Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.904
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(7): 1686-1697, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27212236

RESUMEN

The nucleolus and other ribonucleoprotein (RNP) bodies are membrane-less organelles that appear to assemble through phase separation of their molecular components. However, many such RNP bodies contain internal subcompartments, and the mechanism of their formation remains unclear. Here, we combine in vivo and in vitro studies, together with computational modeling, to show that subcompartments within the nucleolus represent distinct, coexisting liquid phases. Consistent with their in vivo immiscibility, purified nucleolar proteins phase separate into droplets containing distinct non-coalescing phases that are remarkably similar to nucleoli in vivo. This layered droplet organization is caused by differences in the biophysical properties of the phases-particularly droplet surface tension-which arises from sequence-encoded features of their macromolecular components. These results suggest that phase separation can give rise to multilayered liquids that may facilitate sequential RNA processing reactions in a variety of RNP bodies. PAPERCLIP.


Asunto(s)
Nucléolo Celular/química , Animales , Caenorhabditis elegans , Células Cultivadas , Proteínas Cromosómicas no Histona/análisis , Intestinos/química , Intestinos/citología , Mamíferos , Proteínas Nucleares/análisis , Nucleofosmina , Oocitos/química , Oocitos/citología , Procesamiento Postranscripcional del ARN , Ribonucleoproteínas/metabolismo , Xenopus laevis
2.
Mol Cell ; 82(23): 4443-4457.e9, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423630

RESUMEN

Ribosome biogenesis takes place in the nucleolus, a nuclear membrane-less organelle. Although well studied, it remains unknown how nascent ribosomal subunits separate from the central chromatin compartment and move to the outer granular component, where maturation occurs. We find that the Schizosaccharomyces pombe nucleophosmin-like protein Fkbp39 localizes to rDNA sites encoding the 60S subunit rRNA, and this localization contributes to its specific association with nascent 60S subunits. Fkbp39 dissociates from chromatin to bind nascent 60S subunits, causing the latter to partition away from chromatin and from nascent 40S subunits through liquid-liquid phase separation. In vivo, Fkbp39 binding directs the translocation of nascent 60S subunits toward the nucleophosmin-rich granular component. This process increases the efficiency of 60S subunit assembly, facilitating the incorporation of 60S RNA domain III. Thus, chromatin localization determines the specificity of nucleophosmin in sorting nascent ribosomal subunits and coordinates their movement into specialized assembly compartments within the nucleolus.


Asunto(s)
Cromatina , Schizosaccharomyces , Cromatina/genética , Nucleofosmina , Nucléolo Celular/genética , Membrana Nuclear , Schizosaccharomyces/genética , Ribosomas/genética
3.
Nature ; 615(7954): 920-924, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922593

RESUMEN

Targeting critical epigenetic regulators reverses aberrant transcription in cancer, thereby restoring normal tissue function1-3. The interaction of menin with lysine methyltransferase 2A (KMT2A), an epigenetic regulator, is a dependence in acute leukaemia caused by either rearrangement of KMT2A or mutation of the nucleophosmin 1 gene (NPM1)4-6. KMT2A rearrangements occur in up to 10% of acute leukaemias and have an adverse prognosis, whereas NPM1 mutations occur in up to 30%, forming the most common genetic alteration in acute myeloid leukaemia7,8. Here, we describe the results of the first-in-human phase 1 clinical trial investigating revumenib (SNDX-5613), a potent and selective oral inhibitor of the menin-KMT2A interaction, in patients with relapsed or refractory acute leukaemia (ClinicalTrials.gov, NCT04065399). We show that therapy with revumenib was associated with a low frequency of grade 3 or higher treatment-related adverse events and a 30% rate of complete remission or complete remission with partial haematologic recovery (CR/CRh) in the efficacy analysis population. Asymptomatic prolongation of the QT interval on electrocardiography was identified as the only dose-limiting toxicity. Remissions occurred in leukaemias refractory to multiple previous lines of therapy. We demonstrate clearance of residual disease using sensitive clinical assays and identify hallmarks of differentiation into normal haematopoietic cells, including differentiation syndrome. These data establish menin inhibition as a therapeutic strategy for susceptible acute leukaemia subtypes.


Asunto(s)
Antineoplásicos , N-Metiltransferasa de Histona-Lisina , Leucemia Mieloide Aguda , Nucleofosmina , Proteínas Proto-Oncogénicas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Neoplasia Residual/tratamiento farmacológico , Nucleofosmina/genética , Pronóstico , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Inducción de Remisión
4.
Mol Cell ; 74(4): 713-728.e6, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30981631

RESUMEN

Repeat expansion in the C9orf72 gene is the most common cause of the neurodegenerative disorder amyotrophic lateral sclerosis (C9-ALS) and is linked to the unconventional translation of five dipeptide-repeat polypeptides (DPRs). The two enriched in arginine, poly(GR) and poly(PR), infiltrate liquid-like nucleoli, co-localize with the nucleolar protein nucleophosmin (NPM1), and alter the phase separation behavior of NPM1 in vitro. Here, we show that poly(PR) DPRs bind tightly to a long acidic tract within the intrinsically disordered region of NPM1, altering its phase separation with nucleolar partners to the extreme of forming large, soluble complexes that cause droplet dissolution in vitro. In cells, poly(PR) DPRs disperse NPM1 from nucleoli and entrap rRNA in static condensates in a DPR-length-dependent manner. We propose that R-rich DPR toxicity involves disrupting the role of phase separation by NPM1 in organizing ribosomal proteins and RNAs within the nucleolus.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas Nucleares/genética , Secuencias Repetitivas de Aminoácido/genética , Esclerosis Amiotrófica Lateral/patología , Arginina/genética , Nucléolo Celular/química , Nucléolo Celular/genética , Dipéptidos/genética , Humanos , Nucleofosmina , Péptidos/genética , Poli A/genética , ARN Ribosómico/genética
5.
PLoS Pathog ; 20(2): e1012014, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38394330

RESUMEN

The mechanism of genome DNA replication in circular single-stranded DNA viruses is currently a mystery, except for the fact that it undergoes rolling-circle replication. Herein, we identified SUMOylated porcine nucleophosmin-1 (pNPM1), which is previously reported to be an interacting protein of the viral capsid protein, as a key regulator that promotes the genome DNA replication of porcine single-stranded DNA circovirus. Upon porcine circovirus type 2 (PCV2) infection, SUMO2/3 were recruited and conjugated with the K263 site of pNPM1's C-terminal domain to SUMOylate pNPM1, subsequently, the SUMOylated pNPM1 were translocated in nucleoli to promote the replication of PCV2 genome DNA. The mutation of the K263 site reduced the SUMOylation levels of pNPM1 and the nucleolar localization of pNPM1, resulting in a decrease in the level of PCV2 DNA replication. Meanwhile, the mutation of the K263 site prevented the interaction of pNPM1 with PCV2 DNA, but not the interaction of pNPM1 with PCV2 Cap. Mechanistically, PCV2 infection increased the expression levels of Ubc9, the only E2 enzyme involved in SUMOylation, through the Cap-mediated activation of ERK signaling. The upregulation of Ubc9 promoted the interaction between pNPM1 and TRIM24, a potential E3 ligase for SUMOylation, thereby facilitating the SUMOylation of pNPM1. The inhibition of ERK activation could significantly reduce the SUMOylation levels and the nucleolar localization of pNPM1, as well as the PCV2 DNA replication levels. These results provide new insights into the mechanism of circular single-stranded DNA virus replication and highlight NPM1 as a potential target for inhibiting PCV2 replication.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Porcinos , Animales , Circovirus/genética , Circovirus/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Nucleofosmina , Sumoilación , Infecciones por Circoviridae/genética , Infecciones por Circoviridae/metabolismo , Replicación Viral/fisiología , ADN Viral/genética , ADN Viral/metabolismo
6.
Blood ; 143(4): 336-341, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37647641

RESUMEN

ABSTRACT: Assessment of measurable residual disease (MRD) by quantitative reverse transcription polymerase chain reaction is strongly prognostic in patients with NPM1-mutated acute myeloid leukemia (AML) treated with intensive chemotherapy; however, there are no data regarding its utility in venetoclax-based nonintensive therapy, despite high efficacy in this genotype. We analyzed the prognostic impact of NPM1 MRD in an international real-world cohort of 76 previously untreated patients with NPM1-mutated AML who achieved complete remission (CR)/CR with incomplete hematological recovery following treatment with venetoclax and hypomethylating agents (HMAs) or low-dose cytarabine (LDAC). A total of 44 patients (58%) achieved bone marrow (BM) MRD negativity, and a further 14 (18%) achieved a reduction of ≥4 log10 from baseline as their best response, with no difference between HMAs and LDAC. The cumulative rates of BM MRD negativity by the end of cycles 2, 4, and 6 were 25%, 47%, and 50%, respectively. Patients achieving BM MRD negativity by the end of cycle 4 had 2-year overall of 84% compared with 46% if MRD was positive. On multivariable analyses, MRD negativity was the strongest prognostic factor. A total of 22 patients electively stopped therapy in BM MRD-negative remission after a median of 8 cycles, with 2-year treatment-free remission of 88%. In patients with NPM1-mutated AML attaining remission with venetoclax combination therapies, NPM1 MRD provides valuable prognostic information.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Leucemia Mieloide Aguda , Nucleofosmina , Sulfonamidas , Humanos , Pronóstico , Mutación , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Citarabina , Neoplasia Residual/genética
7.
Blood ; 143(19): 1931-1936, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38364112

RESUMEN

ABSTRACT: Selection of patients with NPM1-mutated acute myeloid leukemia (AML) for allogeneic transplant in first complete remission (CR1-allo) remains controversial because of a lack of robust data. Consequently, some centers consider baseline FLT3-internal tandem duplication (ITD) an indication for transplant, and others rely on measurable residual disease (MRD) status. Using prospective data from the United Kingdom National Cancer Research Institute AML17 and AML19 studies, we examined the impact of CR1-allo according to peripheral blood NPM1 MRD status measured by quantitative reverse transcription polymerase chain reaction after 2 courses of induction chemotherapy. Of 737 patients achieving remission, MRD was positive in 19%. CR1-allo was performed in 46% of MRD+ and 17% of MRD- patients. We observed significant heterogeneity of overall survival (OS) benefit from CR1-allo according to MRD status, with substantial OS advantage for MRD+ patients (3-year OS with CR1-allo vs without: 61% vs 24%; hazard ratio [HR], 0.39; 95% confidence interval [CI], 0.24-0.64; P < .001) but no benefit for MRD- patients (3-year OS with CR1-allo vs without: 79% vs 82%; HR, 0.82; 95% CI, 0.50-1.33; P = .4). Restricting analysis to patients with coexisting FLT3-ITD, again CR1-allo only improved OS for MRD+ patients (3-year OS, 45% vs 18%; compared with 83% vs 76% if MRD-); no interaction with FLT3 allelic ratio was observed. Postinduction molecular MRD reliably identifies those patients who benefit from allogeneic transplant in first remission. The AML17 and AML19 trials were registered at www.isrctn.com as #ISRCTN55675535 and #ISRCTN78449203, respectively.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Neoplasia Residual , Nucleofosmina , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Tirosina Quinasa 3 Similar a fms/genética , Quimioterapia de Inducción , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutación , Estudios Prospectivos , Inducción de Remisión , Trasplante Homólogo
8.
Blood ; 144(7): 714-728, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691678

RESUMEN

ABSTRACT: Although NPM1-mutated acute myeloid leukemia (AML) carries a generally favorable prognosis, many patients still relapse and die. Previous studies identified several molecular and clinical features associated with poor outcomes; however, only FLT3-internal tandem duplication (ITD) mutation and adverse karyotype are currently used for risk stratification because of inconsistent results and uncertainty about how other factors should influence treatment, particularly given the strong prognostic effect of postinduction measurable residual disease (MRD). Here, we analyzed a large group of patients with NPM1 mutations (NPM1mut) AML enrolled in prospective trials (National Cancer Research Institute [NCRI] AML17 and AML19, n = 1357) to delineate the impact of baseline molecular and clinical features, postinduction MRD status, and treatment intensity on the outcome. FLT3-ITD (hazard ratio [HR], 1.28; 95% confidence interval [CI], 1.01-1.63), DNMT3A (HR, 1.65; 95% CI, 1.32-2.05), WT1 (HR, 1.74; 95% CI, 1.27-2.38), and non-ABD NPM1mut (HR, 1.64; 95% CI, 1.22-2.21) were independently associated with poorer overall survival (OS). These factors were also strongly associated with MRD positivity. For patients who achieved MRD negativity, these mutations (except FLT3-ITD) were associated with an increased cumulative incidence of relapse (CIR) and poorer OS. However, apart from the few patients with adverse cytogenetics, we could not identify any group of MRD-negative patients with a CIR >40% or with benefit from allograft in first remission. Intensified chemotherapy with the FLAG-Ida (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin) regimen was associated with improved outcomes in all subgroups, with greater benefits observed in the high-risk molecular subgroups.


Asunto(s)
Leucemia Mieloide Aguda , Mutación , Proteínas Nucleares , Nucleofosmina , Tirosina Quinasa 3 Similar a fms , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Nucleares/genética , Persona de Mediana Edad , Femenino , Masculino , Adulto , Anciano , Tirosina Quinasa 3 Similar a fms/genética , Pronóstico , Adulto Joven , Neoplasia Residual/genética , ADN Metiltransferasa 3A , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas WT1/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Adolescente , Resultado del Tratamiento , Anciano de 80 o más Años
9.
Blood ; 143(20): 2059-2072, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38437498

RESUMEN

ABSTRACT: BRG1 (SMARCA4) and BRM (SMARCA2) are the mutually exclusive core ATPases of the chromatin remodeling BAF (BRG1/BRM-associated factor) complexes. They enable transcription factors/cofactors to access enhancers/promoter and modulate gene expressions responsible for cell growth and differentiation of acute myeloid leukemia (AML) stem/progenitor cells. In AML with MLL1 rearrangement (MLL1r) or mutant NPM1 (mtNPM1), although menin inhibitor (MI) treatment induces clinical remissions, most patients either fail to respond or relapse, some harboring menin mutations. FHD-286 is an orally bioavailable, selective inhibitor of BRG1/BRM under clinical development in AML. Present studies show that FHD-286 induces differentiation and lethality in AML cells with MLL1r or mtNPM1, concomitantly causing perturbed chromatin accessibility and repression of c-Myc, PU.1, and CDK4/6. Cotreatment with FHD-286 and decitabine, BET inhibitor (BETi) or MI, or venetoclax synergistically induced in vitro lethality in AML cells with MLL1r or mtNPM1. In models of xenografts derived from patients with AML with MLL1r or mtNPM1, FHD-286 treatment reduced AML burden, improved survival, and attenuated AML-initiating potential of stem-progenitor cells. Compared with each drug, cotreatment with FHD-286 and BETi, MI, decitabine, or venetoclax significantly reduced AML burden and improved survival, without inducing significant toxicity. These findings highlight the FHD-286-based combinations as a promising therapy for AML with MLL1r or mtNPM1.


Asunto(s)
ADN Helicasas , Leucemia Mieloide Aguda , Proteínas Nucleares , Proteínas Proto-Oncogénicas , Factores de Transcripción , Animales , Humanos , Ratones , Proteínas que Contienen Bromodominio , Línea Celular Tumoral , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Nature ; 581(7807): 209-214, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405004

RESUMEN

Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS)1,2. Biomolecular interactions-particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions-are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3-6 have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS7-9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates-including the nucleolus, Cajal bodies, stress granules and P-bodies-implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.


Asunto(s)
Espacio Intracelular/química , Espacio Intracelular/metabolismo , Orgánulos/química , Orgánulos/metabolismo , Termodinámica , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Cuerpos Enrollados/química , Cuerpos Enrollados/metabolismo , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/deficiencia , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleofosmina , Transición de Fase , Proteínas de Unión a Poli-ADP-Ribosa/deficiencia , ARN Helicasas/deficiencia , Proteínas con Motivos de Reconocimiento de ARN/deficiencia , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN , Ribosomas/química , Ribosomas/metabolismo
11.
Nucleic Acids Res ; 52(7): 4002-4020, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38321934

RESUMEN

Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.


Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas , Miogenina , ARN Mensajero , Tanquirasas , Tanquirasas/metabolismo , Tanquirasas/genética , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Desarrollo de Músculos/genética , Animales , Fibras Musculares Esqueléticas/metabolismo , Ratones , Miogenina/genética , Miogenina/metabolismo , Nucleofosmina , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Estabilidad del ARN/genética , Poli ADP Ribosilación/genética , Línea Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Diferenciación Celular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células HEK293
12.
J Biol Chem ; 300(3): 105773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382671

RESUMEN

The nucleolus, a membrane-less organelle, is responsible for ribosomal RNA transcription, ribosomal RNA processing, and ribosome assembly. Nucleolar size and number are indicative of a cell's protein synthesis rate and proliferative capacity, and abnormalities in the nucleolus have been linked to neurodegenerative diseases and cancer. In this study, we demonstrated that the nucleolar protein ZNF692 directly interacts with nucleophosmin 1 (NPM1). Knocking down ZNF692 resulted in the nucleolar redistribution of NPM1 in ring-like structures and reduced protein synthesis. Purified NPM1 forms spherical condensates in vitro but mixing it with ZNF692 produces irregular condensates more closely resembling living cell nucleoli. Our findings indicate that ZNF692, by interacting with NPM1, plays a critical role in regulating nucleolar architecture and function in living cells.


Asunto(s)
Nucléolo Celular , Proteínas de Unión al ADN , Nucleofosmina , Factores de Transcripción , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Ribosómico/metabolismo , Humanos , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo
13.
Circulation ; 149(25): 1982-2001, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38390737

RESUMEN

BACKGROUND: Reparative macrophages play a crucial role in limiting excessive fibrosis and promoting cardiac repair after myocardial infarction (MI), highlighting the significance of enhancing their reparative phenotype for wound healing. Metabolic adaptation orchestrates the phenotypic transition of macrophages; however, the precise mechanisms governing metabolic reprogramming of cardiac reparative macrophages remain poorly understood. In this study, we investigated the role of NPM1 (nucleophosmin 1) in the metabolic and phenotypic shift of cardiac macrophages in the context of MI and explored the therapeutic effect of targeting NPM1 for ischemic tissue repair. METHODS: Peripheral blood mononuclear cells were obtained from healthy individuals and patients with MI to explore NPM1 expression and its correlation with prognostic indicators. Through RNA sequencing, metabolite profiling, histology, and phenotype analyses, we investigated the role of NPM1 in postinfarct cardiac repair using macrophage-specific NPM1 knockout mice. Epigenetic experiments were conducted to study the mechanisms underlying metabolic reprogramming and phenotype transition of NPM1-deficient cardiac macrophages. The therapeutic efficacy of antisense oligonucleotide and inhibitor targeting NPM1 was then assessed in wild-type mice with MI. RESULTS: NPM1 expression was upregulated in the peripheral blood mononuclear cells from patients with MI that closely correlated with adverse prognostic indicators of MI. Macrophage-specific NPM1 deletion reduced infarct size, promoted angiogenesis, and suppressed tissue fibrosis, in turn improving cardiac function and protecting against adverse cardiac remodeling after MI. Furthermore, NPM1 deficiency boosted the reparative function of cardiac macrophages by shifting macrophage metabolism from the inflammatory glycolytic system to oxygen-driven mitochondrial energy production. The oligomeric NPM1 recruited histone demethylase KDM5b to the promoter of Tsc1 (TSC complex subunit 1), the mTOR (mechanistic target of rapamycin kinase) complex inhibitor, reduced histone H3K4me3 modification, and inhibited TSC1 expression, which then facilitated mTOR-related inflammatory glycolysis and antagonized the reparative function of cardiac macrophages. The in vivo administration of antisense oligonucleotide targeting NPM1 or oligomerization inhibitor NSC348884 substantially ameliorated tissue injury and enhanced cardiac recovery in mice after MI. CONCLUSIONS: Our findings uncover the key role of epigenetic factor NPM1 in impeding postinfarction cardiac repair by remodeling metabolism pattern and impairing the reparative function of cardiac macrophages. NPM1 may serve as a promising prognostic biomarker and a valuable therapeutic target for heart failure after MI.


Asunto(s)
Epigénesis Genética , Macrófagos , Infarto del Miocardio , Proteínas Nucleares , Nucleofosmina , Animales , Macrófagos/metabolismo , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Ratones , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ratones Noqueados , Masculino , Reprogramación Celular , Femenino , Glucólisis , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
14.
Blood ; 141(15): 1846-1857, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36508705

RESUMEN

NPM 1-mutated acute myeloid leukemia (AML) shows unique features. However, the characteristics of "therapy-related" NPM1-mutated AML (t-NPM1 AML) are poorly understood. We compared the genetics, transcriptional profile, and clinical outcomes of t-NPM1 AML, de novo NPM1-mutated AML (dn-NPM1 AML), and therapy-related AML (t-AML) with wild-type NPM1 (t-AML). Normal karyotype was more frequent in t-NPM1 AML (n = 78/96, 88%) and dn-NPM1 (n = 1986/2394, 88%) than in t-AML (n = 103/390, 28%; P < .001). DNMT3A and TET2 were mutated in 43% and 40% of t-NPM1 AML (n = 107), similar to dn-NPM1 (n = 88, 48% and 30%; P > 0.1), but more frequently than t-AML (n = 162; 14% and 10%; P < 0.001). Often mutated in t-AML, TP53 and PPM1D were wild-type in 97% and 96% of t-NPM1 AML, respectively. t-NPM1 and dn-NPM1 AML were transcriptionally similar, (including HOX genes upregulation). At 62 months of median follow-up, the 3-year overall survival (OS) for t-NPM1 AML (n = 96), dn-NPM1 AML (n = 2394), and t-AML (n = 390) were 54%, 60%, and 31%, respectively. In multivariable analysis, OS was similar for the NPM1-mutated groups (hazard ratio [HR] 0.9; 95% confidence interval [CI], 0.65-1.25; P = .45), but better in t-NPM1 AML than in t-AML (HR, 1.86; 95% CI, 1.30-2.68; P < .001). Relapse-free survival was similar between t-NPM1 and dn-NPM1 AML (HR, 1.02; 95% CI, 0.72-1.467; P = .90), but significantly higher in t-NPM1 AML versus t-AML (HR, 1.77; 95% CI, 1.19-2.64; P = .0045). t-NPM1 and dn-NPM1 AML have overlapping features, suggesting that they should be classified as a single disease entity.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Nucleofosmina , Mutación , Pronóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia
15.
Biol Cell ; 116(1): e202300049, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029384

RESUMEN

BACKGROUND INFORMATION: Coiled-coil domain-containing protein-124 (Ccdc124) is a conserved eukaryotic ribosome-associated RNA-binding protein which is involved in resuming ribosome activity after stress-related translational shutdown. Ccdc124 protein is also detected at cellular localizations devoid of ribosomes, such as the centrosome, or the cytokinetic midbody, but its translation-independent cellular function is currently unknown. RESULTS: By using an unbiased LC-MS/MS-based proteomics approach in human embryonic kidney (HEK293) cells, we identified novel Ccdc124 partners and mapped the cellular organization of interacting proteins, a subset of which are known to be involved in nucleoli biogenesis and function. We then identified a novel interaction between the cancer-associated multifunctional nucleolar marker nucleophosmin (Npm1) and Ccdc124, and we characterized this interaction both in HEK293 (human embryonic kidney) and U2OS (osteosarcoma) cells. As expected, in both types of cells, Npm1 and Ccdc124 proteins colocalized within the nucleolus when assayed by immunocytochemical methods, or by monitoring the localization of green fluorescent protein-tagged Ccdc124. CONCLUSIONS: The nucleolar localization of Ccdc124 was impaired when Npm1 translocates from the nucleolus to the nucleoplasm in response to treatment with the DNA-intercalator and Topo2 inhibitor chemotherapeutic drug doxorubicin. Npm1 is critically involved in maintaining genomic stability by mediating various DNA-repair pathways, and over-expression of Npm1 or specific NPM1 mutations have been previously associated with proliferative diseases, such as acute myelogenous leukemia, anaplastic large-cell lymphoma, and solid cancers originating from different tissues. SIGNIFICANCE: Identification of Ccdc124 as a novel interaction partner of Nmp1 within the frame of molecular mechanisms involving nucleolar stress-sensing and DNA-damage response is expected to provide novel insights into the biology of cancers associated with aberrations in NPM1.


Asunto(s)
Neoplasias , Nucleofosmina , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , Cromatografía Liquida , Células HEK293 , Proteómica , Espectrometría de Masas en Tándem , Ribosomas/metabolismo , Neoplasias/metabolismo , ADN/metabolismo
16.
Mol Cell Proteomics ; 22(2): 100488, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563749

RESUMEN

Transcription activation of latent human immunodeficiency virus-1 (HIV-1) occurs due to HIV-1 rebound, the interruption of combination antiretroviral therapy, or development of drug resistance. Thus, novel HIV-1 inhibitors, targeting HIV-1 transcription are needed. We previously developed an HIV-1 transcription inhibitor, 1E7-03, that binds to the noncatalytic RVxF-accommodating site of protein phosphatase 1 and inhibits HIV-1 replication in cultured cells and HIV-1-infected humanized mice by impeding protein phosphatase 1 interaction with HIV-1 Tat protein. However, host proteins and regulatory pathways targeted by 1E7-03 that contribute to its overall HIV-1 inhibitory activity remain to be identified. To address this issue, we performed label-free quantitative proteome and phosphoproteome analyses of noninfected and HIV-1-infected CEM T cells that were untreated or treated with 1E7-03. 1E7-03 significantly reprogramed the phosphorylation profile of proteins including PPARα/RXRα, TGF-ß, and PKR pathways. Phosphorylation of nucleophosmin (NPM1) at Ser-125 residue in PPARα/RXRα pathway was significantly reduced (>20-fold, p = 1.37 × 10-9), followed by the reduced phosphorylation of transforming growth factor-beta 2 at Ser-46 (TGF-ß2, >12-fold, p = 1.37 × 10-3). Downregulation of NPM1's Ser-125 phosphorylation was further confirmed using Western blot. Phosphorylation mimicking NPM1 S125D mutant activated Tat-induced HIV-1 transcription and exhibited enhanced NPM1-Tat interaction compared to NPM1 S125A mutant. Inhibition of Aurora A or Aurora B kinases that phosphorylate NPM1 on Ser-125 residue inhibited HIV-1, further supporting the role of NPM1 in HIV-1 infection. Taken together, 1E7-03 reprogrammed PPARα/RXRα and TGF-ß pathways that contribute to the inhibition of HIV-1 transcription. Our findings suggest that NPM1 phosphorylation is a plausible target for HIV-1 transcription inhibition.


Asunto(s)
VIH-1 , Nucleofosmina , Animales , Humanos , Ratones , Fosforilación , Proteína Fosfatasa 1/metabolismo , VIH-1/genética , PPAR alfa/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Transcripción Genética
17.
Nucleic Acids Res ; 51(17): 9415-9431, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37558241

RESUMEN

Nuclear-retained long non-coding RNAs (lncRNAs) including MALAT1 have emerged as critical regulators of many molecular processes including transcription, alternative splicing and chromatin organization. Here, we report the presence of three conserved and thermodynamically stable RNA G-quadruplexes (rG4s) located in the 3' region of MALAT1. Using rG4 domain-specific RNA pull-down followed by mass spectrometry and RNA immunoprecipitation, we demonstrated that the MALAT1 rG4 structures are specifically bound by two nucleolar proteins, Nucleolin (NCL) and Nucleophosmin (NPM). Using imaging, we found that the MALAT1 rG4s facilitate the localization of both NCL and NPM to nuclear speckles, and specific G-to-A mutations that disrupt the rG4 structures compromised the localization of both NCL and NPM in speckles. In vitro biophysical studies established that a truncated version of NCL (ΔNCL) binds tightly to all three rG4s. Overall, our study revealed new rG4s within MALAT1, established that they are specifically recognized by NCL and NPM, and showed that disrupting the rG4s abolished localization of these proteins to nuclear speckles.


Asunto(s)
G-Cuádruplex , ARN Largo no Codificante , Nucleofosmina , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Largo no Codificante/genética , Humanos , Nucleolina
18.
Proc Natl Acad Sci U S A ; 119(25): e2122379119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696582

RESUMEN

Acute myeloid leukemia (AML) remains a therapeutic challenge, and a paucity of tumor-specific targets has significantly hampered the development of effective immune-based therapies. Recent paradigm-changing studies have shown that natural killer (NK) cells exhibit innate memory upon brief activation with IL-12 and IL-18, leading to cytokine-induced memory-like (CIML) NK cell differentiation. CIML NK cells have enhanced antitumor activity and have shown promising results in early phase clinical trials in patients with relapsed/refractory AML. Here, we show that arming CIML NK cells with a neoepitope-specific chimeric antigen receptor (CAR) significantly enhances their antitumor responses to nucleophosphmin-1 (NPM1)-mutated AML while avoiding off-target toxicity. CIML NK cells differentiated from peripheral blood NK cells were efficiently transduced to express a TCR-like CAR that specifically recognizes a neoepitope derived from the cytosolic oncogenic NPM1-mutated protein presented by HLA-A2. These CAR CIML NK cells displayed enhanced activity against NPM1-mutated AML cell lines and patient-derived leukemic blast cells. CAR CIML NK cells persisted in vivo and significantly improved AML outcomes in xenograft models. Single-cell RNA sequencing and mass cytometry analyses identified up-regulation of cell proliferation, protein folding, immune responses, and major metabolic pathways in CAR-transduced CIML NK cells, resulting in tumor-specific, CAR-dependent activation and function in response to AML target cells. Thus, efficient arming of CIML NK cells with an NPM1-mutation-specific TCR-like CAR substantially improves their innate antitumor responses against an otherwise intracellular mutant protein. These preclinical findings justify evaluating this approach in clinical trials in HLA-A2+ AML patients with NPM1c mutations.


Asunto(s)
Memoria Inmunológica , Células de Memoria Inmunológica , Inmunoterapia Adoptiva , Células Asesinas Naturales , Leucemia Mieloide Aguda , Nucleofosmina , Receptores Quiméricos de Antígenos , Antígeno HLA-A2/inmunología , Humanos , Células de Memoria Inmunológica/inmunología , Células de Memoria Inmunológica/trasplante , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/trasplante , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutación , Nucleofosmina/genética , Nucleofosmina/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología
19.
Am J Physiol Cell Physiol ; 326(4): C1094-C1105, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38344767

RESUMEN

Cholestatic liver diseases causes inflammation and fibrosis around bile ducts. However, the pathological mechanism has not been elucidated. Extracellular vesicles (EVs) are released from both the basolateral and apical sides of polarized biliary epithelial cells. We aimed to investigate the possibility that EVs released from the basolateral sides of biliary epithelial cells by bile acid stimulation induce inflammatory cells and fibrosis around bile ducts, and they may be involved in the pathogenesis of cholestatic liver disease. Human biliary epithelial cells (H69) were grown on cell culture inserts and stimulated with chenodeoxycholic acid + IFN-γ. Human THP-1-derived M1-macrophages, LX-2 cells, and KMST-6 cells were treated with the extracted basolateral EVs, and inflammatory cytokines and fibrosis markers were detected by RT-PCR. Highly expressed proteins from stimulated EVs were identified, and M1-macrophages, LX-2, KMST-6 were treated with these recombinant proteins. Stimulated EVs increased the expression of TNF, IL-1ß, and IL-6 in M1-macrophages, TGF-ß in LX-2 and KMST-6 compared with the corresponding expression levels in unstimulated EVs. Nucleophosmin, nucleolin, and midkine levels were increased in EVs from stimulated cells compared with protein expression in EVs from unstimulated cells. Leukocyte cell-derived chemotaxin-2 (LECT2) is highly expressed only in EVs from stimulated cells. Stimulation of M1-macrophages with recombinant nucleophosmin, nucleolin, and midkine significantly increased the expression of inflammatory cytokines. Stimulation of LX-2 and KMST-6 with recombinant LECT2 significantly increased the expression of fibrotic markers. These results suggest that basolateral EVs are related to the development of pericholangitis and periductal fibrosis in cholestatic liver diseases.NEW & NOTEWORTHY Our research elucidated that the composition of basolateral EVs from the biliary epithelial cells changed under bile acid exposure and the basolateral EVs contained the novel inflammation-inducing proteins NPM, NCL, and MK and the fibrosis-inducing protein LECT2. We report that these new results are possible to lead to the potential therapeutic target of cholestatic liver diseases in the future.


Asunto(s)
Vesículas Extracelulares , Hepatopatías , Humanos , Midkina/metabolismo , Nucleofosmina , Células Epiteliales/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Hepatopatías/metabolismo , Ácidos y Sales Biliares/metabolismo , Fibrosis , Vesículas Extracelulares/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
20.
J Proteome Res ; 23(8): 2882-2892, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38231884

RESUMEN

ARID3C is a protein located on human chromosome 9 and expressed at low levels in various organs, yet its biological function has not been elucidated. In this study, we investigated both the cellular localization and function of ARID3C. Employing a combination of LC-MS/MS and deep learning techniques, we identified NPM1 as a binding partner for ARID3C's nuclear shuttling. ARID3C was found to predominantly localize with the nucleus, where it functioned as a transcription factor for genes STAT3, STAT1, and JUNB, thereby facilitating monocyte-to-macrophage differentiation. The precise binding sites between ARID3C and NPM1 were predicted by AlphaFold2. Mutating this binding site prevented ARID3C from interacting with NPM1, resulting in its retention in the cytoplasm instead of translocation to the nucleus. Consequently, ARID3C lost its ability to bind to the promoters of target genes, leading to a loss of monocyte-to-macrophage differentiation. Collectively, our findings indicate that ARID3C forms a complex with NPM1 to translocate to the nucleus, acting as a transcription factor that promotes the expression of the genes involved in monocyte-to-macrophage differentiation.


Asunto(s)
Diferenciación Celular , Núcleo Celular , Macrófagos , Monocitos , Proteínas Nucleares , Nucleofosmina , Humanos , Monocitos/metabolismo , Monocitos/citología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Macrófagos/metabolismo , Macrófagos/citología , Núcleo Celular/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica , Sitios de Unión , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA