Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.241
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(26): 5892-5909.e22, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38091994

RESUMEN

Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.


Asunto(s)
Encéfalo , Transcriptoma , Humanos , Neuronas Dopaminérgicas , Neuronas GABAérgicas , Mesencéfalo , Neocórtex , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo
2.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34004146

RESUMEN

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Asunto(s)
Hipocampo/citología , Neocórtex/citología , Transcriptoma/genética , Animales , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Cell ; 183(4): 935-953.e19, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186530

RESUMEN

Neurons are frequently classified into distinct types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 4,200 mouse visual cortical GABAergic interneurons and reconstructed the local morphologies of 517 of those neurons. We find that most transcriptomic types (t-types) occupy specific laminar positions within visual cortex, and, for most types, the cells mapping to a t-type exhibit consistent electrophysiological and morphological properties. These properties display both discrete and continuous variation among t-types. Through multimodal integrated analysis, we define 28 met-types that have congruent morphological, electrophysiological, and transcriptomic properties and robust mutual predictability. We identify layer-specific axon innervation pattern as a defining feature distinguishing different met-types. These met-types represent a unified definition of cortical GABAergic interneuron types, providing a systematic framework to capture existing knowledge and bridge future analyses across different modalities.


Asunto(s)
Corteza Cerebral/citología , Fenómenos Electrofisiológicos , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Transcriptoma/genética , Animales , Femenino , Perfilación de la Expresión Génica , Hipocampo/fisiología , Canales Iónicos/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo
4.
Cell ; 181(1): 7, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32243798

RESUMEN

The discovery of the strikingly rapid and robust antidepressant effects of r/s-ketamine for the treatment of antidepressant-resistant symptoms of depression has led to new insights into the biology of antidepressants and the FDA approval of its s-isomer, Esketamine (Spravato), the first mechanistically new treatment for depression in over 60 years. To view this Bench to Bedside, open or download the PDF.


Asunto(s)
Antidepresivos , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Aprobación de Drogas , Ketamina , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Neuronas GABAérgicas/efectos de los fármacos , Humanos , Ketamina/farmacología , Ketamina/uso terapéutico , Receptores AMPA/metabolismo
5.
Cell ; 178(3): 672-685.e12, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31257028

RESUMEN

Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal raphe nucleus (DRN), hereafter DRNVgat neurons, are activated by ambient heat and bidirectionally regulate energy expenditure through changes in both thermogenesis and locomotion. We find that DRNVgat neurons innervate brown fat via a descending projection to the raphe pallidus (RPa). These neurons also densely innervate ascending targets implicated in the central regulation of energy expenditure, including the hypothalamus and extended amygdala. Optogenetic stimulation of different projection targets reveals that DRNVgat neurons are capable of regulating thermogenesis through both a "direct" descending pathway through the RPa and multiple "indirect" ascending pathways. This work establishes a key regulatory role for DRNVgat neurons in controlling energy expenditure.


Asunto(s)
Metabolismo Energético , Neuronas GABAérgicas/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Mapeo Encefálico , Clozapina/análogos & derivados , Clozapina/farmacología , Núcleo Dorsal del Rafe/metabolismo , Expresión Génica/efectos de los fármacos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Temperatura , Termogénesis
6.
Cell ; 178(1): 27-43.e19, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31230713

RESUMEN

When a behavior repeatedly fails to achieve its goal, animals often give up and become passive, which can be strategic for preserving energy or regrouping between attempts. It is unknown how the brain identifies behavioral failures and mediates this behavioral-state switch. In larval zebrafish swimming in virtual reality, visual feedback can be withheld so that swim attempts fail to trigger expected visual flow. After tens of seconds of such motor futility, animals became passive for similar durations. Whole-brain calcium imaging revealed noradrenergic neurons that responded specifically to failed swim attempts and radial astrocytes whose calcium levels accumulated with increasing numbers of failed attempts. Using cell ablation and optogenetic or chemogenetic activation, we found that noradrenergic neurons progressively activated brainstem radial astrocytes, which then suppressed swimming. Thus, radial astrocytes perform a computation critical for behavior: they accumulate evidence that current actions are ineffective and consequently drive changes in behavioral states. VIDEO ABSTRACT.


Asunto(s)
Astrocitos/metabolismo , Conducta Animal/fisiología , Larva/fisiología , Pez Cebra/fisiología , Neuronas Adrenérgicas/metabolismo , Animales , Animales Modificados Genéticamente/fisiología , Astrocitos/citología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Calcio/metabolismo , Comunicación Celular/fisiología , Retroalimentación Sensorial/fisiología , Neuronas GABAérgicas/metabolismo , Potenciales de la Membrana/fisiología , Optogenética , Natación/fisiología
7.
Cell ; 171(3): 522-539.e20, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28942923

RESUMEN

Understanding the organizational logic of neural circuits requires deciphering the biological basis of neuronal diversity and identity, but there is no consensus on how neuron types should be defined. We analyzed single-cell transcriptomes of a set of anatomically and physiologically characterized cortical GABAergic neurons and conducted a computational genomic screen for transcriptional profiles that distinguish them from one another. We discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns. This architecture comprises 6 categories of ∼40 gene families, including cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release components, and transcription factors. Combinatorial expression of select members across families shapes a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties. This molecular genetic framework of neuronal identity integrates cell phenotypes along multiple axes and provides a foundation for discovering and classifying neuron types.


Asunto(s)
Neuronas GABAérgicas/citología , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Matriz Extracelular/metabolismo , Neuronas GABAérgicas/metabolismo , Ratones , Receptores de GABA/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Transducción de Señal , Sinapsis , Transcripción Genética , Zinc/metabolismo , Ácido gamma-Aminobutírico/metabolismo
8.
Cell ; 171(3): 507-521.e17, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28965758

RESUMEN

The medial entorhinal cortex (MEC) contains several discrete classes of GABAergic interneurons, but their specific contributions to spatial pattern formation in this area remain elusive. We employed a pharmacogenetic approach to silence either parvalbumin (PV)- or somatostatin (SOM)-expressing interneurons while MEC cells were recorded in freely moving mice. PV-cell silencing antagonized the hexagonally patterned spatial selectivity of grid cells, especially in layer II of MEC. The impairment was accompanied by reduced speed modulation in colocalized speed cells. Silencing SOM cells, in contrast, had no impact on grid cells or speed cells but instead decreased the spatial selectivity of cells with discrete aperiodic firing fields. Border cells and head direction cells were not affected by either intervention. The findings point to distinct roles for PV and SOM interneurons in the local dynamics underlying periodic and aperiodic firing in spatially modulated cells of the MEC. VIDEO ABSTRACT.


Asunto(s)
Corteza Entorrinal/citología , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Procesamiento Espacial , Animales , Neuronas GABAérgicas/metabolismo , Células de Red/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas
9.
Cell ; 164(3): 526-37, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824660

RESUMEN

The basal ganglia (BG) are critical for adaptive motor control, but the circuit principles underlying their pathway-specific modulation of target regions are not well understood. Here, we dissect the mechanisms underlying BG direct and indirect pathway-mediated control of the mesencephalic locomotor region (MLR), a brainstem target of BG that is critical for locomotion. We optogenetically dissect the locomotor function of the three neurochemically distinct cell types within the MLR: glutamatergic, GABAergic, and cholinergic neurons. We find that the glutamatergic subpopulation encodes locomotor state and speed, is necessary and sufficient for locomotion, and is selectively innervated by BG. We further show activation and suppression, respectively, of MLR glutamatergic neurons by direct and indirect pathways, which is required for bidirectional control of locomotion by BG circuits. These findings provide a fundamental understanding of how BG can initiate or suppress a motor program through cell-type-specific regulation of neurons linked to specific actions.


Asunto(s)
Ganglios Basales/fisiología , Mapeo Encefálico , Mesencéfalo/citología , Actividad Motora , Vías Nerviosas , Animales , Neuronas GABAérgicas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Optogenética
10.
Cell ; 166(5): 1295-1307.e21, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27565350

RESUMEN

Cellular compartments that cannot be biochemically isolated are challenging to characterize. Here we demonstrate the proteomic characterization of the synaptic clefts that exist at both excitatory and inhibitory synapses. Normal brain function relies on the careful balance of these opposing neural connections, and understanding how this balance is achieved relies on knowledge of their protein compositions. Using a spatially restricted enzymatic tagging strategy, we mapped the proteomes of two of the most common excitatory and inhibitory synaptic clefts in living neurons. These proteomes reveal dozens of synaptic candidates and assign numerous known synaptic proteins to a specific cleft type. The molecular differentiation of each cleft allowed us to identify Mdga2 as a potential specificity factor influencing Neuroligin-2's recruitment of presynaptic neurotransmitters at inhibitory synapses.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Neuronas GABAérgicas/metabolismo , Inmunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteoma/metabolismo , Membranas Sinápticas/metabolismo , Animales , Antígenos CD/metabolismo , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Ratones , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Peroxidasa/genética , Peroxidasa/metabolismo , Proteómica , Ratas , Receptores de GABA/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tálamo/metabolismo
11.
Nature ; 629(8011): 384-392, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600385

RESUMEN

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Asunto(s)
Linaje de la Célula , Células Clonales , Mosaicismo , Neuronas , Prosencéfalo , Anciano , Femenino , Humanos , Alelos , Linaje de la Célula/genética , Células Clonales/citología , Células Clonales/metabolismo , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Hipocampo/citología , Proteínas de Homeodominio/metabolismo , Neocórtex/citología , Inhibición Neural , Neuronas/citología , Neuronas/metabolismo , Lóbulo Parietal/citología , Prosencéfalo/anatomía & histología , Prosencéfalo/citología , Prosencéfalo/metabolismo , Análisis de la Célula Individual , Transcriptoma/genética
12.
Nature ; 634(8032): 191-200, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39358520

RESUMEN

Walking is a complex motor programme involving coordinated and distributed activity across the brain and the spinal cord. Halting appropriately at the correct time is a critical component of walking control. Despite progress in identifying neurons driving halting1-6, the underlying neural circuit mechanisms responsible for overruling the competing walking state remain unclear. Here, using connectome-informed models7-9 and functional studies, we explain two fundamental mechanisms by which Drosophila implement context-appropriate halting. The first mechanism ('walk-OFF') relies on GABAergic neurons that inhibit specific descending walking commands in the brain, whereas the second mechanism ('brake') relies on excitatory cholinergic neurons in the nerve cord that lead to an active arrest of stepping movements. We show that two neurons that deploy the walk-OFF mechanism inhibit distinct populations of walking-promotion neurons, leading to differential halting of forward walking or turning. The brake neurons, by constrast, override all walking commands by simultaneously inhibiting descending walking-promotion neurons and increasing the resistance at the leg joints. We characterized two behavioural contexts in which the distinct halting mechanisms were used by the animal in a mutually exclusive manner: the walk-OFF mechanism was engaged for halting during feeding and the brake mechanism was engaged for halting and stability during grooming.


Asunto(s)
Encéfalo , Conectoma , Drosophila melanogaster , Vías Nerviosas , Caminata , Animales , Femenino , Encéfalo/fisiología , Encéfalo/citología , Neuronas Colinérgicas/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Aseo Animal/fisiología , Modelos Neurológicos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Caminata/fisiología
13.
Nature ; 630(8017): 677-685, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839962

RESUMEN

All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.


Asunto(s)
Analgésicos Opioides , Vaina de Mielina , Vías Nerviosas , Plasticidad Neuronal , Recompensa , Área Tegmental Ventral , Animales , Femenino , Masculino , Ratones , Analgésicos Opioides/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Ratones Endogámicos C57BL , Morfina/farmacología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Núcleo Accumbens/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Optogenética , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Linaje de la Célula
14.
Nature ; 627(8004): 604-611, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448582

RESUMEN

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Asunto(s)
Envejecimiento , Astrocitos , Neuronas , Corteza Prefrontal , Esquizofrenia , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad , Adulto Joven , Envejecimiento/metabolismo , Envejecimiento/patología , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/patología , Colesterol/metabolismo , Cognición , Neuronas GABAérgicas/metabolismo , Predisposición Genética a la Enfermedad , Glutamina/metabolismo , Salud , Individualidad , Inhibición Neural , Plasticidad Neuronal , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología , Análisis de Expresión Génica de una Sola Célula , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/patología , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
15.
Cell ; 156(6): 1139-1152, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24630718

RESUMEN

The brain's response to sensory input is strikingly modulated by behavioral state. Notably, the visual response of mouse primary visual cortex (V1) is enhanced by locomotion, a tractable and accessible example of a time-locked change in cortical state. The neural circuits that transmit behavioral state to sensory cortex to produce this modulation are unknown. In vivo calcium imaging of behaving animals revealed that locomotion activates vasoactive intestinal peptide (VIP)-positive neurons in mouse V1 independent of visual stimulation and largely through nicotinic inputs from basal forebrain. Optogenetic activation of VIP neurons increased V1 visual responses in stationary awake mice, artificially mimicking the effect of locomotion, and photolytic damage of VIP neurons abolished the enhancement of V1 responses by locomotion. These findings establish a cortical circuit for the enhancement of visual response by locomotion and provide a potential common circuit for the modulation of sensory processing by behavioral state.


Asunto(s)
Neocórtex/metabolismo , Neuronas/metabolismo , Carrera , Vías Visuales , Animales , Femenino , Neuronas GABAérgicas/metabolismo , Masculino , Ratones , Neocórtex/citología , Receptores Nicotínicos/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Ácido gamma-Aminobutírico/metabolismo
16.
Nature ; 617(7962): 777-784, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100911

RESUMEN

Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously 'modality-selective' KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience.


Asunto(s)
Encéfalo , Percepción de Color , Drosophila melanogaster , Aprendizaje , Memoria , Neuronas , Percepción Olfatoria , Animales , Encéfalo/citología , Encéfalo/fisiología , Dopamina/metabolismo , Aprendizaje/fisiología , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Neuronas GABAérgicas/metabolismo , Neuronas Serotoninérgicas/metabolismo , Memoria/fisiología , Percepción Olfatoria/fisiología , Neuronas Dopaminérgicas/metabolismo , Inhibición Neural , Percepción de Color/fisiología , Odorantes/análisis
17.
Nature ; 619(7969): 332-337, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380765

RESUMEN

Fast-acting neurotransmitters and slow, modulatory neuropeptides are co-released from neurons in the central nervous system, albeit from distinct synaptic vesicles1. The mechanisms of how co-released neurotransmitters and neuropeptides that have opposing actions-for example, stimulatory versus inhibitory-work together to exert control of neural circuit output remain unclear. This has been difficult to resolve owing to the inability to selectively isolate these signalling pathways in a cell- and circuit-specific manner. Here we developed a genetic-based anatomical disconnect procedure that utilizes distinct DNA recombinases to independently facilitate CRISPR-Cas9 mutagenesis2 of neurotransmitter- and neuropeptide-related genes in distinct cell types in two different brain regions simultaneously. We demonstrate that neurons within the lateral hypothalamus that produce the stimulatory neuropeptide neurotensin and the inhibitory neurotransmitter GABA (γ-aminobutyric acid) utilize these signals to coordinately activate dopamine-producing neurons of the ventral tegmental area. We show that GABA release from lateral hypothalamus neurotensin neurons inhibits GABA neurons within the ventral tegmental area, disinhibiting dopamine neurons and causing a rapid rise in calcium, whereas neurotensin directly generates a slow inactivating calcium signal in dopamine neurons that is dependent on the expression of neurotensin receptor 1 (Ntsr1). We further show that these two signals work together to regulate dopamine neuron responses to maximize behavioural responding. Thus, a neurotransmitter and a neuropeptide with opposing signals can act on distinct timescales through different cell types to enhance circuit output and optimize behaviour.


Asunto(s)
Encéfalo , Vías Nerviosas , Neurotensina , Neurotransmisores , Transducción de Señal , Encéfalo/citología , Encéfalo/metabolismo , Calcio/metabolismo , Sistemas CRISPR-Cas , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas , Ácido gamma-Aminobutírico/metabolismo , Edición Génica , Área Hipotalámica Lateral/citología , Área Hipotalámica Lateral/metabolismo , Neurotensina/metabolismo , Neurotransmisores/metabolismo , Receptores de Neurotensina/metabolismo , Área Tegmental Ventral/citología , Área Tegmental Ventral/metabolismo
18.
Nature ; 620(7972): 154-162, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495689

RESUMEN

Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.


Asunto(s)
Ayuno , Sistema Hipotálamo-Hipofisario , Neuronas , Sistema Hipófiso-Suprarrenal , Proteína Relacionada con Agouti/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Ayuno/fisiología , Neuronas GABAérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Sistema Hipotálamo-Hipofisario/citología , Sistema Hipotálamo-Hipofisario/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Hipófiso-Suprarrenal/citología , Sistema Hipófiso-Suprarrenal/inervación , Sistema Hipófiso-Suprarrenal/metabolismo , Terminales Presinápticos/metabolismo , Núcleos Septales/citología , Núcleos Septales/metabolismo
19.
Cell ; 155(4): 881-93, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209625

RESUMEN

Behavioral persistence is a major factor in determining when and under which circumstances animals will terminate their current activity and transition into more profitable, appropriate, or urgent behavior. We show that, for the first 5 min of copulation in Drosophila, stressful stimuli do not interrupt mating, whereas 10 min later, even minor perturbations are sufficient to terminate copulation. This decline in persistence occurs as the probability of successful mating increases and is promoted by approximately eight sexually dimorphic, GABAergic interneurons of the male abdominal ganglion. When these interneurons were silenced, persistence increased and males copulated far longer than required for successful mating. When these interneurons were stimulated, persistence decreased and copulations were shortened. In contrast, dopaminergic neurons of the ventral nerve cord promote copulation persistence and extend copulation duration. Thus, copulation duration in Drosophila is a product of gradually declining persistence controlled by opposing neuronal populations using conserved neurotransmission systems.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Drosophila melanogaster/fisiología , Neuronas GABAérgicas/metabolismo , Conducta Sexual Animal , Animales , Copulación , Drosophila melanogaster/citología , Femenino , Masculino
20.
Nature ; 601(7893): 404-409, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34912118

RESUMEN

During neurogenesis, mitotic progenitor cells lining the ventricles of the embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia1,2. The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level.


Asunto(s)
Encéfalo , Linaje de la Célula , Neuronas GABAérgicas , Células-Madre Neurales , Neurogénesis , Animales , Encéfalo/citología , Diferenciación Celular , Desarrollo Embrionario , Neuronas GABAérgicas/citología , Ratones , Mitosis , Células-Madre Neurales/citología , Neurogénesis/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA