortality rates. Growing evidence indicates that common cellular and molecular mechanisms may drive fibrosis of diverse cause and affecting different organs. The scope of this review is to highlight recent findings in support for an important role of vascular endothelial cells in the pathogenesis of fibrosis, with a special focus on systemic sclerosis as a prototypic multisystem fibrotic disorder. RECENT FINDINGS: Although transition of fibroblasts to chronically activated myofibroblasts is widely considered the central profibrotic switch, the endothelial cell involvement in development and progression of fibrosis has been increasingly recognized over the last few years. Endothelial cells can contribute to the fibrotic process either directly by acting as source of myofibroblasts through endothelial-to-myofibroblast transition (EndMT) and concomitant microvascular rarefaction, or indirectly by becoming senescent and/or secreting a variety of profibrotic and proinflammatory mediators with consequent fibroblast activation and recruitment of inflammatory/immune cells that further promote fibrosis. SUMMARY: An in-depth understanding of the mechanisms underlying EndMT or the acquisition of a profibrotic secretory phenotype by endothelial cells will provide the rationale for novel endothelial cell reprogramming-based therapeutic approaches to prevent and/or treat fibrosis.


Asunto(s)
Células Endoteliales , Esclerodermia Sistémica , Humanos , Fibrosis , Esclerodermia Sistémica/etiología , Esclerodermia Sistémica/patología , Fibroblastos/patología , Miofibroblastos/patología
18.
Gastroenterology ; 164(1): 89-102, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113570

RESUMEN

BACKGROUND & AIMS: Intestinal fibrosis is a significant complication of Crohn's disease (CD). Gut microbiota reactive Th17 cells are crucial in the pathogenesis of CD; however, how Th17 cells induce intestinal fibrosis is still not completely understood. METHODS: In this study, T-cell transfer model with wild-type (WT) and Areg-/- Th17 cells and dextran sulfate sodium (DSS)-induced chronic colitis model in WT and Areg-/- mice were used. CD4+ T-cell expression of AREG was determined by quantitative reverse-transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. The effect of AREG on proliferation/migration/collagen expression in human intestinal myofibroblasts was determined. AREG expression was assessed in healthy controls and patients with CD with or without intestinal fibrosis. RESULTS: Although Th1 and Th17 cells induced intestinal inflammation at similar levels when transferred into Tcrßxδ-/- mice, Th17 cells induced more severe intestinal fibrosis. Th17 cells expressed higher levels of AREG than Th1 cells. Areg-/- mice developed less severe intestinal fibrosis compared with WT mice on DSS insults. Transfer of Areg-/- Th17 cells induced less severe fibrosis in Tcrßxδ-/- mice compared with WT Th17 cells. Interleukin (IL)6 and IL21 promoted AREG expression in Th17 cells by activating Stat3. Stat3 inhibitor suppressed Th17-induced intestinal fibrosis. AREG promoted human intestinal myofibroblast proliferation, motility, and collagen I expression, which was mediated by activating mammalian target of rapamycin and MEK. AREG expression was increased in intestinal CD4+ T cells in fibrotic sites compared with nonfibrotic sites from patients with CD. CONCLUSIONS: These findings reveal that Th17-derived AREG promotes intestinal fibrotic responses in experimental colitis and human patients with CD. Thereby, AREG might serve as a potential therapeutic target for fibrosis in CD.


Asunto(s)
Colitis , Enfermedad de Crohn , Animales , Humanos , Ratones , Anfirregulina/genética , Anfirregulina/metabolismo , Colitis/metabolismo , Colágeno/metabolismo , Enfermedad de Crohn/patología , Sulfato de Dextran/efectos adversos , Fibrosis , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Miofibroblastos/patología , Células Th17/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
19.
J Transl Med ; 22(1): 617, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961399

RESUMEN

INTRODUCTION: Intrauterine adhesions (IUA) manifest as endometrial fibrosis, often causing infertility or recurrent miscarriage; however, their pathogenesis remains unclear. OBJECTIVES: This study assessed the role of Dickkopf WNT signaling pathway inhibitor 1 (DKK1) and autophagy in endometrial fibrosis, using clinical samples as well as in vitro and in vivo experiments. METHODS: Immunohistochemistry, immunofluorescence and western blot were used to determine the localization and expression of DKK1 in endometrium; DKK1 silencing and DKK1 overexpression were used to detect the biological effects of DKK1 silencing or expression in endometrial cells; DKK1 gene knockout mice were used to observe the phenotypes caused by DKK1 gene knockout. RESULTS: In patients with IUA, DKK1 and autophagy markers were down-regulated; also, α-SMA and macrophage localization were increased in the endometrium. DKK1 conditional knockout (CKO) mice showed a fibrotic phenotype with decreased autophagy and increased localization of α-SMA and macrophages in the endometrium. In vitro studies showed that DKK1 knockout (KO) suppressed the autophagic flux of endometrial stromal cells. In contrast, ectopic expression of DKK1 showed the opposite phenotype. Mechanistically, we discovered that DKK1 regulates autophagic flux through Wnt/ß-catenin and PI3K/AKT/mTOR pathways. Further studies showed that DKK1 KO promoted the secretion of interleukin (IL)-8 in exosomes, thereby promoting macrophage proliferation and metastasis. Also, in DKK1 CKO mice, treatment with autophagy activator rapamycin partially restored the endometrial fibrosis phenotype. CONCLUSION: Our findings indicated that DKK1 was a potential diagnostic marker or therapeutic target for IUA.


Asunto(s)
Autofagia , Endometrio , Exosomas , Fibrosis , Péptidos y Proteínas de Señalización Intercelular , Macrófagos , Ratones Noqueados , Miofibroblastos , Animales , Femenino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Endometrio/metabolismo , Endometrio/patología , Macrófagos/metabolismo , Macrófagos/patología , Humanos , Exosomas/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Ratones , Ratones Endogámicos C57BL , Adulto
20.
J Transl Med ; 22(1): 561, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867256

RESUMEN

BACKGROUND: Fibrogenesis within ovarian endometrioma (endometrioma), mainly induced by transforming growth factor-ß (TGF-ß), is characterized by myofibroblast over-activation and excessive extracellular matrix (ECM) deposition, contributing to endometrioma-associated symptoms such as infertility by impairing ovarian reserve and oocyte quality. However, the precise molecular mechanisms that underpin the endometrioma- associated fibrosis progression induced by TGF-ß remain poorly understood. METHODS: The expression level of lysine acetyltransferase 14 (KAT14) was validated in endometrium biopsies from patients with endometrioma and healthy controls, and the transcription level of KAT14 was further confirmed by analyzing a published single-cell transcriptome (scRNA-seq) dataset of endometriosis. We used overexpression, knockout, and knockdown approaches in immortalized human endometrial stromal cells (HESCs) or human primary ectopic endometrial stromal cells (EcESCs) to determine the role of KAT14 in TGF-ß-induced fibrosis. Furthermore, an adeno-associated virus (AAV) carrying KAT14-shRNA was used in an endometriosis mice model to assess the role of KAT14 in vivo. RESULTS: KAT14 was upregulated in ectopic lesions from endometrioma patients and predominantly expressed in activated fibroblasts. In vitro studies showed that KAT14 overexpression significantly promoted a TGF-ß-induced profibrotic response in endometrial stromal cells, while KAT14 silencing showed adverse effects that could be rescued by KAT14 re-enhancement. In vivo, Kat14 knockdown ameliorated fibrosis in the ectopic lesions of the endometriosis mouse model. Mechanistically, we showed that KAT14 directly interacted with serum response factor (SRF) to promote the expression of α-smooth muscle actin (α-SMA) by increasing histone H4 acetylation at promoter regions; this is necessary for TGF-ß-induced ECM production and myofibroblast differentiation. In addition, the knockdown or pharmacological inhibition of SRF significantly attenuated KAT14-mediating profibrotic effects under TGF-ß treatment. Notably, the KAT14/SRF complex was abundant in endometrioma samples and positively correlated with α-SMA expression, further supporting the key role of KAT14/SRF complex in the progression of endometrioma-associated fibrogenesis. CONCLUSION: Our results shed light on KAT14 as a key effector of TGF-ß-induced ECM production and myofibroblast differentiation in EcESCs by promoting histone H4 acetylation via co-operating with SRF, representing a potential therapeutic target for endometrioma-associated fibrosis.


Asunto(s)
Endometriosis , Fibrosis , Factor de Respuesta Sérica , Factor de Crecimiento Transformador beta , Adulto , Animales , Femenino , Humanos , Ratones , Endometriosis/patología , Endometriosis/metabolismo , Endometrio/metabolismo , Endometrio/patología , Histona Acetiltransferasas/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Factor de Respuesta Sérica/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA