RESUMEN
Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.
Asunto(s)
Bombyx , Nosema , Animales , Transcriptoma , Larva/genética , Larva/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nosema/fisiología , Perfilación de la Expresión Génica , Proliferación Celular , Lípidos , Bombyx/genéticaRESUMEN
Microsporidia are unfriendly microorganisms, and their infections cause considerable damage to economically or environmentally important insects like silkworms and honeybees. Thus, the identification of measures to improve host resistance to microsporidia infections is critically needed. Here, an overexpressed miR-6498-5p transgenic silkworm line was constructed. Importantly, the survival rates and median lethal doses of the transgenic line were clearly higher after infection with Nosema bombycis. H&E staining and RT-qPCR analyses revealed an inhibitory effect on the proliferation of N. bombycis in the transgenic larvae. Metabolomics analysis further revealed the presence of 56 differential metabolites between the two lines. KEGG analysis of these 56 metabolites found that they were involved in various amino acid and vitamin metabolism pathways. Notably, VB6 metabolism was enriched among the metabolites, and the pathway was well known for its involvement in the synthesis, interconversion, and degradation of amino acids. These suggest that miR-6498-5p modifies parasitic environments to inhibit the proliferation of N. bombycis by affecting the host amino acid metabolism. These results demonstrate the potential of microRNAs as biomolecules that can promote resistance to microsporidia and provide new insights and a new approach to generate microsporidia-resistant biological materials.IMPORTANCEMicrosporidia have an extremely wide host range and are capable of infecting a wide variety of insects and vertebrates, including humans, and their lethality to multiple species often poses significant environmental management challenge. Here, we successfully constructed a microsporidium-resistant line in the silkworm, based on the overexpression of miR-6498-5p. Our results strongly support the hypothesis that miR-6498-5p efficiently suppresses the proliferation of Nosema bombycis by regulating the host VB6 metabolism, a key pathway for enzymes involved in amino acid transport and protein metabolism. Our study provides new insights for understanding host anti-pathogen defenses toward microsporidia.
Asunto(s)
Animales Modificados Genéticamente , Bombyx , MicroARNs , Nosema , Bombyx/microbiología , Bombyx/genética , Nosema/fisiología , Nosema/genética , Animales , MicroARNs/genética , MicroARNs/metabolismo , Animales Modificados Genéticamente/genética , Larva/microbiología , Resistencia a la Enfermedad/genética , Microsporidiosis/genética , Microsporidiosis/microbiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismoRESUMEN
South America is populated by a wide range of bumble bee species that represent an important source of biodiversity, supporting pollination services in natural and agricultural ecosystems. These pollinators provide unique specific microbial niches, populated by a wide number of microorganisms such as symbionts, environmental opportunistic bacteria, and pathogens. Recently, it was demonstrated how microbial populations are shaped by trophic resources and environmental conditions but also by anthropogenic pressure, which strongly affects microbes' functionality. This study is focused on the impact of different land uses (natural reserve, agroecosystem, and suburban) on the gut microbiome composition of two South American bumble bees, Bombus pauloensis and Bombus bellicosus. Gut microbial DNA extracted from collected bumble bees was sequenced on the Illumina MiSeq platform and correlated with land use. Nosema ceranae load was analyzed with qPCR and correlated with microbiome data. Significant differences in gut microbiome composition between the two wild bumble bee species were highlighted, with notable variations in α- and ß-diversity across study sites. Bombus bellicosus showed a high abundance of Pseudomonas, a genus that includes environmental saprobes, and was found to be the second major taxa populating the gut microbiome, probably indicating the vulnerability of this host to environmental pollution. Pathogen analysis unveils a high prevalence of N. ceranae, with B. bellicosus showing higher susceptibility. Finally, Gilliamella exhibited a negative correlation with N. ceranae, suggesting a potential protective role of this commensal taxon. Our findings underscore the importance of considering microbial dynamics in pollinator conservation strategies, highlighting potential interactions between gut bacteria and pathogens in shaping bumble bee health.
Asunto(s)
Bacterias , Microbioma Gastrointestinal , Nosema , Animales , Abejas/microbiología , Nosema/fisiología , Nosema/aislamiento & purificación , Nosema/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , América del SurRESUMEN
Nosema ceranae is a microsporidian parasite that threatens current apiculture. N. ceranae-infected honey bees (Apis mellifera) exhibit morbid physiological impairments and reduced honey production, malnutrition, shorter life span, and higher mortality than healthy honey bees. In this study, we found that dimethyl sulfoxide (DMSO) could enhance the survival rate of N. ceranae-infected honey bees. Therefore, we investigated the effect of DMSO on N. ceranae-infected honey bees using comparative RNA sequencing analysis. Our results revealed that DMSO was able to affect several biochemical pathways, especially the metabolic-related pathways in N. ceranae-infected honey bees. Based on these findings, we conclude that DMSO may be a useful alternative for treating N. ceranae infection in apiculture.
Asunto(s)
Dimetilsulfóxido , Nosema , Animales , Nosema/efectos de los fármacos , Nosema/fisiología , Abejas/microbiología , Dimetilsulfóxido/farmacología , Microsporidiosis/veterinariaRESUMEN
Most honey bee pathogens, such as Vairimorpha (Nosema), cannot be rapidly and definitively diagnosed in a natural setting, consequently there is typically the spread of these diseases through shared and re-use of beekeeping equipment. Furthermore, there are no viable treatment options available for Nosema spores to aid in managing the spread of this bee disease. We therefore aimed to develop a new method using novel Zinc Phthalocyanine (ZnPc) as a photosensitizer for the photodynamic inactivation of Nosema spores that could be used for the decontamination of beekeeping equipment. Nosema spores were propagated for in vitro testing using four caged Apis mellifera honey bees. The ZnPc treatment was characterized, encapsulated with a liposome, and then used as either a 10 or 100 µM treatment for the freshly harvested Nosema spores, for either a 30 and or 60-minute time period, under either light or dark conditions, in-vitro, in 96-well plates. In the dark treatment, after 30-min, the ZnPc 100 µM treatment, caused a 30 % Nosema mortality, while this increased to 80 % at the same concentration after the light treatment. The high rate of anti-spore effects, in a short period of time, supports the notion that this could be an effective treatment for managing honey bee Nosema infections in the future. Our results also suggest that the photo activation of the treatment could be applied in the field setting and this would increase the sterilization of beekeeping equipment against Nosema.
Asunto(s)
Isoindoles , Nosema , Compuestos Organometálicos , Compuestos de Zinc , Abejas , Animales , Nosema/fisiología , ApiculturaRESUMEN
The infection caused by Nosema bombycis often known as pebrine, is a devastating sericulture disease. The infection can be transmitted to the next generation through eggs laid by infected female Bombyx mori moths (transovarial) as well as with N. bombycis contaminated food (horizontal). Most diagnoses were carried out in the advanced stages of infection until the time that infection might spread to other healthy insects. Hence, early diagnosis of pebrine is of utmost importance to quarantine infected larvae from uninfected silkworm batches and stop further spread of the infection. The findings of our study provide an insight into how the silkworm larval host defence system was activated against early N. bombycis transovarial infection. The results obtained from transcriptome analysis of infected 2nd instar larvae revealed significant (adjusted P-value < 0.05) expression of 1888 genes of which 801 genes were found to be upregulated and 1087 genes were downregulated when compared with the control. Pathway analysis indicated activation of the immune deficiency (IMD) pathway, which shows a potential immune defence response against pebrine infection as well as suppression of the melanin synthesis pathway due to lower expression of prophenoloxidase activating enzyme (PPAE). Liquid chromatography mass spectrometry (LC-MS/MS) analysis of haemolymph from infected larvae shows the secretion of serpin binding protein of N. bombycis which might be involved in the suppression of the melanization pathway. Moreover, among the differentially expressed genes, we found that LPMC-61, yellow-y, gasp and osiris 9 can be utilised as potential markers for early diagnosis of transovarial pebrine infection in B. mori. Physiological as well as biochemical roles and functions of many of the essential genes are yet to be established, and enlightened research will be required to characterize the products of these genes.
Asunto(s)
Bombyx , Perfilación de la Expresión Génica , Larva , Nosema , Transcriptoma , Animales , Nosema/fisiología , Bombyx/microbiología , Bombyx/inmunología , Bombyx/genética , Larva/microbiología , Larva/inmunología , FemeninoRESUMEN
Honey bees utilize queen mandibular pheromone (QMP) for maintaining social hierarchy and colony development. In controlled cage studies, synthetic QMP is often introduced to mimic natural conditions. However, questions have arisen about the effects of QMP on nosema disease studies. This short report identifies significant early-stage suppression effects of QMP on Nosema (Vairimorpha) ceranae infections. QMP was found to significantly lower infection rates below the reported infectious dose for 50 % infectivity (ID50) and to slow disease development in a dose-independent manner. These effects diminished at doses exceeding ID100. We recommend that studies investigating treatment effects using caged bees avoid QMP to ensure unambiguous results. Additionally, employing multiple infectious doses with shorter incubation times would be useful for evaluating other treatments that may have subtle effects. Furthermore, our findings support previous field studies suggesting that queen replacement reduces nosema disease at levels similar to treatment with fumagillin.
Asunto(s)
Nosema , Feromonas , Animales , Nosema/efectos de los fármacos , Nosema/fisiología , Abejas/microbiología , Abejas/efectos de los fármacos , Feromonas/farmacologíaRESUMEN
Pebrine disease, caused by Nosema bombycis (Nb) infection in silkworms, is a severe and long-standing disease that threatens sericulture. As parasitic pathogens, a complex relationship exists between microsporidia and their hosts at the mitochondrial level. Previous studies have found that the translocator protein (TSPO) is involved in various biological functions, such as membrane potential regulation, mitochondrial autophagy, immune responses, calcium ion channel regulation, and cell apoptosis. In the present study, we found that TSPO expression in silkworms (BmTSPO) was upregulated following Nb infection, leading to an increase in cytoplasmic calcium, adenosine triphosphate, and reactive oxygen species levels. Knockdown and overexpression of BmTSPO resulted in the promotion and inhibition of Nb proliferation, respectively. We also demonstrated that the overexpression of BmTSPO promotes host cell apoptosis and significantly increases the expression of genes involved in the immune deficiency and Janus kinase-signal transducer and the activator of the transcription pathways. These findings suggest that BmTSPO activates the innate immune signalling pathway in silkworms to regulate Nb proliferation. Targeting TSPO represents a promising approach for the development of new treatments for microsporidian infections.
Asunto(s)
Bombyx , Proteínas de Insectos , Nosema , Nosema/fisiología , Animales , Bombyx/microbiología , Bombyx/metabolismo , Bombyx/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Receptores de GABA/metabolismo , Receptores de GABA/genética , Apoptosis , Larva/metabolismo , Larva/microbiología , Larva/crecimiento & desarrolloRESUMEN
In recent years, there has been growing concern on the potential weakening of honey bees and their increased susceptibility to pathogens due to chronic exposure to xenobiotics. The present work aimed to study the effects on bees undergoing an infection by Nosema ceranae and being exposed to a frequently used in-hive acaricide, amitraz. To achieve this, newly emerged bees were individually infected with N. ceranae spores and/or received a sublethal concentration of amitraz in their diets under laboratory conditions. Mortality, food intake, total volume excrement, body appearance, and parasite development were registered. Bees exposed to both stressors jointly had higher mortality rates compared to bees exposed separately, with no difference in the parasite development. An increase in sugar syrup consumption was observed for all treated bees while infected bees fed with amitraz also showed a diminishment in pollen intake. These results coupled with an increase in the total number of excretion events, alterations in behavior and body surface on individuals that received amitraz could evidence the detrimental action of this molecule. To corroborate these findings under semi-field conditions, worker bees were artificially infected, marked, and released into colonies. Then, they were exposed to a commercial amitraz-based product by contact. The recovered bees showed no differences in the parasite development due to amitraz exposure. This study provides evidence to which extent a honey bee infected with N. ceranae could potentially be weakened by chronic exposure to amitraz treatment.
Asunto(s)
Nosema , Toluidinas , Animales , Abejas/efectos de los fármacos , Abejas/microbiología , Abejas/parasitología , Nosema/efectos de los fármacos , Nosema/fisiología , AcaricidasRESUMEN
BACKGROUND: The interaction networks between coding and non-coding RNAs (ncRNAs) including long non-coding RNA (lncRNA), covalently closed circular RNA (circRNA) and miRNA are significant to elucidate molecular processes of biological activities and interactions between host and pathogen. Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-feeding industry. However, little is known about ncRNAs that take place in the microsporidia congenital infection. Here we conducted whole-transcriptome RNA-Seq analyses to identify ncRNAs and regulatory networks for both N. bombycis and host including silkworm embryos and larvae during the microsporidia congenital infection. RESULTS: A total of 4,171 mRNAs, 403 lncRNA, 62 circRNAs, and 284 miRNAs encoded by N. bombycis were identified, among which some differentially expressed genes formed cross-talk and are involved in N. bombycis proliferation and infection. For instance, a lncRNA/circRNA competing endogenous RNA (ceRNA) network including 18 lncRNAs, one circRNA, and 20 miRNAs was constructed to describe 14 key parasites genes regulation, such as polar tube protein 3 (PTP3), ricin-B-lectin, spore wall protein 4 (SWP4), and heat shock protein 90 (HSP90). Regarding host silkworm upon N. bombycis congenital infection, a total of 14,889 mRNAs, 3,038 lncRNAs, 19,039 circRNAs, and 3,413 miRNAs were predicted based on silkworm genome with many differentially expressed coding and non-coding genes during distinct developmental stages. Different species of RNAs form interacting network to modulate silkworm biological processes, such as growth, metamorphosis and immune responses. Furthermore, a lncRNA/circRNA ceRNA network consisting of 140 lncRNAs, five circRNA, and seven miRNAs are constructed hypothetically to describe eight key host genes regulation, such as Toll-6, Serpin-6, inducible nitric oxide synthase (iNOS) and Caspase-8. Notably, cross-species analyses indicate that parasite and host miRNAs play a vital role in pathogen-host interaction in the microsporidia congenital infection. CONCLUSION: This is the first comprehensive pan-transcriptome study inclusive of both N. bombycis and its host silkworm with a specific focus on the microsporidia congenital infection, and show that ncRNA-mediated regulation plays a vital role in the microsporidia congenital infection, which provides a new insight into understanding the basic biology of microsporidia and pathogen-host interaction.
Asunto(s)
MicroARNs , Microsporidiosis , Nosema , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Circular/genética , Nosema/fisiología , Interacciones Huésped-Patógeno/genética , MicroARNs/genética , ARN Mensajero , Redes Reguladoras de GenesRESUMEN
Nosemosis C, a Nosema disease caused by microsporidia parasite Nosema ceranae, is a significant disease burden of the European honey bee Apis mellifera which is one of the most economically important insect pollinators. Nevertheless, there is no effective treatment currently available for Nosema disease and the disease mechanisms underlying the pathological effects of N. ceranae infection in honey bees are poorly understood. Iron is an essential nutrient for growth and survival of hosts and pathogens alike. The iron tug-of-war between host and pathogen is a central battlefield at the host-pathogen interface which determines the outcome of an infection, however, has not been explored in honey bees. To fill the gap, we conducted a study to investigate the impact of N. ceranae infection on iron homeostasis in honey bees. The expression of transferrin, an iron binding and transporting protein that is one of the key players of iron homeostasis, in response to N. ceranae infection was analysed. Furthermore, the functional roles of transferrin in iron homeostasis and honey bee host immunity were characterized using an RNA interference (RNAi)-based method. The results showed that N. ceranae infection causes iron deficiency and upregulation of the A. mellifera transferrin (AmTsf) mRNA in honey bees, implying that higher expression of AmTsf allows N. ceranae to scavenge more iron from the host for its proliferation and survival. The suppressed expression levels of AmTsf via RNAi could lead to reduced N. ceranae transcription activity, alleviated iron loss, enhanced immunity, and improved survival of the infected bees. The intriguing multifunctionality of transferrin illustrated in this study is a significant contribution to the existing body of literature concerning iron homeostasis in insects. The uncovered functional role of transferrin on iron homeostasis, pathogen growth and honey bee's ability to mount immune responses may hold the key for the development of novel strategies to treat or prevent diseases in honey bees.
Asunto(s)
Abejas/microbiología , Interacciones Huésped-Patógeno , Hierro/metabolismo , Microsporidiosis/prevención & control , Nosema/fisiología , Transferrinas/metabolismo , Animales , Microsporidiosis/inmunología , Microsporidiosis/metabolismo , Microsporidiosis/microbiología , Transferrinas/genéticaRESUMEN
Large-scale honey bee colony losses reported around the world have been associated with intoxication with pesticides, as with the presence of pests and pathogens. Among pesticides, neonicotinoid insecticides are the biggest threat. Due to their extensive use, they can be found in all agricultural environments, including soil, water, and air, are persistent in the environment, and are highly toxic for honey bees. In addition, infection by different pests and pathogens can act synergistically, weakening bees. In this study, we investigated the effects of chronic exposure to sublethal doses of imidacloprid alone or combined with the microsporidia Nosema ceranae on the immune response, deformed wing virus infection (DWV), gut microbiota, and survival of Africanized honey bees. We found that imidacloprid affected the expression of some genes associated with immunity generating an altered physiological state, although it did not favor DWV or N. ceranae infection. The pesticide alone did not affect honey bee gut microbiota, as previously suggested, but when administered to N. ceranae infected bees, it generated significant changes. Finally, both stress factors caused high mortality rates. Those results illustrate the negative impact of imidacloprid alone or combined with N. ceranae on Africanized honey bees and are useful to understand colony losses in Latin America.
Asunto(s)
Microbioma Gastrointestinal , Nosema , Plaguicidas , Abejas , Animales , Neonicotinoides/toxicidad , Plaguicidas/farmacología , Nosema/fisiologíaRESUMEN
Secretion of hexokinase (HK) by microsporidia into infected cells suggests an important role for this enzyme for the intracellular development of parasites. To verify whether the expression of HK-specific antibodies in the host cell cytoplasm can suppress the growth of microsporidia, we constructed an immune library of recombinant scFv fragments against the enzyme of the honey bee pathogen Vairimorpha (Nosema) ceranae (VcHK) with a representativeness of about 5 million bacterial transformants. Two variants of VcHK-specific recombinant antibodies were selected by library panning and expressed in lepidopteran Sf9 cell line. Infecting of cells expressing two selected and control scFv fragments with V. ceranae spores was followed by their cultivation for 4 days. Analysis of parasite ß-tubulin as well as spore wall protein SWP32 transcripts in infected cultures by reverse transcription PCR and real-time qPCR showed (1) V. ceranae growth in cells heterologous to bee pathogens, (2) its inhibition by one of the selected VcHK-specific recombinant antibodies. The latter result once again emphasizes an important role of microsporidia hexokinases in their relationships with infected host cells and suggests further focusing on the mechanisms of such suppression, as well as on the search for new V. ceranae - inhibiting scFv fragments.
Asunto(s)
Nosema , Animales , Abejas , Técnicas de Cultivo de Célula , Hexoquinasa , Microsporidios , Nosema/fisiologíaRESUMEN
Nosema ceranae is a microsporidium parasite that silently affects honey bees, causing a disease called nosemosis. This parasite produces resistant spores and germinates in the midgut of honey bees, extrudes a polar tubule that injects an infective sporoplasm in the host cell epithelium, proliferates, and produces intestinal disorders that shorten honey bee lifespan. The rapid extension of this disease has been reported to be widespread among adult bees, and treatments are less effective and counterproductive weakening colonies. This work aimed to evaluate the antifungal activity of a prototype formulation based on a non-toxic plant extract (HO21-F) against N. ceranae. In laboratory, honey bees were infected artificially, kept in cages for 17 days and samples were taken at 7 and 14 days post infection (dpi). At the same time, in field conditions we evaluated the therapeutic effect of HO21-F for 28 days in naturally infected colonies. The effectiveness of the treatment has been demonstrated by a reduction of 83.6 % of the infection levels observed in laboratory conditions at concentrations of 0.5 and 1 g/L without affecting the survival rate. Besides, in-field conditions we reported a reduction of 88 % of the infection level at a concentration of 2.5 g/L, obtaining better antifungal effectiveness in comparison to other commercially available treatments. As a result, we observed that the use of HO21-F led to an increase in population size and honey production, both parameters associated with colony strength. The reported antifungal activity of HO21-F against N. ceranae, with a significant control of spore proliferation in worker bees, suggests the promising commercial application use of this product against nosemosis, and it will encourage new research studies to understand the mechanism of action, whether related to the spore-inhibition effect and/or a stimulating effect in natural response of colonies to counteract the disease.
Asunto(s)
Microsporidiosis , Nosema , Olea , Animales , Antifúngicos/farmacología , Abejas , Nosema/fisiología , Extractos Vegetales/farmacologíaRESUMEN
Many organisms go through a process of programmed cell death called apoptosis while newer cells are created. This has the effect of protecting the organism from cellular parasites and is a major line of defense against invading organisms. Apoptosis inhibitors, then, play an important role in aiding infectious agents by inhibiting caspase protease and thus the apoptopic pathway. In this study, we identified an inhibitor of apoptosis protein (IAP) in the microsporidian Nosema bombycis (NbIAP). NbIAP a composed of 218 amino acids containing two overlapping domains; the BIR domain and a zf-C3HC domain. We show, through indirect immunofluorescence, that NbIAP is present throughout the life cycle of N. bombycis and is localized in the nucleus of the parasite and therefor does not act on caspase protease directly. qRT-PCR analysis shows that the expression of the NbIAP gene was the highest on the first day of infection, then decreased to a relatively stable level. In addition, we show that the downregulation of the NbIAP gene directly inhibits the proliferation of N. bombycis. These findings suggest that NbIAP plays an important role in the N. bombycis life cycle.
Asunto(s)
Bombyx , Nosema , Animales , Bombyx/metabolismo , Nosema/fisiología , Péptido Hidrolasas , Caspasas/metabolismoRESUMEN
The use of commercially reared bumble bees in agricultural environments has been recognized as a potential threat to wild pollinators due to competition, genetic contamination, and most notably, disease transmission. Higher parasite prevalence near greenhouses where managed bumble bees are used has been linked to parasite spillover from managed to wild bees. However, pathogen transmission is not unidirectional, and can also flow from wild to managed bees. These newly infected managed bees can subsequently re-infect (other) wild bees, in a process known as spillback, which is an alternative explanation for the increased parasite prevalence near greenhouses. Reducing parasite prevalence in managed bees is key to controlling host-parasite dynamics in cases of spillover; in spillback, producing managed bees that are resilient to infection is important. Here we establish that the managed bumble bee Bombus terrestris can acquire parasites from their foraging environment, which is the major infection route for Apicystis spp. and Crithidia spp., but not for Nosema spp.. Managed B. terrestris were found to have a higher prevalence of Crithdia and a higher load of Apicystis than local wild conspecifics, showing that for these parasites, spillback is a possible risk scenario.
Asunto(s)
Apicomplexa/fisiología , Abejas/microbiología , Abejas/parasitología , Crithidia/fisiología , Interacciones Huésped-Parásitos , Nosema/fisiología , Animales , ApiculturaRESUMEN
Beekeepers need sustainable control options to treat Nosema ceranae infection in colonies of western honey bees (Apis mellifera L.) they manage. Propolis is a natural product derived from plant resins and contains chemical compounds with potential antimicrobial activity against N. ceranae. Here, we determined the efficacy of propolis from A. mellifera (USA) and Tetrigona apicalis (stingless bees, Thailand) colonies as treatments for N. ceranae infection in honey bee workers. Newly emerged bees were individually fed 2 µL of 50% (w/v) sucrose solution containing 1 × 105N. ceranae spores. Following this, the infected bees were treated with 50% propolis extracted from A. mellifera or T. apicalis hives and fed in 50% sucrose solution (v/v). All bees were maintained at 34 ± 2 °C and 55 ± 5% RH. Dead bees were counted daily for 30 d to calculate survival. We also determined infection rate (# infected bees/100 bees), infectivity (number of spores per bee) and protein content in the hypopharyngeal glands and hemolymph on 7, 14, and 21 d post infection as measures of bee health. Propolis from both bee species significantly reduced bee mortality, infection rate and infectivity compared with those of untreated bees and led to significantly greater protein contents in hypopharyngeal glands and hemolymph in treated bees than in untreated ones (p < 0.0001). In conclusion, propolis from A. mellifera and T. apicalis colonies shows promise as a control against N. ceranae infection in honey bees.
Asunto(s)
Abejas/fisiología , Agentes de Control Biológico/farmacología , Nosema/fisiología , Control Biológico de Vectores , Própolis/farmacología , Animales , Control de Insectos , TailandiaRESUMEN
Nosema disease is one factor that can cause colony decline in honeybees (Apis mellifera L.) worldwide. Nosema ceranae has outcompeted Nosema apis in the Western honeybee (A. mellifera) which is its original host. Fumagilin is an effective antibiotic treatment to control Nosema infection but currently it is forbidden in many countries. In this study, 12 plant extracts were evaluated for their toxicity to adult bees and antimicrosporidian activity under laboratory and field conditions. N. ceranae-infected adult bees were fed ad libitum with 50% sucrose solution containing 1% and 5% (w/v) of each plant extract. Bee mortality in N. ceranae-infected groups fed with plant extracts was higher than that in the control group treated with fumagilin. The results demonstrated that 9 of 12 extracts had high antimicrosporidian activity against N. ceranae and their efficacies were comparable to fumagilin. Spore reduction in infected bees was 4-6 fold less after extract treatment. Following laboratory screening, Annona squamosa, Ocimum basilicum, Psidium guajava and Syzygium jambos were tested in honeybee colonies. Plant extracts of 2% concentration (w/v) inhibited the development of Nosema spores after 30 days of treatment. At the end of experiment (90 days), spores in the plant extract treated groups were lower than in group treated with fumagilin but there was no significant difference. Although, extracts tested in this study showed high toxicity to bee in laboratory cages, they did not show negative affects on bees under whole colony conditions. Therefore, the effectiveness of plant extracts tested in this study was notable and warrants further study as potential Nosema control agents in honey bees. Plant extracts would offer a non-antibiotic alternative for Nosema control and help reduce the overuse of antibiotics in livestock.
Asunto(s)
Abejas/microbiología , Fungicidas Industriales/farmacología , Nosema/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Fungicidas Industriales/química , Nosema/fisiología , Extractos Vegetales/químicaRESUMEN
The microsporidium Nosema pyrausta is an important mortality factor of the European corn borer, Ostrinia nubilalis. The present study was aimed at N. pyrausta virulence testing to the beet webworm (BW), Loxostege sticticalis. This agricultural pest, L. sticticalis, was highly vulnerable to N. pyrausta. The parasite's spores were located in salivary glands, adipose tissue, and Malpighian tubules of the infected specimens. Infection was transmitted transovarially through at least 3 laboratory generations, in which BW fitness indices were lower than in the control, and moth emergence and fertility decreased prominently. Transovarial infection was most detrimental to female egg-laying ability, resulting in zero fertility in F3. When propagated in BW, the microsporidium tended to increase its virulence to L. sticticalis, as compared to the Ostrinia isolates. The parasite's ability to infect this host at low dosages and transmit vertically should guarantee its effective establishment and spread within BW populations. In conclusion, N. pyrausta is a promising agent against BW, which is a notorious polyphagous pest in Eurasia.
Asunto(s)
Agentes de Control Biológico/farmacología , Control de Insectos , Mariposas Nocturnas/microbiología , Nosema/fisiología , Control Biológico de Vectores , Animales , Larva/crecimiento & desarrollo , Larva/microbiología , Mariposas Nocturnas/crecimiento & desarrolloRESUMEN
Nosema ceranae is an intracellular microsporidian pathogen that lives in the midgut ventricular cells of all known honey bee Apis species. We suspect that N. ceranae may also cause energetic stress in the giant honey bee because this parasite is known to disrupt nutrient absorption resulting in energetic stress in the honey bee species Apis mellifera. To understand how N. ceranae impacts the energetic stress of the giant honey bee, A. dorsata, we measured the hemolymph trehalose levels of experimentally infected giant honey bees on days three, five, seven, and fourteen post infection (p.i.). We also measured the hypopharyngeal gland protein content, the total midgut proteolytic enzyme activity, honey bee survival, infection ratio, and spore loads comparing infected and uninfected honey bees across the same time frame. Nosema ceranae-infected honey bees had significantly lowered survival, trehalose levels, hypopharyngeal gland protein content, and midgut proteolytic enzyme activity. We found an increasing level of parasitic loads and infection ratio of N. ceranae-infected bees after inoculation. Collectively, our results suggest that the giant honey bee suffers from energetic stress and limited nutrient absorption from a N. ceranae infection, which results in lowered survival in comparison to uninfected honey bees. Our findings highlight that other honey bee species besides A. mellifera are susceptible to microsporidian pathogens that they harbor, which results in negative effects on health and survival. Therefore, these pathogens might be transmitted at a community level, in the natural environment, resulting in negative health effects of multiple honey bee species.