RESUMEN
Hydrogels derived from decellularized extracellular matrices (ECM) of animal origin show immense potential for regenerative applications due to their excellent cytocompatibility and biomimetic properties. Despite these benefits, the impact of decellularization protocols on the properties and immunogenicity of these hydrogels remains relatively unexplored. In this study, porcine skeletal muscle ECM (smECM) underwent decellularization using mechanical disruption (MD) and two commonly employed decellularization detergents, sodium deoxycholate (SDC) or Triton X-100. To mitigate immunogenicity associated with animal-derived ECM, all decellularized tissues were enzymatically treated with α-galactosidase to cleave the primary xenoantigen-the α-Gal antigen. Subsequently, the impact of the different decellularization protocols on the resultant hydrogels was thoroughly investigated. All methods significantly reduced total DNA content in hydrogels. Moreover, α-galactosidase treatment was crucial for cleaving α-Gal antigens, suggesting that conventional decellularization methods alone are insufficient. MD preserved total protein, collagen, sulfated glycosaminoglycan, laminin, fibronectin, and growth factors more efficiently than other protocols. The decellularization method impacted hydrogel gelation kinetics and ultrastructure, as confirmed by turbidimetric and scanning electron microscopy analyses. MD hydrogels demonstrated high cytocompatibility, supporting satellite stem cell recruitment, growth, and differentiation into multinucleated myofibers. In contrast, the SDC and Triton X-100 protocols exhibited cytotoxicity. Comprehensive in vivo immunogenicity assessments in a subcutaneous xenotransplantation model revealed MD hydrogels' biocompatibility and low immunogenicity. These findings highlight the significant influence of the decellularization protocol on hydrogel properties. Our results suggest that combining MD with α-galactosidase treatment is an efficient method for preparing low-immunogenic smECM-derived hydrogels with enhanced properties for skeletal muscle regenerative engineering and clinical applications.
Asunto(s)
Matriz Extracelular , Hidrogeles , Músculo Esquelético , Animales , Hidrogeles/química , Porcinos , Matriz Extracelular/metabolismo , Ingeniería de Tejidos/métodos , Matriz Extracelular Descelularizada/química , Ratones , alfa-Galactosidasa/inmunología , alfa-Galactosidasa/metabolismo , Ácido Desoxicólico/química , Octoxinol/químicaRESUMEN
Neuraminidase (NA)-specific antibodies have been associated with protection against influenza and thus NA is considered a promising target for next-generation vaccines against influenza A (IAV) and B viruses (IBV). NA inhibition (NI) by antibodies is typically assessed using an enzyme-linked lectin assay (ELLA). However, ELLA can be confounded by anti-hemagglutinin (anti-HA) antibodies that block NA by steric hindrance (termed HA interference). Although strategies have been employed to overcome HA interference for IAV, similar approaches have not been assessed for IBV. We found that HA interference is common in ELLA using IBV, rendering the technique unreliable. Anti-HA antibodies were not completely depleted from sera by HA-expressing cell lines, and this approach was of limited utility. In contrast, we find that treatment of virions with Triton X-100, but not Tween-20 or ether, efficiently separates the HA and NA components and overcomes interference caused by anti-HA antibodies. We also characterize a panel of recombinant IBV NA proteins that further validated the results from Triton X-100-treated virus-based ELLA. Using these reagents and assays, we demonstrate discordant antigenic evolution between IBV NA and HA over the last 80 years. This optimized ELLA protocol will facilitate further in-depth serological surveys of IBV immunity as well as antigenic characterization of the IBV NA on a larger scale.IMPORTANCEInfluenza B viruses (IBVs) contribute to annual epidemics and may cause severe disease, especially in children. Consequently, several approaches are being explored to improve vaccine efficacy, including the addition of neuraminidase (NA). Antigen selection and assessment of serological responses will require a reliable serological assay to specifically quantify NA inhibition (NI). Although such assays have been assessed for influenza A viruses (IAVs), this has not been done of influenza B viruses. Our study identifies a readily applicable strategy to measure the inhibitory activity of neuraminidase-specific antibodies against influenza B virus without interference from anti-hemagglutinin (anti-HA) antibodies. This will aid broader serological assessment of influenza B virus-specific antibodies and antigenic characterization of the influenza B virus neuraminidase.
Asunto(s)
Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza B , Neuraminidasa , Octoxinol , Neuraminidasa/inmunología , Neuraminidasa/genética , Virus de la Influenza B/inmunología , Virus de la Influenza B/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Anticuerpos Antivirales/inmunología , Humanos , Antígenos Virales/inmunología , Antígenos Virales/genética , Animales , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Gripe Humana/prevención & control , Proteínas Virales/inmunología , Proteínas Virales/genética , Células de Riñón Canino Madin DarbyRESUMEN
Immunoprecipitation (IP) and co-immunoprecipitation (co-IP) are well-established methodologies to analyze protein expression and intermolecular interaction. Composition of extraction and washing buffer for preparing protein is important to accomplish experimental purpose. Various kinds of detergents are included in buffer to adjust extraction efficiency and washing effect. Among them, Triton X-100 (Tx-100), Nonidet P-40 (NP40), deoxycholic acid (DOC) and SDS are generally used according to experimental purpose and characteristic features of protein of interest. In some cases, general detergents disrupt intermolecular interaction and make it impossible to analyze molecular relation of protein of interest with its binding partners. In this study, we propose saponin, a natural detergent, is useful for co-immunoprecipitation when analyzing fragile intermolecular interactions, in which dystrophin and dystroglycan are used as a representative interaction. One of the most notable findings in this report is that intermolecular association between dystrophin and dystroglycan is maintained in saponin buffer whereas general detergents, such as Tx-100, NP40 and DOC, dissociate its binding. Furthermore, supplementation of trehalose, which has been shown to act as a molecular chaperone, facilitates efficient detection of dystrophin-dystroglycan macromolecular complex in co-IP assay. Importantly, the extraction buffer comprising 3 % saponin, 0.5 M trehalose and 0.05 % Tx-100 (we named it STX buffer) is applicable to co-IP for another molecular interaction, N-cadherin and ß-catenin, indicating that this methodology can be used for versatile proteins of interest. Thus, STX buffer emerges as an alternative extraction method useful for analyzing fragile intermolecular associations and provides opportunity to identify complex interactomes, which may facilitate proteome-research and functional analysis of proteins of interest.
Asunto(s)
Saponinas , Trehalosa , Saponinas/química , Trehalosa/química , Inmunoprecipitación/métodos , Animales , Detergentes/química , Unión Proteica , Humanos , Octoxinol/químicaRESUMEN
Ricinoleic acid (C18:1-OH, RA) is a valuable hydroxy fatty acid with versatile applications. The current industrial source of RA relies on the hydrolysis of castor bean oil. However, the coexistence of the toxic compound ricin and the unstable supply of this plant have led to an exploration of promising alternatives: generating RA in heterologous plants or microorganisms. In this study, we engineered the oleaginous yeast Yarrowia lipolytica to produce RA in the form of free fatty acids (FFA). First, we overexpressed fungal Δ12 oleate hydroxylase gene (CpFAH12) from Claviceps purpurea while deleting genes related to fatty acid degradation (MEF1 and PEX10) and oleic acid desaturation (FAD2). Since Δ12 oleate hydroxylase converts oleic acid (C18:1) located at the sn-2 position of phosphatidylcholine (PC), we next focused on increasing the PC pool containing oleic acid. This objective was achieved thorough implementing metabolic engineering strategies designed to enhance the biosynthesis of PC and C18 fatty acids. To increase the PC pool, we redirected the flux towards phospholipid biosynthesis by deleting phosphatidic acid phosphatase genes (PAH1 and APP1) and diacylglycerol acyltransferase gene (DGA1), involved in the production of diacylglycerol and triacylglycerol, respectively. Furthermore, the PC biosynthesis via the CDP-DAG pathway was enhanced through the overexpression of CDS1, PSD1, CHO2, and OPI3 genes. Subsequently, to increase the oleic acid content within PC, we overexpressed the heterologous fatty acid elongase gene (MaC16E) involved in the conversion of C16 to C18 fatty acids. As RA production titer escalated, the produced RA was mainly found in the FFA form, leading to cell growth inhibition. The growth inhibition was mitigated by inducing RA secretion via Triton X-100 treatment, a process that simultaneously amplified RA production by redirecting flux towards RA synthesis. The final engineered strain JHYL-R146 produced 2.061 g/L of free RA in a medium treated with 5% Triton X-100, constituting 74% of the total FFAs produced. Generating free RA offers the added benefit of bypassing the hydrolysis stage required when employing castor bean oil as an RA source. This achievement represents the highest level of RA synthesis from glucose reported thus far, underscoring the potential of Y. lipolytica as a host for sustainable RA production.
Asunto(s)
Ácidos Grasos no Esterificados , Yarrowia , Ácidos Grasos no Esterificados/genética , Ácidos Grasos no Esterificados/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ácido Oléico/genética , Ácido Oléico/metabolismo , Ácidos Ricinoleicos/metabolismo , Octoxinol/metabolismo , Ácidos Grasos/metabolismo , Oxigenasas de Función Mixta/genética , Ingeniería MetabólicaRESUMEN
The main objective of this study was to assess the usefulness of the sweet cherry stones for the production of carbonaceous adsorbents by means of direct physical activation method, using conventional and microwave variant of heating. The adsorbents were characterized in terms of textural parameters, acidic-basic character of the surface, electrokinetic properties and their suitability for drinking water purification. Adsorption tests were carried out against three organic compounds - Triton X-100 (surfactant), bovine serum albumin (protein) and methylene blue (synthetic dye). Depending on the variant of heating applied during activation procedure, the obtained activated biochars differed significantly in terms of the elemental composition, acidic-basic properties as well as degree of specific surface development and the type of porous structure generated. Adsorption tests have showed that the efficiency of organic pollutants removal from aqueous solutions depends significantly not only on the type of the adsorbent and adsorbate applied, but also on the temperature and pH of the system. The sample prepared by microwave-assisted direct activation proved to be very effective in terms of all tested organic pollutants adsorption. The maximum sorption capacity toward Triton X-100, bovine serum albumin and methylene blue reached the level of 86.5, 23.4 and 81.1â mg/g, respectively.
Asunto(s)
Contaminantes Ambientales , Prunus avium , Purificación del Agua , Adsorción , Azul de Metileno/química , Octoxinol , Albúmina Sérica Bovina , Purificación del Agua/métodos , Cinética , Concentración de Iones de HidrógenoRESUMEN
Biofilms are structured microbial communities encased in a matrix of self-produced extracellular polymeric substance (EPS) and pose significant challenges in various industrial cooling systems. A nuclear power plant uses a biocide active-bromide for control of biological growth in its condenser cooling system. This study is aimed at evaluating the anti-bacterial and anti-biofilm efficacy of active-bromide against planktonic and biofilm-forming bacteria that are commonly encountered in seawater cooling systems. The results demonstrated that active-bromide at the concentration used at the power plant (1 ppm) exhibited minimal killing activity against Pseudomonas aeruginosa planktonic cells. The bacterial cell surface hydrophobicity assay using Staphylococcus aureus and P. aeruginosa indicated that Triton-X 100 significantly decreased the hydrophobicity of planktonic cells, enhancing the susceptibility of the cells to active-bromide. Biofilm inhibition assays revealed limited efficacy of active-bromide at 1 ppm concentration, but significant inhibition at 5 ppm and 10 ppm. However, the addition of a surfactant, Triton-X 100, in combination with 1 ppm active-bromide displayed a synergistic effect, leading to significant biofilm dispersal of pre-formed P. aeruginosa biofilms. This observation was substantiated by epifluorescence microscopy using a live/dead bacterial assay that showed the combination treatment resulted in extensive cell death within the biofilm, as indicated by a marked increase in red fluorescence, compared to treatments with either agent alone. These findings suggest that active bromide alone may be insufficient for microfouling control in the seawater-based condenser cooling system of the power plant. Including a biocompatible surfactant that disrupts established biofilms (microfouling) can significantly improve the efficacy of active bromide treatment.
Asunto(s)
Antibacterianos , Biopelículas , Incrustaciones Biológicas , Bromuros , Pseudomonas aeruginosa , Staphylococcus aureus , Tensoactivos , Biopelículas/efectos de los fármacos , Tensoactivos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Antibacterianos/farmacología , Bromuros/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Incrustaciones Biológicas/prevención & control , Sinergismo Farmacológico , Interacciones Hidrofóbicas e Hidrofílicas , Desinfectantes/farmacología , Agua de Mar/microbiología , Agua de Mar/química , Octoxinol/farmacologíaRESUMEN
Triton X-100 (TX-100) is a membrane-disrupting detergent that is widely used to inactivate membrane-enveloped viral pathogens, yet is being phased out due to environmental safety concerns. Intense efforts are underway to discover regulatory acceptable detergents to replace TX-100, but there is scarce mechanistic understanding about how these other detergents disrupt phospholipid membranes and hence which ones are suitable to replace TX-100 from a biophysical interaction perspective. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS) techniques in combination with supported lipid membrane platforms, we characterized the membrane-disruptive properties of a panel of TX-100 replacement candidates with varying antiviral activities and identified two distinct classes of membrane-interacting detergents with different critical micelle concentration (CMC) dependencies and biophysical mechanisms. While all tested detergents formed micelles, only a subset of the detergents caused CMC-dependent membrane solubilization similarly to that of TX-100, whereas other detergents adsorbed irreversibly to lipid membrane interfaces in a CMC-independent manner. We compared these biophysical results to virus inactivation data, which led us to identify that certain membrane-interaction profiles contribute to greater antiviral activity and such insights can help with the discovery and validation of antiviral detergents to replace TX-100.
Asunto(s)
Detergentes , Fosfolípidos , Polietilenglicoles , Octoxinol/farmacología , Octoxinol/química , Detergentes/farmacología , Detergentes/química , Fosfolípidos/química , Micelas , Antivirales/farmacología , Membrana Dobles de Lípidos/químicaRESUMEN
Polycyclic aromatic hydrocarbons (PAHs), as persistent environmental pollutants, often reside in nonaqueous-phase liquids (NAPLs). Mycobacterium sp. WY10, boasting highly hydrophobic surfaces, can adsorb to the oil-water interface, stabilizing the Pickering emulsion and directly accessing PAHs for biodegradation. We investigated the impact of Triton X-100 (TX100) on this interfacial uptake of phenanthrene (PHE) by Mycobacteria, using n-tetradecane (TET) and bis-(2-ethylhexyl) phthalate (DEHP) as NAPLs. Interfacial tension, phase behavior, and emulsion stability studies, alongside confocal laser scanning microscopy and electron microscope observations, unveiled the intricate interplay. In surfactant-free systems, Mycobacteria formed stable W/O Pickering emulsions, directly degrading PHE within the NAPLs because of their intimate contact. Introducing low-dose TX100 disrupted this relationship. Preferentially binding to the cells, the surfactant drastically increased the cell hydrophobicity, triggering desorption from the interface and phase separation. Consequently, PAH degradation plummeted due to hindered NAPL access. Higher TX100 concentrations flipped the script, creating surfactant-stabilized O/W emulsions devoid of interfacial cells. Surprisingly, PAH degradation remained efficient. This paradox can be attributed to NAPL emulsification, driven by the surfactant, which enhanced mass transfer and brought the substrate closer to the cells, despite their absence at the interface. This study sheds light on the complex effect of surfactants on Mycobacteria and PAH uptake, revealing an antagonistic effect at low concentrations that ultimately leads to enhanced degradation through emulsification at higher doses. These findings offer valuable insights into optimizing bioremediation strategies in PAH-contaminated environments.
Asunto(s)
Biodegradación Ambiental , Mycobacterium , Octoxinol , Fenantrenos , Tensoactivos , Fenantrenos/química , Fenantrenos/farmacología , Fenantrenos/metabolismo , Tensoactivos/química , Tensoactivos/farmacología , Mycobacterium/metabolismo , Mycobacterium/efectos de los fármacos , Mycobacterium/química , Octoxinol/química , Emulsiones/química , Alcanos/química , Alcanos/metabolismo , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
RESEARCH QUESTION: To what extent does the type and concentration of protein and the type of culture medium affect the sensitivity of the mouse embryo assay (MEA) to detect Triton X-100 (TX-100) in culture media? DESIGN: The effect of the concentration of bovine serum albumin (BSA) and human serum albumin (HSA) was assessed by supplementing media with 0.5 or 5 mg/ml. Potassium-supplemented simplex optimized medium (KSOM) and human tubal fluid (HTF) were used as complex and simple formulation media, respectively. Variables were combined, forming study groups where embryos were cultured in test media spiked with a sublethal TX-100 concentration. The conditions of greatest sensitivity were determined by statistical comparison of blastocyst formation rates and total cell counts between groups. RESULTS: Although all of the study groups showed equal capacity for sustaining proper embryo development, the reported sensitivity of the MEA differed between groups when subjected to TX-100. HTF conferred significantly greater sensitivity than KSOM regardless of the type and concentration of protein used, and medium supplementation with 5 mg/ml BSA rather than 0.5 mg/ml BSA resulted in significantly higher sensitivity regardless of the type of medium used. This increase in concentration also resulted in higher sensitivity when supplementing HTF with HSA. The BSA groups provided more sensitivity than their HSA counterparts, except for the KSOMâ¯+â¯0.5 mg/ml BSA group. Cell count analysis did not provide further significant conclusions. CONCLUSIONS: For TX-100 detection within culture medium, the type and concentration of protein and the type of culture medium have a direct effect on MEA sensitivity. These results could help to standardize the MEA protocol, and increase its ability to detect sublethal concentrations of embryotoxic substances, especially TX-100, thus avoiding possible clinical harmful effects.
Asunto(s)
Medios de Cultivo , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Octoxinol , Albúmina Sérica Bovina , Octoxinol/farmacología , Animales , Ratones , Albúmina Sérica Bovina/farmacología , Técnicas de Cultivo de Embriones/métodos , Femenino , Desarrollo Embrionario/efectos de los fármacos , Embrión de Mamíferos/efectos de los fármacos , Humanos , Albúmina Sérica Humana/análisisRESUMEN
Perturbations in bilayer material properties (thickness, lipid intrinsic curvature and elastic moduli) modulate the free energy difference between different membrane protein conformations, thereby leading to changes in the conformational preferences of bilayer-spanning proteins. To further explore the relative importance of curvature and elasticity in determining the changes in bilayer properties that underlie the modulation of channel function, we investigated how the micelle-forming amphiphiles Triton X-100, reduced Triton X-100 and the HII lipid phase promoter capsaicin modulate the function of alamethicin and gramicidin channels. Whether the amphiphile-induced changes in intrinsic curvature were negative or positive, amphiphile addition increased gramicidin channel appearance rates and lifetimes and stabilized the higher conductance states in alamethicin channels. When the intrinsic curvature was modulated by altering phospholipid head group interactions, however, maneuvers that promote a negative-going curvature stabilized the higher conductance states in alamethicin channels but destabilized gramicidin channels. Using gramicidin channels of different lengths to probe for changes in bilayer elasticity, we found that amphiphile adsorption increases bilayer elasticity, whereas altering head group interactions does not. We draw the following conclusions: first, confirming previous studies, both alamethicin and gramicidin channels are modulated by changes in lipid bilayer material properties, the changes occurring in parallel yet differing dependent on the property that is being changed; second, isolated, negative-going changes in curvature stabilize the higher current levels in alamethicin channels and destabilize gramicidin channels; third, increases in bilayer elasticity stabilize the higher current levels in alamethicin channels and stabilize gramicidin channels; and fourth, the energetic consequences of changes in elasticity tend to dominate over changes in curvature.
Asunto(s)
Gramicidina , Membrana Dobles de Lípidos , Octoxinol , Gramicidina/farmacología , Membrana Dobles de Lípidos/metabolismo , Elasticidad , PeptaibolesRESUMEN
Phospholipase A2 (PLA2) is a superfamily of phospholipase enzymes that dock at the water/oil interface of phospholipid assemblies, hydrolyzing the ester bond at the sn-2 position. The enzymatic activity of these enzymes differs based on the nature of the substrate, its supramolecular assemblies (micelle, liposomes), and their composition, reflecting the interfacial nature of the PLA2s and requiring assays able to directly quantify this interaction of the enzyme(s) with these supramolecular assemblies. We developed and optimized a simple, universal assay method employing the pH-sensitive indicator dye bromothymol blue (BTB), in which different POPC (3-palmitoyl-2-oleoyl-sn-glycero-1-phosphocholine) self-assemblies (liposomes or mixed micelles with Triton X-100 at different molar ratios) were used to assess the enzymatic activity. We used this assay to perform a comparative analysis of PLA2 kinetics on these supramolecular assemblies and to determine the kinetic parameters of PLA2 isozymes IB and IIA for each supramolecular POPC assembly. This assay is suitable for assessing the inhibition of PLA2s with great accuracy using UV-VIS spectrophotometry, being thus amenable for screening of PLA2 enzymes and their substrates and inhibitors in conditions very similar to physiologic ones.
Asunto(s)
Fosfatidilcolinas , Fosfolipasas A2 , Fosfolipasas A2/metabolismo , Fosfolipasas A2/química , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Cinética , Micelas , Liposomas/química , Concentración de Iones de Hidrógeno , Pruebas de Enzimas/métodos , Octoxinol/químicaRESUMEN
Surfactant pollution is escalatitheng in eutrophic waters, but the effect of surfactant charge properties on the physiological and biochemical properties of toxin-producing microalgae remains inadequately explored. To address this gap, this study explores the effects and mechanisms of three common surfactants-cetyltrimethylammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and Triton X-100 (nonionic)-found in surface waters, on the agglomeration behavior, physiological indicators, and Microcystin-LR (MC-LR) release of Microcystis aeruginosa (M. aeruginosa) by using UV-visible spectroscope, Malvern Zetasizer, fluorescence spectrometer, etc. Results suggest that charge properties significantly affect cyanobacterial aggregation and cellular metabolism. The CTAB-treated group demonstrates a â¼5.74 and â¼9.74 times higher aggregation effect compared to Triton X-100 and SDS (300 mg/L for 180 min) due to strong electrostatic attraction. Triton X-100 outperforms CTAB and SDS in polysaccharide extraction, attributed to its higher water solubility and lower critical micelle concentration. CTAB stimulates cyanobacteria to secrete proteins, xanthohumic acid, and humic acids to maintain normal physiological cells. Additionally, the results of SEM and ion content showed that CTAB damages the cell membrane, resulting in a â¼90% increase in the release of intracellular MC-LR without cell disintegration. Ionic analyses confirm that all three surfactants alter cell membrane permeability and disrupt ionic metabolic pathways in microalgae. This study highlights the relationship between the surface charge properties of typical surfactants and the dispersion/agglomeration behavior of cyanobacteria. It provides insights into the impact mechanism of exogenous surfactants on toxic algae production in eutrophic water bodies, offering theoretical references for managing surfactant pollution and treating algae blooms.
Asunto(s)
Microcistinas , Microcystis , Tensoactivos , Microcistinas/química , Microcistinas/metabolismo , Microcystis/efectos de los fármacos , Tensoactivos/química , Tensoactivos/farmacología , Octoxinol/química , Octoxinol/farmacología , Dodecil Sulfato de Sodio/química , Dodecil Sulfato de Sodio/farmacologíaRESUMEN
To investigate the mechanism of Triton X-100 (TX-100) reducing the Ag+-resistance of Enterococcus faecalis (E. faecalis), and evaluate the antibacterial effect of TX-100 + Ag+ against the induced Ag+-resistant E. faecalis (AREf). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of AgNO3 against E. faecalis with/without TX-100 were determined to verify the enhanced antibacterial activity. Transmission electron microscopy (TEM) was used to observe the morphological changes of E. faecalis after treatment. The intra- and extracellular concentration of Ag+ in treated E. faecalis was evaluated using inductively coupled plasma mass spectrometer (ICP-MS). The changes in cell membrane potential and integrity of treated E. faecalis were also observed using the flow cytometer. Moreover, AREf was induced through continuous exposure to sub-MIC of Ag+ and the antibacterial effect of TX-100 + Ag+ on AREf was further evaluated. The addition of 0.04% TX-100 showed maximal enhanced antibacterial effect of Ag+ against E. faecalis. The TEM and ICP-MS results demonstrated that TX-100 could facilitate Ag+ to enter E. faecalis through changing the membrane structure and integrity. Flow cytometry further showed the effect of TX-100 on membrane potential and permeability of E. faecalis. In addition, the enhanced antibacterial effect of TX-100 + Ag+ was also confirmed on induced AREf. TX-100 can facilitate Ag+ to enter E. faecalis through disrupting the membrane structure and changing the membrane potential and permeability, thus reducing the Ag+-resistance of E. faecalis and enhancing the antibacterial effect against either normal E. faecalis or induced AREf.
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Enterococcus faecalis , Pruebas de Sensibilidad Microbiana , Octoxinol , Plata , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/crecimiento & desarrollo , Octoxinol/farmacología , Antibacterianos/farmacología , Plata/farmacología , Membrana Celular/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Nitrato de Plata/farmacologíaRESUMEN
Cofactor molecules are required to generate infectious mammalian prions in vitro. Mouse and hamster prions appear to have different cofactor preferences: Whereas both mouse and hamster prions can use phosphatidylethanolamine (PE) as a prion cofactor, only hamster prions can also use single-stranded RNA as an alternative cofactor. Here, we investigated the effect of detergent solubilization on rodent prion formation in vitro. We discovered that detergents that can solubilize PE (n-octylglucoside, n-octylgalactoside, and CHAPS) inhibit mouse prion formation in serial protein misfolding cyclic amplification (sPMCA) reactions using bank vole brain homogenate substrate, whereas detergents that are unable to solubilize PE (Triton X-100 and IPEGAL) have no effect. For all three PE-solubilizing detergents, inhibition of RML mouse prion formation was only observed above the critical micellar concentration (CMC). Two other mouse prion strains, Me7 and 301C, were also inhibited by the three PE-solubilizing detergents but not by Triton X-100 or IPEGAL. In contrast, none of the detergents inhibited hamster prion formation in parallel sPMCA reactions using the same bank vole brain homogenate substrate. In reconstituted sPMCA reactions using purified substrates, n-octylglucoside inhibited hamster prion formation when immunopurified bank vole PrPC substrate was supplemented with brain phospholipid but not with RNA. Interestingly, phospholipid cofactor solubilization had no effect in sPMCA reactions using bacterially expressed recombinant PrP substrate, indicating that the inhibitory effect of solubilization requires PrPC post-translational modifications. Overall, these in vitro results show that the ability of PE to facilitate the formation of native but not recombinant prions requires phospholipid bilayer integrity, suggesting that membrane structure may play an important role in prion formation in vivo.
Asunto(s)
Priones , Cricetinae , Ratones , Animales , Priones/metabolismo , Fosfolípidos , Octoxinol/farmacología , Detergentes/farmacología , Proteínas Priónicas , Arvicolinae/genética , Arvicolinae/metabolismo , ARNRESUMEN
The CRISPR/Cas systems offer a programmable platform for nucleic acid detection, and CRISPR/Cas-based diagnostics (CRISPR-Dx) have demonstrated the ability to target nucleic acids with greater accuracy and flexibility. However, due to the configuration of the reporter and the underlying labeling mechanism, almost all reported CRISPR-Dx rely on a single-option readout, resulting in limitations in end-point result readouts. This is also associated with high reagent consumption and delays in diagnostic reports due to protocol differences. Herein, we report for the first time a rationally designed Cas12a-based multimodal universal reporter (CAMURE) with improved sensitivity that harnesses a dual-mode reporting system, facilitating options in end-point readouts. Through systematic configurations and optimizations, our novel universal reporter achieved a 10-fold sensitivity enhancement compared to the DETECTR reporter. Our unique and versatile reporter could be paired with various readouts, conveying the same diagnostic results. We applied our novel reporter for the detection of staphylococcal enterotoxin A due to its high implication in staphylococcal food poisoning. Integrated with loop-mediated isothermal amplification, our multimodal reporter achieved 10 CFU/mL sensitivity and excellent specificity using a real-time fluorimeter, in-tube fluorescence, and lateral flow strip readouts. We also propose, using artificially contaminated milk samples, a fast (2-5 min) Triton X-100 DNA extraction approach with a comparable yield to the commercial extraction kit. Our CAMURE could be leveraged to detect all gene-encoding SEs by simply reprogramming the guide RNA and could also be applied to the detection of other infections and disease biomarkers.
Asunto(s)
Sistemas CRISPR-Cas , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Bioensayo , Octoxinol , Técnicas de Amplificación de Ácido NucleicoRESUMEN
In this study, the caprine pancreas has been presented as an alternative to the porcine organ for pancreatic xenotransplantation with lesser risk factors. The obtained caprine pancreas underwent a systematic cycle of detergent perfusion for decellularization. It was perfused using anionic (0.5% w/v sodium dodecyl sulfate) as well as non-ionic (0.1% v/v triton X-100, t-octyl phenoxy polyethoxy ethanol) detergents and washed intermittently with 1XPBS supplemented with 0.1% v/v antibiotic and nucleases in a gravitation-driven set-up. After 48 h, a white decellularized pancreas was obtained, and its extracellular matrix (ECM) content was examined for scaffold-like properties. The ECM content was assessed for removal of cellular content, and nuclear material was evaluated with temporal H&E staining. Quantified DNA was found to be present in a negligible amount in the resultant decellularized pancreas tissue (DPT), thus prohibiting it from triggering any immunogenicity. Collagen and fibronectin were confirmed to be preserved upon trichrome and immunohistochemical staining, respectively. SEM and AFM images reveal interconnected collagen fibril networks in the DPT, confirming that collagen was unaffected. sGAG was visualized using Prussian blue staining and quantified with DMMB assay, where DPT has effectively retained this ECM component. Uniaxial tensile analysis revealed that DPT possesses better elasticity than NPT (native pancreatic tissue). Physical parameters like tensile strength, stiffness, biodegradation, and swelling index were retained in the DPT with negligible loss. The cytocompatibility analysis of DPT has shown no cytotoxic effect for up to 72 h on normal insulin-producing cells (MIN-6) and cancerous glioblastoma (LN229) cells in vitro. The scaffold was recellularized using isolated mouse islets, which have established in vitro cell proliferation for up to 9 days. The scaffold received at the end of the decellularization cycle was found to be non-toxic to the cells, retained biological and physical properties of the native ECM, suitable for recellularization, and can be used as a safer and better alternative as a transplantable organ from a xenogeneic source.
Asunto(s)
Detergentes , Insulinas , Animales , Antibacterianos/farmacología , Colágeno/metabolismo , ADN/metabolismo , Matriz Extracelular Descelularizada , Detergentes/química , Detergentes/metabolismo , Detergentes/farmacología , Etanol/farmacología , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Cabras , Insulinas/análisis , Insulinas/metabolismo , Insulinas/farmacología , Ratones , Octoxinol/análisis , Octoxinol/metabolismo , Octoxinol/farmacología , Páncreas , Estudios Prospectivos , Dodecil Sulfato de Sodio/análisis , Dodecil Sulfato de Sodio/metabolismo , Dodecil Sulfato de Sodio/farmacología , Porcinos , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
Viral inactivation (VI) is a process widely used across the pharmaceutical industry to eliminate the cytotoxicity resulting from trace levels of viruses introduced by adventitious agents. This process requires adding Triton X-100, a non-ionic detergent solution, to the protein solution and allowing sufficient time for this agent to inactivate the viruses. Differences in process parameters associated with vessel designs, aeration rate, and many other physical attributes can introduce variability in the process, thus making predicting the required blending time to achieve the desired homogeneity of Triton X-100 more critical and complex. In this study we utilized a CFD model based on the lattice Boltzmann method (LBM) to predict the blend time to homogenize a Triton X-100 solution added during a typical full-scale commercial VI process in a vessel equipped with an HE-3-impeller for different modalities of the Triton X-100 addition (batch vs. continuous). Although direct experimental progress of the blending process was not possible because of GMP restrictions, the degree of homogeneity measured at the end of the process confirmed that Triton X-100 was appropriately dispersed, as required, and as computationally predicted here. The results obtained in this study were used to support actual production at the biomanufacturing site.
Asunto(s)
Inactivación de Virus , Virus , Octoxinol , Anticuerpos Monoclonales , Industria Farmacéutica/métodosRESUMEN
Understanding the pathways of solubilization of lipid membranes is of high importance for their use in biotechnology and industrial applications. Although lipid vesicle solubilization by classical detergents has been widely investigated, there are few systematic structural and kinetic studies where different detergents are compared under varying conditions. This study used small-angle X-ray scattering to determine the structures of lipid/detergent aggregates at different ratios and temperatures and studied the solubilization in time using the stopped-flow technique. Membranes composed of either of two zwitterionic lipids, DMPC or DPPC, and their interactions with three different detergents, sodium dodecyl sulfate (SDS), n-dodecyl-beta-maltoside (DDM), and Triton X-100 (TX-100), were tested. The detergent TX-100 can cause the formation of collapsed vesicles with a rippled bilayer structure that is highly resistant to TX-100 insertion at low temperatures, while at higher temperatures, it partitions and leads to the restructuring of vesicles. DDM also causes this restructuring into multilamellar structures at subsolubilizing concentrations. In contrast, partitioning of SDS does not alter the vesicle structure below the saturation limit. Solubilization is more efficient in the gel phase for TX-100 but only if the cohesive energy of the bilayer does not prevent sufficient partitioning of the detergent. DDM and SDS show less temperature dependence compared to TX-100. Kinetic measurements reveal that solubilization of DPPC largely occurs through a slow extraction of lipids, whereas DMPC solubilization is dominated by fast and burst-like solubilization of the vesicles. The final structures obtained seem to preferentially be discoidal micelles where the detergent can distribute in excess along the rim of the disc, although we do observe the formation of worm- and rodlike micelles in the case of solubilization of DDM. Our results are in line with the suggested theory that bilayer rigidity is the main factor influencing which aggregate is formed.
Asunto(s)
Detergentes , Micelas , Detergentes/química , Membrana Dobles de Lípidos/química , Dimiristoilfosfatidilcolina , Cinética , Octoxinol/química , SolubilidadRESUMEN
The nonionic surfactants Tween 80 (Tw80) and Triton X-100 (TX100), which are used as components of adjuvants, were used with bovine serum albumin (BSA) and hydroxfypropyl-ß-cyclodextrin (HP-ß-CD) as model antigens. The interaction patterns of Tw80 and TX100 with the hydrophobic cores of the model antigens were investigated. The fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS), a hydrophobic fluorescent probe, was used to evaluate the effect of surfactants on each model antigen. A Hanes Woolf plot was used to analyze the adsorption of ANS to BSA, and an activator-inhibitor model was used to analyze the concentration-dependent increase and decrease of ANS fluorescence intensity. For BSA, TX100 occupies the ANS binding site inside the BSA hydrophobic core, while Tw80 does not contribute to the ANS binding site in the hydrophobic core. For HP-ß-CD, the ANS concentration required for analyzable fluorescence intensity extended to the range where ANS concentration-dependent quenching was not negligible. Using the activator inhibitor model, we were able to separate the activators and inhibitors of ANS fluorescence and evaluate the affinity of ANS for HP-ß-CD and surfactants. The results obtained showed that TX100 provided a hydrophobic environment to the ANS while being encapsulated by HP-ß-CD, while Tw80 did not interact with HP-ß-CD and provided a hydrophobic environment to the ANS independently of each other. The interpretations obtained were corroborated by the determination of the CMC of TX100 and Tw80, the effect of salt on ANS fluorescence, and 1H-NMR and ROESY. In summary, the results showed that the large hydrophilic head of Tween, composed of sorbitan and PEG chains, floated in the aqueous phase like a balloon, while Triton pierced the hydrophobic core of the antigen like a spear. In both BSA and HP-ß-CD model antigens, TX100 impinged on the hydrophobic core.
Asunto(s)
Adyuvantes de Vacunas , Polisorbatos , 2-Hidroxipropil-beta-Ciclodextrina , Octoxinol , Fluorescencia , Albúmina Sérica Bovina/química , Tensoactivos , Espectrometría de Fluorescencia/métodosRESUMEN
BACKGROUND: Isolation of nuclei or nuclear proteins is a prerequisite for western blot, nuclear proteome profiling, and other evaluations of nuclear proteins. Here, we developed a simple method for in situ isolation of nuclei or nuclear proteins by in situ removing the extranuclear part of adherent cells via a classical nonionic detergent triton X-100. RESULTS: First, the feasibility of our method was confirmed by confocal microscopy, atomic force microscopy, scanning electron microscopy, dynamic light scattering, immunofluorescence imaging, and time-lapse dynamic observation. Next, the optimal concentration range (approximately 0.1-1% for ~ 10 min) of triton X-100 and the optimal treatment time (< 30 min) of 0.1-1% Triton X-100 for our method were determined via western blotting of eight extra-/intra-nuclear proteins. Subsequently, the effectiveness, sensitivity, and cytoplasmic contamination of our method were tested by investigating the levels of phosphorylated p65 (a NF-κB subunit) in the nuclei of endothelial or tumor cells treated with/without lipopolysaccharide (LPS) via western blotting and by comparing with a commercial nuclear protein extraction kit (a classical detergent-based method). The data show that compared with the commercial kit our method obtained a higher yield of total nuclear proteins, a higher pP65 level in both control and LPS groups, and much lower content of GAPDH (as a reference for cytoplasmic contamination) in nuclei. CONCLUSIONS: The in situ isolation of nuclei or nuclear proteins from adherent cells in this study is a simple, effective method with less cytoplasmic contamination. This method/strategy has the potential of improving the quality of downstream evaluations including western blotting and proteomic profiling.