Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.202
Filtrar
Más filtros

Intervalo de año de publicación
1.
Traffic ; 25(8): e12954, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39187475

RESUMEN

Enterocytes and liver cells fulfill important metabolic and barrier functions and are responsible for crucial vectorial secretive and absorptive processes. To date, genetic diseases affecting metabolic enzymes or transmembrane transporters in the intestine and the liver are better comprehended than mutations affecting intracellular trafficking. In this review, we explore the emerging knowledge on intracellular trafficking defects and their clinical manifestations in both the intestine and the liver. We provide a detailed overview including more investigated diseases such as the canonical, variant and associated forms of microvillus inclusion disease, as well as recently described pathologies, highlighting the complexity and disease relevance of several trafficking pathways. We give examples of how intracellular trafficking hubs, such as the apical recycling endosome system, the trans-Golgi network, lysosomes, or the Golgi-to-endoplasmic reticulum transport are involved in the pathomechanism and lead to disease. Ultimately, understanding these processes could spark novel therapeutic approaches, which would greatly improve the quality of life of the affected patients.


Asunto(s)
Hepatopatías , Transporte de Proteínas , Humanos , Hepatopatías/metabolismo , Hepatopatías/genética , Animales , Retículo Endoplásmico/metabolismo , Mucolipidosis/metabolismo , Mucolipidosis/genética , Red trans-Golgi/metabolismo , Síndromes de Malabsorción , Microvellosidades/patología
2.
Mol Ther ; 32(7): 2094-2112, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38796704

RESUMEN

Sialidosis (mucolipidosis I) is a glycoprotein storage disease, clinically characterized by a spectrum of systemic and neurological phenotypes. The primary cause of the disease is deficiency of the lysosomal sialidase NEU1, resulting in accumulation of sialylated glycoproteins/oligosaccharides in tissues and body fluids. Neu1-/- mice recapitulate the severe, early-onset forms of the disease, affecting visceral organs, muscles, and the nervous system, with widespread lysosomal vacuolization evident in most cell types. Sialidosis is considered an orphan disorder with no therapy currently available. Here, we assessed the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis. Neu1-/- mice were co-injected with two scAAV2/8 vectors, expressing human NEU1 and its chaperone PPCA. Treated mice were phenotypically indistinguishable from their WT controls. NEU1 activity was restored to different extent in most tissues, including the brain, heart, muscle, and visceral organs. This resulted in diminished/absent lysosomal vacuolization in multiple cell types and reversal of sialyl-oligosacchariduria. Lastly, normalization of lysosomal exocytosis in the cerebrospinal fluids and serum of treated mice, coupled to diminished neuroinflammation, were measures of therapeutic efficacy. These findings point to AAV-mediated gene therapy as a suitable treatment for sialidosis and possibly other diseases, associated with low NEU1 expression.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos , Mucolipidosis , Neuraminidasa , Animales , Dependovirus/genética , Terapia Genética/métodos , Mucolipidosis/terapia , Mucolipidosis/genética , Neuraminidasa/genética , Neuraminidasa/metabolismo , Ratones , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Humanos , Lisosomas/metabolismo , Ratones Noqueados , Transducción Genética , Expresión Génica
3.
Proc Natl Acad Sci U S A ; 119(33): e2203518119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939698

RESUMEN

The mannose-6-phosphate (M6P) pathway is responsible for the transport of hydrolytic enzymes to lysosomes. N-acetylglucosamine-1-phosphotransferase (GNPT) catalyzes the first step of tagging these hydrolases with M6P, which when recognized by receptors in the Golgi diverts them to lysosomes. Genetic defects in the GNPT subunits, GNPTAB and GNPTG, cause the lysosomal storage diseases mucolipidosis types II and III. To better understand its function, we determined partial three-dimensional structures of the GNPT complex. The catalytic domain contains a deep cavity for binding of uridine diphosphate-N-acetylglucosamine, and the surrounding residues point to a one-step transfer mechanism. An isolated structure of the gamma subunit of GNPT reveals that it can bind to mannose-containing glycans in different configurations, suggesting that it may play a role in directing glycans into the active site. These findings may facilitate the development of therapies for lysosomal storage diseases.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Manosafosfatos , Mucolipidosis , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Dominio Catalítico , Humanos , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/enzimología , Manosafosfatos/metabolismo , Mucolipidosis/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
4.
Gene Ther ; 31(5-6): 263-272, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38321198

RESUMEN

Patients with sialidosis (mucolipidosis type I) type I typically present with myoclonus, seizures, ataxia, cherry-red spots, and blindness because of mutations in the neuraminidase 1 (NEU1) gene. Currently, there is no treatment for sialidosis. In this study, we developed an adeno-associated virus (AAV)-mediated gene therapy for a Neu1 knockout (Neu1-/-) mouse model of sialidosis. The vector, AAV9-P3-NP, included the human NEU1 promoter, NEU1 cDNA, IRES, and CTSA cDNA. Untreated Neu1-/- mice showed astrogliosis and microglial LAMP1 accumulation in the nervous system, including brain, spinal cord, and dorsal root ganglion, together with impaired motor function. Coexpression of NEU1 and protective protein/cathepsin A (PPCA) in neonatal Neu1-/- mice by intracerebroventricular injection, and less effective by facial vein injection, decreased astrogliosis and LAMP1 accumulation in the nervous system and improved rotarod performance of the treated mice. Facial vein injection also improved the grip strength and survival of Neu1-/- mice. Therefore, cerebrospinal fluid delivery of AAV9-P3-NP, which corrects the neurological deficits of mice with sialidosis, could be a suitable treatment for patients with sialidosis type I. After intracerebroventricular or facial vein injection of AAV vectors, NEU1 and PPCA are expressed together. PPCA-protected NEU1 is then sent to lysosomes, where ß-Gal binds to this complex to form a multienzyme complex in order to execute its function.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos , Ratones Noqueados , Mucolipidosis , Neuraminidasa , Animales , Terapia Genética/métodos , Neuraminidasa/genética , Neuraminidasa/metabolismo , Ratones , Dependovirus/genética , Mucolipidosis/terapia , Mucolipidosis/genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Catepsina A/genética , Catepsina A/metabolismo , Humanos , Encéfalo/metabolismo
5.
Am J Med Genet A ; 194(6): e63545, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38264826

RESUMEN

Mucolipidosis type-II (ML-II) is an ultra-rare disorder caused by deficiency of N-acetylglucosaminyl-1-phosphotransferase enzyme due to biallelic pathogenic variants in GNPTAB gene. There are a few known about the natural history of ML-II. In this study, we presented the natural course of 24 patients diagnosed with ML-II. Mean age at diagnosis was 9.3 ± 5.7 months. All patients had coarse face, developmental delay, and hypotonia. The mean survival time was 3.01 ± 1.4 years. The oldest patient was 6.5 years old. Twelve patients died due to lung infection and respiratory failure. We observed early and significant radiological findings of ML-II were different from typical dysostosis multiplex such as femoral cloaking, rickets-like changes, and talocalcaneal stippling. These are significant findings observed in the fetal or newborn period which is considered to be highly characteristic of ML-II and disappears in the first year. Cloaking, rickets-like changes, and stippling were not observed in patients older than three months of age and this suggests that these findings disappear within the first year. These radiological features can be used as important clues for diagnosis. We detected eight different pathogenic variants in GNPTAB gene, three of them were novel.


Asunto(s)
Mucolipidosis , Humanos , Mucolipidosis/genética , Mucolipidosis/diagnóstico , Mucolipidosis/diagnóstico por imagen , Mucolipidosis/patología , Masculino , Femenino , Lactante , Preescolar , Niño , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Mutación/genética , Radiografía , Diagnóstico Precoz , Recién Nacido , Fenotipo
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 339-344, 2024 Mar 10.
Artículo en Zh | MEDLINE | ID: mdl-38448026

RESUMEN

OBJECTIVE: To explore the clinical and genetic characteristics of a neonate with Microvillus inclusion disease (MVID). METHODS: A neonate with MVID admitted to the First Affiliated Hospital of Zhengzhou University in May 2019 was selected as the study subject. Clinical data were collected. Whole exome sequencing (WES) was carried out, and candidate variants were verified by Sanger sequencing and multiple ligation-dependent probe amplification (MLPA). A literature was also carried out to summarize the clinical and genetic characteristics of MVID. RESULTS: The prematurely born neonate had presented with unexplained refractory diarrhea and metabolic acidosis. Active symptomatic treatment was ineffective, and the child had died at 2 months old. WES revealed that he had harbored compound heterozygous variants of the MYO5B gene, namely c.1591C>T (p.R531W) and deletion of exon 9. Sanger sequencing showed that the R531W variant was inherited form his father, and MLPA confirmed that the exon 9 deletion was inherited from his mother. Seven children with MVID were reported in China, of which one was lost during follow-up and six had deceased. One hundred eighty eight patients were reported worldwide and only one was cured. The clinical features of MVID had included refractory diarrhea, metabolic acidosis and poor prognosis. CONCLUSION: The child was diagnosed with MVID due to the compound heterozygous variants of the MYO5B gene, which has provided a basis for genetic counseling and prenatal diagnosis.


Asunto(s)
Acidosis , Síndromes de Malabsorción , Microvellosidades , Mucolipidosis , Miosina Tipo V , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Diarrea/genética , Síndromes de Malabsorción/genética , Microvellosidades/patología , Mucolipidosis/genética , Cadenas Pesadas de Miosina , Miosina Tipo V/genética
7.
J Biol Chem ; 298(3): 101702, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35148990

RESUMEN

GlcNAc-1-phosphotransferase catalyzes the initial step in the formation of the mannose-6-phosphate tag that labels ∼60 lysosomal proteins for transport. Mutations in GlcNAc-1-phosphotransferase are known to cause lysosomal storage disorders such as mucolipidoses. However, the molecular mechanism of GlcNAc-1-phosphotransferase activity remains unclear. Mammalian GlcNAc-1-phosphotransferases are α2ß2γ2 hexamers in which the core catalytic α- and ß-subunits are derived from the GNPTAB (N-acetylglucosamine-1-phosphate transferase subunits alpha and beta) gene. Here, we present the cryo-electron microscopy structure of the Drosophila melanogaster GNPTAB homolog, DmGNPTAB. We identified four conserved regions located far apart in the sequence that fold into the catalytic domain, which exhibits structural similarity to that of the UDP-glucose glycoprotein glucosyltransferase. Comparison with UDP-glucose glycoprotein glucosyltransferase also revealed a putative donor substrate-binding site, and the functional requirements of critical residues in human GNPTAB were validated using GNPTAB-knockout cells. Finally, we show that DmGNPTAB forms a homodimer that is evolutionarily conserved and that perturbing the dimer interface undermines the maturation and activity of human GNPTAB. These results provide important insights into GlcNAc-1-phosphotransferase function and related diseases.


Asunto(s)
Lisosomas , Mucolipidosis , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Animales , Microscopía por Crioelectrón , Drosophila melanogaster , Lisosomas/química , Lisosomas/genética , Lisosomas/metabolismo , Mamíferos/metabolismo , Mucolipidosis/genética , Proteínas , Relación Estructura-Actividad , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
8.
Hum Mol Genet ; 30(10): 908-922, 2021 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-33822942

RESUMEN

Mucolipidosis IV (MLIV) is an orphan disease leading to debilitating psychomotor deficits and vision loss. It is caused by loss-of-function mutations in the MCOLN1 gene that encodes the lysosomal transient receptor potential channel mucolipin1, or TRPML1. With no existing therapy, the unmet need in this disease is very high. Here, we showed that AAV-mediated CNS-targeted gene transfer of the human MCOLN1 gene rescued motor function and alleviated brain pathology in the MLIV mouse model. Using the AAV-PHP.b vector in symptomatic mice, we showed long-term reversal of declined motor function and significant delay of paralysis. Next, using self-complementary AAV9 clinical candidate vector, we showed that its intracerebroventricular administration in post-natal day 1 mice significantly improved motor function, myelination and reduced lysosomal storage load in the MLIV mouse brain. Based on our data and general advancements in the gene therapy field, we propose scAAV9-mediated CSF-targeted MCOLN1 gene transfer as a therapeutic strategy in MLIV.


Asunto(s)
Terapia Genética , Mucolipidosis/terapia , Enfermedades del Sistema Nervioso/terapia , Canales de Potencial de Receptor Transitorio/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Mutación con Pérdida de Función/genética , Lisosomas/genética , Lisosomas/patología , Ratones , Mucolipidosis/líquido cefalorraquídeo , Mucolipidosis/genética , Mucolipidosis/patología , Enfermedades del Sistema Nervioso/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología
9.
Glycoconj J ; 40(6): 611-619, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38147151

RESUMEN

Neuraminidase 1 (NEU1) is a lysosomal sialidase that cleaves terminal α-linked sialic acid residues from sialylglycans. NEU1 is biosynthesized in the rough endoplasmic reticulum (RER) lumen as an N-glycosylated protein to associate with its protective protein/cathepsin A (CTSA) and then form a lysosomal multienzyme complex (LMC) also containing ß-galactosidase 1 (GLB1). Unlike other mammalian sialidases, including NEU2 to NEU4, NEU1 transport to lysosomes requires association of NEU1 with CTSA, binding of the CTSA carrying terminal mannose 6-phosphate (M6P)-type N-glycan with M6P receptor (M6PR), and intralysosomal NEU1 activation at acidic pH. In contrast, overexpression of the single NEU1 gene in mammalian cells causes intracellular NEU1 protein crystallization in the RER due to self-aggregation when intracellular CTSA is reduced to a relatively low level. Sialidosis (SiD) and galactosialidosis (GS) are autosomal recessive lysosomal storage diseases caused by the gene mutations of NEU1 and CTSA, respectively. These incurable diseases associate with the NEU1 deficiency, excessive accumulation of sialylglycans in neurovisceral organs, and systemic manifestations. We established a novel GS model mouse carrying homozygotic Ctsa IVS6 + 1 g/a mutation causing partial exon 6 skipping with simultaneous deficiency of Ctsa and Neu1. Symptoms developed in the GS mice like those in juvenile/adult GS patients, such as myoclonic seizures, suppressed behavior, gargoyle-like face, edema, proctoptosis due to Neu1 deficiency, and sialylglycan accumulation associated with neurovisceral inflammation. We developed a modified NEU1 (modNEU1), which does not form protein crystals but is transported to lysosomes by co-expressed CTSA. In vivo gene therapy for GS and SiD utilizing a single adeno-associated virus (AAV) carrying modNEU1 and CTSA genes under dual promoter control will be created.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Mucolipidosis , Neuraminidasa , Animales , Humanos , Ratones , Neuraminidasa/química , Mucolipidosis/genética , Mucolipidosis/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo
10.
J Inherit Metab Dis ; 46(2): 206-219, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752951

RESUMEN

Oligosaccharidoses, sphingolipidoses and mucolipidoses are lysosomal storage disorders (LSDs) in which defective breakdown of glycan-side chains of glycosylated proteins and glycolipids leads to the accumulation of incompletely degraded oligosaccharides within lysosomes. In metabolic laboratories, these disorders are commonly diagnosed by thin-layer chromatography (TLC) but more recently also mass spectrometry-based approaches have been published. To expand the possibilities to screen for these diseases, we developed an ultra-high-performance liquid chromatography (UHPLC) with a high-resolution accurate mass (HRAM) mass spectrometry (MS) screening platform, together with an open-source iterative bioinformatics pipeline. This pipeline generates comprehensive biomarker profiles and allows for extensive quality control (QC) monitoring. Using this platform, we were able to identify α-mannosidosis, ß-mannosidosis, α-N-acetylgalactosaminidase deficiency, sialidosis, galactosialidosis, fucosidosis, aspartylglucosaminuria, GM1 gangliosidosis, GM2 gangliosidosis (M. Sandhoff) and mucolipidosis II/III in patient samples. Aberrant urinary oligosaccharide excretions were also detected for other disorders, including NGLY1 congenital disorder of deglycosylation, sialic acid storage disease, MPS type IV B and GSD II (Pompe disease). For the latter disorder, we identified heptahexose (Hex7), as a potential urinary biomarker, in addition to glucose tetrasaccharide (Glc4), for the diagnosis and monitoring of young onset cases of Pompe disease. Occasionally, so-called "neonate" biomarker profiles were observed in young patients, which were probably due to nutrition. Our UHPLC/HRAM-MS screening platform can easily be adopted in biochemical laboratories and allows for simple and robust screening and straightforward interpretation of the screening results to detect disorders in which aberrant oligosaccharides accumulate.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Enfermedades por Almacenamiento Lisosomal , Mucolipidosis , Mucopolisacaridosis IV , Humanos , Cromatografía Líquida de Alta Presión/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Mucolipidosis/diagnóstico , Espectrometría de Masas en Tándem/métodos , Oligosacáridos/química
11.
Cell ; 135(5): 838-51, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041749

RESUMEN

Disruption of the Transient Receptor Potential (TRP) mucolipin 1 (TRPML1) channel results in the neurodegenerative disorder mucolipidosis type IV (MLIV), a lysosomal storage disease with severe motor impairments. The mechanisms underlying MLIV are poorly understood and there is no treatment. Here, we report a Drosophila MLIV model, which recapitulates the key disease features, including abnormal intracellular accumulation of macromolecules, motor defects, and neurodegeneration. The basis for the buildup of macromolecules was defective autophagy, which resulted in oxidative stress and impaired synaptic transmission. Late-apoptotic cells accumulated in trpml mutant brains, suggesting diminished cell clearance. The accumulation of late-apoptotic cells and motor deficits were suppressed by expression of trpml(+) in neurons, glia, or hematopoietic cells. We conclude that the neurodegeneration and motor defects result primarily from decreased clearance of apoptotic cells. Since hematopoietic cells in humans are involved in clearance of apoptotic cells, our results raise the possibility that bone marrow transplantation may limit the progression of MLIV.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Drosophila/metabolismo , Mucolipidosis/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
12.
Nature ; 550(7676): 366-370, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29019983

RESUMEN

Transient receptor potential mucolipin 1 (TRPML1) is a Ca2+-releasing cation channel that mediates the calcium signalling and homeostasis of lysosomes. Mutations in TRPML1 lead to mucolipidosis type IV, a severe lysosomal storage disorder. Here we report two electron cryo-microscopy structures of full-length human TRPML1: a 3.72-Å apo structure at pH 7.0 in the closed state, and a 3.49-Å agonist-bound structure at pH 6.0 in an open state. Several aromatic and hydrophobic residues in pore helix 1, helices S5 and S6, and helix S6 of a neighbouring subunit, form a hydrophobic cavity to house the agonist, suggesting a distinct agonist-binding site from that found in TRPV1, a TRP channel from a different subfamily. The opening of TRPML1 is associated with distinct dilations of its lower gate together with a slight structural movement of pore helix 1. Our work reveals the regulatory mechanism of TRPML channels, facilitates better understanding of TRP channel activation, and provides insights into the molecular basis of mucolipidosis type IV pathogenesis.


Asunto(s)
Microscopía por Crioelectrón , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/ultraestructura , Apoproteínas/química , Apoproteínas/ultraestructura , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Mucolipidosis/metabolismo , Conformación Proteica , Canales de Potencial de Receptor Transitorio/agonistas
13.
BMC Ophthalmol ; 23(1): 394, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752499

RESUMEN

BACKGROUND: We describe the case of a 47-year-old man referred to a retinal clinic and diagnosed with late-onset retinitis pigmentosa. Surprisingly, genetic testing revealed compound heterozygous pathogenic variants in GNPTG, leading to the diagnosis of the autosomal recessive lysosomal storage disorder mucolipidosis type III gamma. Mucolipidosis type III gamma is typically diagnosed during childhood due to symptoms relating to skeletal dysplasia. Retinal dystrophy is not a common phenotypic feature. CASE PRESENTATION: Ophthalmologic examination was consistent with a mild form of retinitis pigmentosa and included fundus photography, measurement of best-corrected visual acuity, optical coherence tomography, electroretinogram and visual field testing. Extraocular findings included joint restriction and pains from an early age leading to bilateral hip replacement by age 30, aortic insufficiency, and hypertension. Genetic analysis was performed by whole genome sequencing filtered for a gene panel of 325 genes associated with retinal disease. Two compound heterozygous pathogenic variants were identified in GNPTG, c.347_349del and c.607dup. The diagnosis of mucolipidosis type III gamma was confirmed biochemically by measurement of increased activities of specific lysosomal enzymes in plasma. CONCLUSION: To our knowledge this is the first description of retinitis pigmentosa caused by compound heterozygous variants in GNPTG, providing further indications that late-onset retinal dystrophy is part of the phenotypic spectrum of mucolipidosis type III gamma.


Asunto(s)
Mucolipidosis , Distrofias Retinianas , Masculino , Humanos , Adulto , Persona de Mediana Edad , Mucolipidosis/diagnóstico , Mucolipidosis/genética , Secuenciación Completa del Genoma , Electrorretinografía , Transferasas (Grupos de Otros Fosfatos Sustitutos)
14.
Proc Natl Acad Sci U S A ; 117(32): 19266-19275, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32703809

RESUMEN

Mitochondria and lysosomes are critical for cellular homeostasis, and dysfunction of both organelles has been implicated in numerous diseases. Recently, interorganelle contacts between mitochondria and lysosomes were identified and found to regulate mitochondrial dynamics. However, whether mitochondria-lysosome contacts serve additional functions by facilitating the direct transfer of metabolites or ions between the two organelles has not been elucidated. Here, using high spatial and temporal resolution live-cell microscopy, we identified a role for mitochondria-lysosome contacts in regulating mitochondrial calcium dynamics through the lysosomal calcium efflux channel, transient receptor potential mucolipin 1 (TRPML1). Lysosomal calcium release by TRPML1 promotes calcium transfer to mitochondria, which was mediated by tethering of mitochondria-lysosome contact sites. Moreover, mitochondrial calcium uptake at mitochondria-lysosome contact sites was modulated by the outer and inner mitochondrial membrane channels, voltage-dependent anion channel 1 and the mitochondrial calcium uniporter, respectively. Since loss of TRPML1 function results in the lysosomal storage disorder mucolipidosis type IV (MLIV), we examined MLIV patient fibroblasts and found both altered mitochondria-lysosome contact dynamics and defective contact-dependent mitochondrial calcium uptake. Thus, our work highlights mitochondria-lysosome contacts as key contributors to interorganelle calcium dynamics and their potential role in the pathophysiology of disorders characterized by dysfunctional mitochondria or lysosomes.


Asunto(s)
Calcio/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Mucolipidosis/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Transporte Biológico , Humanos , Lisosomas/genética , Mitocondrias/genética , Dinámicas Mitocondriales , Mucolipidosis/genética , Canales de Potencial de Receptor Transitorio/genética
15.
Traffic ; 21(1): 169-171, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31596022

RESUMEN

Whole exome sequencing now provides a tool for rapid analysis of patients manifesting congenital diseases. Congenital diarrheal diseases provide a critical example of the challenges of combining identification of genetic mutations responsible for disease with characterization of the cell biological and cell physiological deficits observed in patients. Recent studies exploring the cellular events associated with loss of functional Myosin 5B (MYO5B) have demonstrated the importance of cell biological and physiological analyses to provide a greater understanding of the implications of pathological mutations. Development of enteroids derived from biopsies of patients with complex congenital diarrheal diseases provides a critical resource for evaluation of the cell biological impact of specific monogenic mutations on enterocyte function. The ability to identify putative causative mutations for congenital disease now provides an opportunity to coordinate the efforts of physicians and cell biologists in an effort to provide patients with personalized cell biology analysis to improve patient diagnosis and treatment.


Asunto(s)
Síndromes de Malabsorción , Mucolipidosis , Miosina Tipo V , Humanos , Síndromes de Malabsorción/genética , Microvellosidades/patología , Mucolipidosis/genética , Medicina de Precisión
16.
Liver Int ; 42(2): 402-411, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34811877

RESUMEN

BACKGROUND & AIMS: Biallelic pathogenic variants in MYO5B cause microvillus inclusion disease (MVID), or familial intrahepatic cholestasis (FIC). The reported FIC patients are scarce and so the genotype-phenotype correlation has not been fully characterised. This study aimed to report more MYO5B-associated FIC patients and correlate genotypes to phenotypes in more detail. METHODS: The phenotype and genetic data of 12 newly diagnosed MYO5B-associated (including 11 FIC) patients, as well as 118 previously reported patients with available genotypes, were summarised. Only patients with biallelic MYO5B variants were enrolled. Nonsense, frameshift, canonical splice sites, initiation codon loss, and single exon or multiexon deletion were defined as null MYO5B variants. RESULTS: Phenotypically, 50 were isolated MVID, 47 involved both liver and intestine (combined), and 33 were isolated FIC (9 persistent, 15 recurrent, 3 transient, and 6 un-sub-classified) patients. The severity of intestinal manifestation was positively correlated to an increased number of null variants (ρ = 0.299, P = .001). All FIC patients carried at least one non-null variant, and the severity of cholestasis was correlated to the presence of a null variant (ρ = 0.420, P = .029). The proportion of FIC patients (16/29, 55%) harbouring missense/in-frame variants affecting the non-motor regions of MYO5B was significantly higher than that of MVID (3/25, 12%, P = .001) and combined patients (3/31, 10%, P = .000). 10 of the 29 FIC patients harboured missense/in-frame variants at the IQ motifs comparing to none in the 56 MVID and combined patients (P = .000). CONCLUSIONS: The phenotype of MYO5B deficiency was associated with MYO5B genotypes, the nullity or the domain affected.


Asunto(s)
Colestasis Intrahepática/genética , Mucolipidosis , Cadenas Pesadas de Miosina , Miosina Tipo V , Estudios de Asociación Genética , Humanos , Hígado/patología , Mucolipidosis/genética , Mucolipidosis/patología , Mutación , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética
17.
Prenat Diagn ; 42(1): 136-140, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34816459

RESUMEN

BACKGROUNDS: Microvillus inclusion disease (MVID) characterizes as intractable life-threatening watery diarrhea malnutrition after birth. MATERIALS & METHODS: Here we describe two patients with prenatal ultrasound findings of bowel dilation or increased amniotic fluid volume presented intractable diarrhea after birth. Exome sequencing and Intestinal biopsy were performed for the patients and their parents to reveal the underlying causes. The mutations were verified by Sanger sequencing and quantitative polymerase chain reaction. RESULTS: Exome sequencing revealed that both of the patients carrying MYO5B compound heterozygote mutations that were inherited from their parents. CONCLUSION: Here we describe two cases with MVID caused by MYO5B deficiency, which was the most common caused with prenatal ultrasound findings of bowel dilation and increased amniotic fluid volume. Due to the lack of effective curative therapies, early diagnosis even in prenatal of MVID can provide parents with better genetic counseling on the fetal prognosis.


Asunto(s)
Síndromes de Malabsorción/etiología , Microvellosidades/patología , Mucolipidosis/etiología , Cadenas Pesadas de Miosina/deficiencia , Miosina Tipo V/deficiencia , Femenino , Edad Gestacional , Humanos , Recién Nacido , Síndromes de Malabsorción/genética , Masculino , Microvellosidades/genética , Mucolipidosis/genética , Mutación/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Pruebas Prenatales no Invasivas/métodos , Ultrasonografía Prenatal/métodos , Secuenciación del Exoma/métodos
18.
Int J Neurosci ; 132(6): 589-592, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32988250

RESUMEN

Sialidosis is a rare autosomal recessive hereditary disease caused by NEU1 gene mutations. A 25-year-old woman developed generalized tonic-clonic seizures since teenage, followed by progressive visional decline and limb myoclonus. Her sister had similar presentations. Both patients were products of a consanguineous marriage. Electroencephalography (EEG) revealed extensive paroxysmal spiky beta brush. Somatosensory evoked potentials (SEP) after stimulation of median nerves demonstrated giant SEP and C-reflex support the cortical origin of myoclonus. Genetic tests confirmed that both sisters carried the known pathogenic homozygous mutation of c.544A > G in exon 3 of the NEU1 gene. The diagnosis of sialidosis type 1 was then made. This suggests that neurophysiological abnormalities, especially spiky beta brush on EEG, might facilitate the early diagnosis of sialidosis type 1.


Asunto(s)
Mucolipidosis , Mioclonía , Adolescente , Adulto , Electroencefalografía , Potenciales Evocados Somatosensoriales , Femenino , Humanos , Mucolipidosis/complicaciones , Mucolipidosis/diagnóstico , Mucolipidosis/genética , Mioclonía/etiología , Neuraminidasa/genética
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(8): 829-835, 2022 Aug 10.
Artículo en Zh | MEDLINE | ID: mdl-35929931

RESUMEN

OBJECTIVE: To analyze the characteristics of lysosomal enzymes in mucolipidosis (ML) type II α/ß and type III α/ß for the choice of enzyme evaluating indicators. METHODS: Multiple lysosomal enzymes including α-iduronidase (IDUA), α -N-acetylglucosaminidase (NAGLU), ß-galactosidase-1 (GLB1), ß-glucuronidase (GUSB), α-galactosidase A (GLA), glucocerebrosidase (GBA) and arylsulphatase A (ASA) in plasma and leukocyte of two Chinese pedigrees with ML type II α/ß and type III α/ß and healthy controls were determined. Previous publications on ML type II α/ß and type III α/ß during the last five years were retrieved from PubMed, CNKI and WanFang databases by using "mucolipidosis" as key word. RESULTS: The activities of several lysosomal enzymes were increased in the plasma of both patients: ASA, IDUA (20-fold) > GUSB (10-fold) > GLB1, GLA (5-fold) > NAGLU (2-fold), whilst there was no significant change in GBA. The activities of several lysosomal enzymes in the leukocyte of the two patients were normal. 15 lysosomal enzymes have been used in 22 previous studies, the most frequently used were hexosaminidase A and B (Hex A+B) (12 papers), α-mannosidase (α-man) (11 papers) and GUSB (10 papers). The degree of Hex A+B and α-man elevation was most obvious (24.4-fold and 24.7-fold on average respectively), followed by ASA (22.4-fold on average), GUSB is 18.8-fold on average. CONCLUSION: Based on the lysosomal enzyme analysis of the two cases and literature review, ASA, GUSB, Hex A+B and α-man are recommended as the evaluating indicators for lysosomal enzyme analysis of ML type II α/ß and type III α/ß.


Asunto(s)
Mucolipidosis , China , Hexosaminidasa A , Humanos , Iduronidasa , Lisosomas , Mucolipidosis/genética , Linaje
20.
J Biol Chem ; 295(39): 13556-13569, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32727849

RESUMEN

Mutations in the galactosidase ß 1 (GLB1) gene cause lysosomal ß-galactosidase (ß-Gal) deficiency and clinical onset of the neurodegenerative lysosomal storage disease, GM1 gangliosidosis. ß-Gal and neuraminidase 1 (NEU1) form a multienzyme complex in lysosomes along with the molecular chaperone, protective protein cathepsin A (PPCA). NEU1 is deficient in the neurodegenerative lysosomal storage disease sialidosis, and its targeting to and stability in lysosomes strictly depend on PPCA. In contrast, ß-Gal only partially depends on PPCA, prompting us to investigate the role that ß-Gal plays in the multienzyme complex. Here, we demonstrate that ß-Gal negatively regulates NEU1 levels in lysosomes by competitively displacing this labile sialidase from PPCA. Chronic cellular uptake of purified recombinant human ß-Gal (rhß-Gal) or chronic lentiviral-mediated GLB1 overexpression in GM1 gangliosidosis patient fibroblasts coincides with profound secondary NEU1 deficiency. A regimen of intermittent enzyme replacement therapy dosing with rhß-Gal, followed by enzyme withdrawal, is sufficient to augment ß-Gal activity levels in GM1 gangliosidosis patient fibroblasts without promoting NEU1 deficiency. In the absence of ß-Gal, NEU1 levels are elevated in the GM1 gangliosidosis mouse brain, which are restored to normal levels following weekly intracerebroventricular dosing with rhß-Gal. Collectively, our results highlight the need to carefully titrate the dose and dosing frequency of ß-Gal augmentation therapy for GM1 gangliosidosis. They further suggest that intermittent intracerebroventricular enzyme replacement therapy dosing with rhß-Gal is a tunable approach that can safely augment ß-Gal levels while maintaining NEU1 at physiological levels in the GM1 gangliosidosis brain.


Asunto(s)
Terapia de Reemplazo Enzimático , Fibroblastos/enzimología , Lisosomas/enzimología , Mucolipidosis , beta-Galactosidasa/uso terapéutico , Animales , Células CHO , Cricetulus , Humanos , Lisosomas/genética , Ratones , Ratones Mutantes , Mucolipidosis/tratamiento farmacológico , Mucolipidosis/enzimología , Mucolipidosis/genética , Neuraminidasa/genética , Neuraminidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA