RESUMEN
The precision oncology paradigm challenges the feasibility and data generalizability of traditional clinical trials. Consequently, an unmet need exists for practical approaches to test many subgroups, evaluate real-world drug value, and gather comprehensive, accessible datasets to validate novel biomarkers. Real-world data (RWD) are increasingly recognized to have the potential to fill this gap in research methodology. Established applications of RWD include informing disease epidemiology, pharmacovigilance, and healthcare quality assessment. Currently, concerns regarding RWD quality and comprehensiveness, privacy, and biases hamper their broader application. Nonetheless, RWD may play a pivotal role in supplementing clinical trials, enabling conditional reimbursement and accelerated drug access, and innovating trial conduct. Moreover, purpose-built RWD repositories may support the extension or refinement of drug indications and facilitate the discovery and validation of new biomarkers. This perspective explores the potential of leveraging RWD to advance oncology, highlights its benefits and challenges, and suggests a path forward in this evolving field.
Asunto(s)
Neoplasias , Humanos , Medicina de Precisión , Oncología Médica , Proyectos de Investigación , BiomarcadoresRESUMEN
As one of the world's most populous countries, China bears a heavy burden and a broad spectrum of cancers, including unique types, providing a unique environment for drug research and development. In recent years, China has leapt forward in oncology drug development and clinical trials, presenting new opportunities and challenges.
Asunto(s)
Antineoplásicos , Desarrollo de Medicamentos , Oncología Médica , Neoplasias , Humanos , China , Neoplasias/tratamiento farmacológicoRESUMEN
The integration of cancer biomarkers into oncology has revolutionized cancer treatment, yielding remarkable advancements in cancer therapeutics and the prognosis of cancer patients. The development of personalized medicine represents a turning point and a new paradigm in cancer management, as biomarkers enable oncologists to tailor treatments based on the unique molecular profile of each patient's tumor. In this review, we discuss the scientific milestones of cancer biomarkers and explore future possibilities to improve the management of patients with solid tumors. This progress is primarily attributed to the biological characterization of cancers, advancements in testing methodologies, elucidation of the immune microenvironment, and the ability to profile circulating tumor fractions. Integrating these insights promises to continually advance the precision oncology field, fostering better patient outcomes.
Asunto(s)
Biomarcadores de Tumor , Neoplasias , Medicina de Precisión , Humanos , Oncología Médica/métodos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Medicina de Precisión/métodos , Microambiente TumoralRESUMEN
Machine learning (ML) is increasingly used in clinical oncology to diagnose cancers, predict patient outcomes, and inform treatment planning. Here, we review recent applications of ML across the clinical oncology workflow. We review how these techniques are applied to medical imaging and to molecular data obtained from liquid and solid tumor biopsies for cancer diagnosis, prognosis, and treatment design. We discuss key considerations in developing ML for the distinct challenges posed by imaging and molecular data. Finally, we examine ML models approved for cancer-related patient usage by regulatory agencies and discuss approaches to improve the clinical usefulness of ML.
Asunto(s)
Aprendizaje Automático , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Diagnóstico por Imagen , Oncología MédicaRESUMEN
For decades, research into cancer biology focused on the involvement of protein-coding genes. Only recently was it discovered that an entire class of molecules, termed non-coding RNA (ncRNA), plays key regulatory roles in shaping cellular activity. An explosion of studies into ncRNA biology has since shown that they represent a diverse and prevalent group of RNAs, including both oncogenic molecules and those that work in a tumor suppressive manner. As a result, hundreds of cancer-focused clinical trials involving ncRNAs as novel biomarkers or therapies have begun and these are likely just the beginning.
Asunto(s)
Oncología Médica , ARN no Traducido/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Ensayos Clínicos como Asunto , Humanos , Neoplasias/genética , Oncogenes , ARN no Traducido/genéticaRESUMEN
The integration of proteomics into precision oncology presents opportunities that may transform the molecular analysis of cancer and accelerate basic and clinical cancer research. This Commentary discusses the importance of international collaboration and data sharing inspired by the Cancer Moonshot to accelerate the progress of multi-omic precision medicine-an approach that addresses the global diversity of people and of cancers.
Asunto(s)
Genómica/métodos , Oncología Médica/tendencias , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión/tendencias , Proteómica/métodos , Femenino , Genoma Humano , Salud Global , Humanos , Masculino , Oncología Médica/métodos , Mutación , Medicina de Precisión/métodos , Programa de VERF , Estados UnidosRESUMEN
Tumor-agnostic therapies represent a paradigm shift in oncology by altering the traditional means of characterizing tumors based on their origin or location. Instead, they zero in on specific genetic anomalies responsible for fueling malignant growth. The watershed moment for tumor-agnostic therapies arrived in 2017, with the US Food and Drug Administration's historic approval of pembrolizumab, an immune checkpoint inhibitor. This milestone marked the marriage of genomics and immunology fields, as an immunotherapeutic agent gained approval based on genomic biomarkers, specifically, microsatellite instability-high or mismatch repair deficiency (dMMR). Subsequently, the approval of NTRK inhibitors, designed to combat NTRK gene fusions prevalent in various tumor types, including pediatric cancers and adult solid tumors, further underscored the potential of tumor-agnostic therapies. The US Food and Drug Administration approvals of targeted therapies (BRAF V600E, RET fusion), immunotherapies (tumor mutational burden ≥10 mutations per megabase, dMMR) and an antibody-drug conjugate (Her2-positive-immunohistochemistry 3+ expression) with pan-cancer efficacy have continued, offering newfound hope to patients grappling with advanced solid tumors that harbor particular biomarkers. In this comprehensive review, the authors delve into the expansive landscape of tissue-agnostic targets and drugs, shedding light on the rationale underpinning this approach, the hurdles it faces, presently approved therapies, voices from the patient advocacy perspective, and the tantalizing prospects on the horizon. This is a welcome advance in oncology that transcends the boundaries of histology and location to provide personalized options.
Asunto(s)
Biomarcadores de Tumor , Neoplasias , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Biomarcadores de Tumor/genética , Terapia Molecular Dirigida/métodos , Inmunoterapia/métodos , Oncología Médica/métodos , Oncología Médica/tendenciasRESUMEN
Over the past several years, multifaceted advances in the management of cancer have led to a significant improvement in survival rates. Throughout patients' oncological journeys, they will likely receive one or more implantable devices for the administration of fluids and medications as well as management of various comorbidities and complications related to cancer therapy. Infections associated with these devices are frequent and complex, often necessitating device removal, increasing health care costs, negatively affecting quality of life, and complicating oncological care, usually leading to delays in further life-saving cancer therapy. Herein, the authors comprehensively review multiple evidence-based recommendations along with best practices, expert opinions, and novel approaches for the prevention of diverse device-related infections. The authors present many general principles for the prevention of these infections followed by specific device-related recommendations in a systematic manner. The continuous involvement and meaningful cooperation between regulatory entities, industry, specialty medical societies, hospitals, and infection control-targeted interventions, along with primary care and consulting health care providers, are all vital for the sustained reduction in the incidence of these preventable infections.
Asunto(s)
Neoplasias , Calidad de Vida , Humanos , Oncología Médica , Personal de SaludRESUMEN
Increased attention to the rehabilitation needs of children with cancer is vital to enhance health, quality-of-life, and productivity outcomes. Among adults with cancer, rehabilitation recommendations are frequently incorporated into guidelines, but the extent to which recommendations exist for children is unknown. Reports included in this systematic review are guideline or expert consensus reports containing recommendations related to rehabilitation referral, evaluation, and/or intervention for individuals diagnosed with cancer during childhood (younger than 18 years). Eligible reports were published in English from January 2000 to August 2022. Through database searches, 42,982 records were identified; 62 records were identified through citation and website searching. Twenty-eight reports were included in the review: 18 guidelines and 10 expert consensus reports. Rehabilitation recommendations were identified in disease-specific (e.g., acute lymphoblastic leukemia), impairment-specific (e.g., fatigue, neurocognition, pain), adolescent and young adult, and long-term follow-up reports. Example recommendations included physical activity and energy-conservation techniques to address fatigue, referral to physical therapy for chronic pain management, ongoing psychosocial surveillance, and referral to speech-language pathology for those with hearing loss. High-level evidence supported rehabilitation recommendations for long-term follow-up care, fatigue, and psychosocial/mental health screening. Few intervention recommendations were included in guideline and consensus reports. In this developing field, it is critical to include pediatric oncology rehabilitation providers in guideline and consensus development initiatives. This review enhances the availability and clarity of rehabilitation-relevant guidelines that can help prevent and mitigate cancer-related disability among children by supporting access to rehabilitation services.
Asunto(s)
Ejercicio Físico , Neoplasias , Adolescente , Humanos , Niño , Consenso , Atención a la Salud , Oncología MédicaRESUMEN
A quintessential setting for precision medicine, theranostics refers to a rapidly evolving field of medicine in which disease is diagnosed followed by treatment of disease-positive patients using tools for the therapy identical or similar to those used for the diagnosis. Against the backdrop of only-treat-when-visualized, the goal is a high therapeutic index with efficacy markedly surpassing toxicity. Oncology leads the way in theranostics innovation, where the approach has become possible with the identification of unique proteins and other factors selectively expressed in cancer versus healthy tissue, advances in imaging technology able to report these tissue factors, and major understanding of targeting chemicals and nanodevices together with methods to attach labels or warheads for imaging and therapy. Radiotheranostics-using radiopharmaceuticals-is becoming routine in patients with prostate cancer and neuroendocrine tumors who express the proteins PSMA (prostate-specific membrane antigen) and SSTR2 (somatostatin receptor 2), respectively, on their cancer. The palpable excitement in the field stems from the finding that a proportion of patients with large metastatic burden show complete and partial responses, and this outcome is catalyzing the search for more radiotheranostics approaches. Not every patient will benefit from radiotheranostics; but, for those who cross the target-detected line, the likelihood of response is very high.
Asunto(s)
Tumores Neuroendocrinos , Neoplasias de la Próstata , Masculino , Humanos , Medicina de Precisión , Radiofármacos/uso terapéutico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Oncología MédicaRESUMEN
The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging-particularly when combined with liquid biopsy for screening purposes-promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.
Asunto(s)
Oncología Médica , Imagen Molecular , Animales , Humanos , Imagen por Resonancia Magnética , Imagen Molecular/métodos , Tomografía de Emisión de PositronesRESUMEN
Approximately one-half of individuals with cancer face personal economic burdens associated with the disease and its treatment, a problem known as financial toxicity (FT). FT more frequently affects socioeconomically vulnerable individuals and leads to subsequent adverse economic and health outcomes. Whereas multilevel systemic factors at the policy, payer, and provider levels drive FT, there are also accompanying intervenable patient-level factors that exacerbate FT in the setting of clinical care delivery. The primary strategy to intervene on FT at the patient level is financial navigation. Financial navigation uses comprehensive assessment of patients' risk factors for FT, guidance toward support resources, and referrals to assist patient financial needs during cancer care. Social workers or nurse navigators most frequently lead financial navigation. Oncologists and clinical provider teams are multidisciplinary partners who can support optimal FT management in the context of their clinical roles. Oncologists and clinical provider teams can proactively assess patient concerns about the financial hardship and employment effects of disease and treatment. They can respond by streamlining clinical treatment and care delivery planning and incorporating FT concerns into comprehensive goals of care discussions and coordinated symptom and psychosocial care. By understanding how age and life stage, socioeconomic, and cultural factors modify FT trajectory, oncologists and multidisciplinary health care teams can be engaged and informative in patient-centered, tailored FT management. The case presentations in this report provide a practical context to summarize authors' recommendations for patient-level FT management, supported by a review of key supporting evidence and a discussion of challenges to mitigating FT in oncology care. CA Cancer J Clin. 2022;72:437-453.
Asunto(s)
Neoplasias , Oncólogos , Estrés Financiero , Humanos , Oncología Médica , Neoplasias/psicologíaRESUMEN
Generating evidence on the use, effectiveness, and safety of new cancer therapies is a priority for researchers, health care providers, payers, and regulators given the rapid pace of change in cancer diagnosis and treatments. The use of real-world data (RWD) is integral to understanding the utilization patterns and outcomes of these new treatments among patients with cancer who are treated in clinical practice and community settings. An initial step in the use of RWD is careful study design to assess the suitability of an RWD source. This pivotal process can be guided by using a conceptual model that encourages predesign conceptualization. The primary types of RWD included are electronic health records, administrative claims data, cancer registries, and specialty data providers and networks. Careful consideration of each data type is necessary because they are collected for a specific purpose, capturing a set of data elements within a certain population for that purpose, and they vary by population coverage and longitudinality. In this review, the authors provide a high-level assessment of the strengths and limitations of each data category to inform data source selection appropriate to the study question. Overall, the development and accessibility of RWD sources for cancer research are rapidly increasing, and the use of these data requires careful consideration of composition and utility to assess important questions in understanding the use and effectiveness of new therapies.
Asunto(s)
Almacenamiento y Recuperación de la Información , Oncología Médica , Registros Electrónicos de Salud , Humanos , Sistema de Registros , Proyectos de InvestigaciónRESUMEN
Patients with advanced cancer generate 4 million visits annually to emergency departments (EDs) and other dedicated, high-acuity oncology urgent care centers. Because of both the increasing complexity of systemic treatments overall and the higher rates of active therapy in the geriatric population, many patients experiencing acute decompensations are frail and acutely ill. This article comprehensively reviews the spectrum of oncologic emergencies and urgencies typically encountered in acute care settings. Presentation, underlying etiology, and up-to-date clinical pathways are discussed. Criteria for either a safe discharge to home or a transition of care to the inpatient oncology hospitalist team are emphasized. This review extends beyond familiar conditions such as febrile neutropenia, hypercalcemia, tumor lysis syndrome, malignant spinal cord compression, mechanical bowel obstruction, and breakthrough pain crises to include a broader spectrum of topics encompassing the syndrome of inappropriate antidiuretic hormone secretion, venous thromboembolism and malignant effusions, as well as chemotherapy-induced mucositis, cardiomyopathy, nausea, vomiting, and diarrhea. Emergent and urgent complications associated with targeted therapeutics, including small molecules, naked and drug-conjugated monoclonal antibodies, as well as immune checkpoint inhibitors and chimeric antigen receptor T-cells, are summarized. Finally, strategies for facilitating same-day direct admission to hospice from the ED are discussed. This article not only can serve as a point-of-care reference for the ED physician but also can assist outpatient oncologists as well as inpatient hospitalists in coordinating care around the ED visit.
Asunto(s)
Hipercalcemia , Neoplasias , Anciano , Humanos , Urgencias Médicas , Oncología Médica , Neoplasias/complicaciones , Neoplasias/terapia , Náusea , Hipercalcemia/etiologíaRESUMEN
The integration of genomic data into personalized treatment planning has revolutionized oncology care. Despite this, patients with cancer remain vulnerable to high rates of adverse drug events and medication inefficacy, affecting prognosis and quality of life. Pharmacogenomics is a field seeking to identify germline genetic variants that contribute to an individual's unique drug response. Although there is widespread integration of genomic information in oncology, somatic platforms, rather than germline biomarkers, have dominated the attention of cancer providers. Patients with cancer potentially stand to benefit from improved integration of both somatic and germline genomic information, especially because the latter may complement treatment planning by informing toxicity risk for drugs with treatment-limiting tolerabilities and narrow therapeutic indices. Although certain germline pharmacogenes, such as TPMT, UGT1A1, and DPYD, have been recognized for decades, recent attention has illuminated modern potential dosing implications for a whole new set of anticancer agents, including targeted therapies and antibody-drug conjugates, as well as the discovery of additional genetic variants and newly relevant pharmacogenes. Some of this information has risen to the level of directing clinical action, with US Food and Drug Administration label guidance and recommendations by international societies and governing bodies. This review is focused on key new pharmacogenomic evidence and oncology-specific dosing recommendations. Personalized oncology care through integrated pharmacogenomics represents a unique multidisciplinary collaboration between oncologists, laboratory science, bioinformatics, pharmacists, clinical pharmacologists, and genetic counselors, among others. The authors posit that expanded consideration of germline genetic information can further transform the safe and effective practice of oncology in 2022 and beyond.
Asunto(s)
Neoplasias , Farmacogenética , Células Germinativas , Humanos , Oncología Médica , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Calidad de VidaRESUMEN
Leanne Li tells us about the research in her recently established group at the Francis Crick Institute in London, her search for a multidisciplinary institute, and how her own varied background came together to study the emerging field of cancer neuroscience. She shares advice for applying, her experience of remote hiring, and how diversity, both academically and culturally, stimulates creativity.
Asunto(s)
Investigación Biomédica/historia , Selección de Profesión , Liderazgo , Oncología Médica/historia , Neoplasias/historia , Neurociencias/historia , Diversidad Cultural , Historia del Siglo XXI , Humanos , Neoplasias/patología , Selección de Personal/historia , Lugar de Trabajo/historiaRESUMEN
Christina Towers discusses her search for a collaborative institute and why she chose the Salk, San Diego, to establish her lab studying autophagy in cancer. She shares her advice for applying, the importance of identifying what you want, tackling the perceived requirement for geographic mobility, and her hope to hire people who share her curiosity and love of asking questions.
Asunto(s)
Investigación Biomédica/historia , Selección de Profesión , Oncología Médica/historia , Neoplasias/historia , Autofagia , Historia del Siglo XXI , Humanos , Liderazgo , Mentores/historia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Selección de PersonalRESUMEN
We talk to Sigourney Bell and Henry J. Henderson about what motivated them to found Black in Cancer, the importance of community and representation, as well as the resources the organization provides, future directions, and how we and our readers can provide support.
Asunto(s)
Investigación Biomédica/historia , Población Negra/historia , Oncología Médica/historia , Neoplasias/historia , Disparidades en el Estado de Salud , Disparidades en Atención de Salud/etnología , Disparidades en Atención de Salud/historia , Historia del Siglo XXI , Humanos , Neoplasias/diagnóstico , Neoplasias/etnología , Factores Raciales , Racismo/etnología , Racismo/historiaRESUMEN
Cancer has myriad effects on metabolism that include both rewiring of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment, and changes in normal tissue metabolism. With the recognition that fluorodeoxyglucose-positron emission tomography imaging is an important tool for the management of many cancers, other metabolites in biological samples have been in the spotlight for cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecule metabolites that like other -omics technologies can provide critical information about the cancer state that are otherwise not apparent. Here, the authors review how cancer and cancer therapies interact with metabolism at the cellular and systemic levels. An overview of metabolomics is provided with a focus on currently available technologies and how they have been applied in the clinical and translational research setting. The authors also discuss how metabolomics could be further leveraged in the future to improve the management of patients with cancer.
Asunto(s)
Metabolómica , Neoplasias/metabolismo , Investigación Biomédica , Humanos , Oncología Médica , Terapia Molecular Dirigida , Neoplasias/terapiaRESUMEN
Cancer is a disease of aging and, as the world's population ages, the number of older persons with cancer is increasing and will make up a growing share of the oncology population in virtually every country. Despite this, older patients remain vastly underrepresented in research that sets the standards for cancer treatments. Consequently, most of what we know about cancer therapeutics is based on clinical trials conducted in younger, healthier patients, and effective strategies to improve clinical trial participation of older adults with cancer remain sparse. For this systematic review, the authors evaluated published studies regarding barriers to participation and interventions to improve participation of older adults in cancer trials. The quality of the available evidence was low and, despite a literature describing multifaceted barriers, only one intervention study aimed to increase enrollment of older adults in trials. The findings starkly amplify the paucity of evidence-based, effective strategies to improve participation of this underrepresented population in cancer trials. Within these limitations, the authors provide their opinion on how the current cancer research infrastructure must be modified to accommodate the needs of older patients. Several underused solutions are offered to expand clinical trials to include older adults with cancer. However, as currently constructed, these recommendations alone will not solve the evidence gap in geriatric oncology, and efforts are needed to meet older and frail adults where they are by expanding clinical trials designed specifically for this population and leveraging real-world data.