RESUMEN
There is a need to develop effective therapies for pancreatic ductal adenocarcinoma (PDA), a highly lethal malignancy with increasing incidence1 and poor prognosis2. Although targeting tumour metabolism has been the focus of intense investigation for more than a decade, tumour metabolic plasticity and high risk of toxicity have limited this anticancer strategy3,4. Here we use genetic and pharmacological approaches in human and mouse in vitro and in vivo models to show that PDA has a distinct dependence on de novo ornithine synthesis from glutamine. We find that this process, which is mediated through ornithine aminotransferase (OAT), supports polyamine synthesis and is required for tumour growth. This directional OAT activity is usually largely restricted to infancy and contrasts with the reliance of most adult normal tissues and other cancer types on arginine-derived ornithine for polyamine synthesis5,6. This dependency associates with arginine depletion in the PDA tumour microenvironment and is driven by mutant KRAS. Activated KRAS induces the expression of OAT and polyamine synthesis enzymes, leading to alterations in the transcriptome and open chromatin landscape in PDA tumour cells. The distinct dependence of PDA, but not normal tissue, on OAT-mediated de novo ornithine synthesis provides an attractive therapeutic window for treating patients with pancreatic cancer with minimal toxicity.
Asunto(s)
Ornitina-Oxo-Ácido Transaminasa , Neoplasias Pancreáticas , Poliaminas , Animales , Humanos , Ratones , Arginina/deficiencia , Arginina/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Ornitina/biosíntesis , Ornitina/metabolismo , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poliaminas/metabolismo , Microambiente TumoralRESUMEN
Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Interferón Tipo I/inmunología , Hígado/metabolismo , Virus de la Coriomeningitis Linfocítica/inmunología , Receptor de Interferón alfa y beta/metabolismo , Animales , Arginina/sangre , Línea Celular , Chlorocebus aethiops , Cricetinae , Femenino , Hepatocitos/metabolismo , Hígado/inmunología , Hígado/virología , Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ornitina/sangre , Ornitina Carbamoiltransferasa/genética , Transducción de Señal/inmunología , Urea/metabolismo , Células VeroRESUMEN
The mammalian immune system uses various pattern recognition receptors to recognize invaders and host damage and transmits this information to downstream immunometabolic signalling outcomes. Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages and serves a central regulatory role in multiple inflammatory diseases such as inflammatory bowel diseases, arthritis and clearance of microbial infection1-4. However, the biochemical roles required for LACC1 functions remain largely undefined. Here we elucidated a shared biochemical function of LACC1 in mice and humans, converting L-citrulline to L-ornithine (L-Orn) and isocyanic acid and serving as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism. We validated the genetic and mechanistic connections among NOS2, LACC1 and ornithine decarboxylase 1 (ODC1) in mouse models and bone marrow-derived macrophages infected by Salmonella enterica Typhimurium. Strikingly, LACC1 phenotypes required upstream NOS2 and downstream ODC1, and Lacc1-/- chemical complementation with its product L-Orn significantly restored wild-type activities. Our findings illuminate a previously unidentified pathway in inflammatory macrophages, explain why its deficiency may contribute to human inflammatory diseases and suggest that L-Orn could serve as a nutraceutical to ameliorate LACC1-associated immunological dysfunctions such as arthritis or inflammatory bowel disease.
Asunto(s)
Inflamación , Péptidos y Proteínas de Señalización Intracelular , Macrófagos , Óxido Nítrico Sintasa de Tipo II , Animales , Artritis/inmunología , Artritis/metabolismo , Citrulina/metabolismo , Cianatos/metabolismo , Humanos , Inflamación/enzimología , Inflamación/inmunología , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ornitina/metabolismo , Ornitina Descarboxilasa/metabolismo , Poliaminas/metabolismo , Salmonella typhimurium/inmunologíaRESUMEN
Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.
Asunto(s)
Clostridioides difficile , Enterococcus , Interacciones Microbianas , Animales , Humanos , Ratones , Antibacterianos/farmacología , Arginina/deficiencia , Arginina/metabolismo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidad , Clostridioides difficile/fisiología , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Enterococcus/efectos de los fármacos , Enterococcus/metabolismo , Enterococcus/patogenicidad , Enterococcus/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Intestinos/microbiología , Leucina/metabolismo , Ornitina/metabolismo , Virulencia , Susceptibilidad a EnfermedadesRESUMEN
All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.
Asunto(s)
Arginina , Ligasas , Arginina/metabolismo , Citrulina/metabolismo , Amoníaco , Ornitina/genética , Adenosina Trifosfato/metabolismo , Fosfatos , Adenosina , CatálisisRESUMEN
Biocatalytic C-H activation has the potential to merge enzymatic and synthetic strategies for bond formation. FeII/αKG-dependent halogenases are particularly distinguished for their ability both to control selective C-H activation as well as to direct group transfer of a bound anion along a reaction axis separate from oxygen rebound, enabling the development of new transformations. In this context, we elucidate the basis for the selectivity of enzymes that perform selective halogenation to yield 4-Cl-lysine (BesD), 5-Cl-lysine (HalB), and 4-Cl-ornithine (HalD), allowing us to probe how site-selectivity and chain length selectivity are achieved. We now report the crystal structure of the HalB and HalD, revealing the key role of the substrate-binding lid in positioning the substrate for C4 vs C5 chlorination and recognition of lysine vs ornithine. Targeted engineering of the substrate-binding lid further demonstrates that these selectivities can be altered or switched, showcasing the potential to develop halogenases for biocatalytic applications.
Asunto(s)
Aminoácidos , Lisina , Halogenación , OrnitinaRESUMEN
Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.
Asunto(s)
Diabetes Mellitus Tipo 2 , Productos Finales de Glicación Avanzada , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Animales , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Masculino , Persona de Mediana Edad , Femenino , Lisina/metabolismo , Ornitina/metabolismo , Ornitina/sangre , Ornitina/análogos & derivados , Aldehído Reductasa/metabolismo , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/sangre , Polímeros/química , Anciano , Ratones Noqueados , ImidazolesRESUMEN
Mono- and bi-allelic variants in ALDH18A1 cause a spectrum of human disorders associated with cutaneous and neurological findings that overlap with both cutis laxa and spastic paraplegia. ALDH18A1 encodes the bifunctional enzyme pyrroline-5-carboxylate synthetase (P5CS) that plays a role in the de novo biosynthesis of proline and ornithine. Here we characterize a previously unreported homozygous ALDH18A1 variant (p.Thr331Pro) in four affected probands from two unrelated families, and demonstrate broad-based alterations in amino acid and antioxidant metabolism. These four patients exhibit variable developmental delay, neurological deficits and loose skin. Functional characterization of the p.Thr331Pro variant demonstrated a lack of any impact on the steady-state level of the P5CS monomer or mitochondrial localization of the enzyme, but reduced incorporation of the monomer into P5CS oligomers. Using an unlabeled NMR-based metabolomics approach in patient fibroblasts and ALDH18A1-null human embryonic kidney cells expressing the variant P5CS, we identified reduced abundance of glutamate and several metabolites derived from glutamate, including proline and glutathione. Biosynthesis of the polyamine putrescine, derived from ornithine, was also decreased in patient fibroblasts, highlighting the functional consequence on another metabolic pathway involved in antioxidant responses in the cell. RNA sequencing of patient fibroblasts revealed transcript abundance changes in several metabolic and extracellular matrix-related genes, adding further insight into pathogenic processes associated with impaired P5CS function. Together these findings shed new light on amino acid and antioxidant pathways associated with ALDH18A1-related disorders, and underscore the value of metabolomic and transcriptomic profiling to discover new pathways that impact disease pathogenesis.
Asunto(s)
Aminoácidos , Cutis Laxo , Humanos , Antioxidantes , Prolina/metabolismo , Ácido Glutámico/metabolismo , Cutis Laxo/complicaciones , Cutis Laxo/genética , Cutis Laxo/patología , OrnitinaRESUMEN
Group 3 innate lymphoid cells (ILC3s) are RORγT+ lymphocytes that are predominately enriched in mucosal tissues and produce IL-22 and IL-17A. They are the innate counterparts of Th17 cells. While Th17 lymphocytes utilize unique metabolic pathways in their differentiation program, it is unknown whether ILC3s make similar metabolic adaptations. We employed single-cell RNA sequencing and metabolomic profiling of intestinal ILC subsets to identify an enrichment of polyamine biosynthesis in ILC3s, converging on the rate-limiting enzyme ornithine decarboxylase (ODC1). In vitro and in vivo studies demonstrated that exogenous supplementation with the polyamine putrescine or its biosynthetic substrate, ornithine, enhanced ILC3 production of IL-22. Conditional deletion of ODC1 in ILC3s impaired mouse antibacterial defense against Citrobacter rodentium infection, which was associated with a decrease in anti-microbial peptide production by the intestinal epithelium. Furthermore, in a model of anti-CD40 colitis, deficiency of ODC1 in ILC3s markedly reduced the production of IL-22 and severity of inflammatory colitis. We conclude that ILC3-intrinsic polyamine biosynthesis facilitates efficient defense against enteric pathogens as well as exacerbates autoimmune colitis, thus representing an attractive target to modulate ILC3 function in intestinal disease.
Asunto(s)
Colitis , Infecciones por Enterobacteriaceae , Ratones , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Interleucina-17 , Ornitina Descarboxilasa/genética , Inmunidad Innata , Putrescina , Colitis/genética , Infecciones por Enterobacteriaceae/genética , Células Th17/metabolismo , Ornitina , Antibacterianos , Interleucina-22RESUMEN
The Gram-positive bacterium Bacillus subtilis can utilize several proteinogenic and non-proteinogenic amino acids as sources of carbon, nitrogen, and energy. The utilization of the amino acids arginine, citrulline, and ornithine is catalyzed by enzymes encoded in the rocABC and rocDEF operons and by the rocG gene. The expression of these genes is controlled by the alternative sigma factor SigL. RNA polymerase associated with this sigma factor depends on ATP-hydrolyzing transcription activators to initiate transcription. The RocR protein acts as a transcription activator for the roc genes. However, the details of amino acid metabolism via this pathway are unknown. Here, we investigated the contributions of all enzymes of the Roc pathway to the degradation of arginine, citrulline, and ornithine. We identified the previously uncharacterized RocB protein as responsible for the conversion of citrulline to ornithine. In vitro assays with the purified enzyme suggest that RocB acts as a manganese-dependent N-carbamoyl-L-ornithine hydrolase that cleaves citrulline to form ornithine and carbamate. Moreover, the molecular effector that triggers transcription activation by RocR has not been unequivocally identified. Using a combination of transcription reporter assays and biochemical experiments, we demonstrate that ornithine is the molecular inducer of RocR activity. Taken together, our work suggests that binding of ATP to RocR triggers its hexamerization, and binding of ornithine then allows ATP hydrolysis and activation of roc gene transcription. Thus, ornithine is the central molecule of the roc degradative pathway as it is the common intermediate of arginine and citrulline degradation and the molecular effector of RocR.
Asunto(s)
Arginina , Bacillus subtilis , Ornitina , Factor sigma , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrulina/metabolismo , Ornitina/metabolismo , Factor sigma/metabolismo , Factores de Transcripción/metabolismoRESUMEN
S-adenosylmethionine decarboxylase (AdoMetDC/SpeD) is a key polyamine biosynthetic enzyme required for conversion of putrescine to spermidine. Autocatalytic self-processing of the AdoMetDC/SpeD proenzyme generates a pyruvoyl cofactor from an internal serine. Recently, we discovered that diverse bacteriophages encode AdoMetDC/SpeD homologs that lack AdoMetDC activity and instead decarboxylate L-ornithine or L-arginine. We reasoned that neofunctionalized AdoMetDC/SpeD homologs were unlikely to have emerged in bacteriophages and were probably acquired from ancestral bacterial hosts. To test this hypothesis, we sought to identify candidate AdoMetDC/SpeD homologs encoding L-ornithine and L-arginine decarboxylases in bacteria and archaea. We searched for the anomalous presence of AdoMetDC/SpeD homologs in the absence of its obligatory partner enzyme spermidine synthase, or the presence of two AdoMetDC/SpeD homologs encoded in the same genome. Biochemical characterization of candidate neofunctionalized genes confirmed lack of AdoMetDC activity, and functional presence of L-ornithine or L-arginine decarboxylase activity in proteins from phyla Actinomycetota, Armatimonadota, Planctomycetota, Melainabacteria, Perigrinibacteria, Atribacteria, Chloroflexota, Sumerlaeota, Omnitrophota, Lentisphaerota, and Euryarchaeota, the bacterial candidate phyla radiation and DPANN archaea, and the δ-Proteobacteria class. Phylogenetic analysis indicated that L-arginine decarboxylases emerged at least three times from AdoMetDC/SpeD, whereas L-ornithine decarboxylases arose only once, potentially from the AdoMetDC/SpeD-derived L-arginine decarboxylases, revealing unsuspected polyamine metabolic plasticity. Horizontal transfer of the neofunctionalized genes appears to be the more prevalent mode of dissemination. We identified fusion proteins of bona fide AdoMetDC/SpeD with homologous L-ornithine decarboxylases that possess two, unprecedented internal protein-derived pyruvoyl cofactors. These fusion proteins suggest a plausible model for the evolution of the eukaryotic AdoMetDC.
Asunto(s)
Adenosilmetionina Descarboxilasa , Carboxiliasas , Adenosilmetionina Descarboxilasa/genética , Adenosilmetionina Descarboxilasa/metabolismo , Archaea/genética , Archaea/metabolismo , Ornitina , Filogenia , Carboxiliasas/genética , Carboxiliasas/metabolismo , Poliaminas/metabolismo , Bacterias/metabolismo , Ornitina Descarboxilasa/metabolismo , Arginina/genéticaRESUMEN
Cold stress is a major factor limiting the production and geographical distribution of rice (Oryza sativa) varieties. However, the molecular mechanisms underlying cold tolerance remain to be elucidated. Here, we report that ornithine δ-aminotransferase (OsOAT) contributes to cold tolerance during the vegetative and reproductive development of rice. osoat mutant was identified as a temperature-sensitive male sterile mutant with deformed floral organs and seedlings sensitive to cold stress. Comparative transcriptome analysis showed that OsOAT mutation and cold treatment of the wild-type plant led to similar changes in the global gene expression profiles in anthers. OsOAT genes in indica rice Huanghuazhan (HHZ) and japonica rice Wuyungeng (WYG) are different in gene structure and response to cold. OsOAT is cold-inducible in WYG but cold-irresponsive in HHZ. Further studies showed that indica varieties carry both WYG-type and HHZ-type OsOAT, whereas japonica varieties mostly carry WYG-type OsOAT. Cultivars carrying HHZ-type OsOAT are mainly distributed in low-latitude regions, whereas varieties carrying WYG-type OsOAT are distributed in both low- and high-latitude regions. Moreover, indica varieties carrying WYG-type OsOAT generally have higher seed-setting rates than those carrying HHZ-type OsOAT under cold stress at reproductive stage, highlighting the favorable selection for WYG-type OsOAT during domestication and breeding to cope with low temperatures.
Asunto(s)
Oryza , Oryza/metabolismo , Fitomejoramiento , Desarrollo de la Planta , Transaminasas/metabolismo , Fertilidad/genética , Ornitina/metabolismo , FríoRESUMEN
Polyamines such as spermidine and spermine are essential regulators of cell growth, differentiation, maintenance of ion balance and abiotic stress tolerance. Their levels are controlled by the spermidine/spermine N1 -acetyltransferase (SSAT) via acetylation to promote either their degradation or export outside the cell as shown in mammals. Plant genomes contain at least one gene coding for SSAT (also named NATA for N-AcetylTransferase Activity). Combining kinetics, HPLC-MS and crystallography, we show that three plant SSATs, one from the lower plant moss Physcomitrium patens and two from the higher plant Zea mays, acetylate various aliphatic polyamines and two amino acids lysine (Lys) and ornithine (Orn). Thus, plant SSATs exhibit a broad substrate specificity, unlike more specific human SSATs (hSSATs) as hSSAT1 targets polyamines, whereas hSSAT2 acetylates Lys and thiaLys. The crystal structures of two PpSSAT ternary complexes, one with Lys and CoA, the other with acetyl-CoA and polyethylene glycol (mimicking spermine), reveal a different binding mode for polyamine versus amino acid substrates accompanied by structural rearrangements of both the coenzyme and the enzyme. Two arginine residues, unique among plant SSATs, hold the carboxyl group of amino acid substrates. The most abundant acetylated compound accumulated in moss was N6 -acetyl-Lys, whereas N5 -acetyl-Orn, known to be toxic for aphids, was found in maize. Both plant species contain very low levels of acetylated polyamines. The present study provides a detailed biochemical and structural basis of plant SSAT enzymes that can acetylate a wide range of substrates and likely play various roles in planta.
Asunto(s)
Poliaminas , Espermidina , Animales , Humanos , Poliaminas/metabolismo , Espermina/metabolismo , Zea mays/metabolismo , Lisina/metabolismo , Ornitina/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Catálisis , Mamíferos/metabolismoRESUMEN
PylB is a radical S-adenosyl-l-methionine (SAM) enzyme predicted to convert l-lysine into (3R)-3-methyl-d-ornithine, a precursor in the biosynthesis of the 22nd proteogenic amino acid pyrrolysine. This protein highly resembles that of the radical SAM tyrosine and tryptophan lyases, which activate their substrate by abstracting a H atom from the amino-nitrogen position. Here, combining in vitro assays, analytical methods, electron paramagnetic resonance spectroscopy, and theoretical methods, we demonstrated that instead, PylB activates its substrate by abstracting a H atom from the Cγ position of l-lysine to afford the radical-based ß-scission. Strikingly, we also showed that PylB catalyzes the reverse reaction, converting (3R)-3-methyl-d-ornithine into l-lysine and using catalytic amounts of the 5'-deoxyadenosyl radical. Finally, we identified significant in vitro production of 5'-thioadenosine, an unexpected shunt product that we propose to result from the quenching of the 5'-deoxyadenosyl radical species by the nearby [Fe4S4] cluster.
Asunto(s)
Metionina , Ornitina/análogos & derivados , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Lisina , Racemetionina , Espectroscopía de Resonancia por Spin del ElectrónRESUMEN
Advanced glycation end-products (AGEs), formed endogenously or obtained exogenously from diet, may contribute to chronic inflammation, intracellular signaling alterations, and pathogenesis of several chronic diseases including colorectal cancer (CRC). However, the role of AGEs in CRC survival is less known. The associations of pre-diagnostic circulating AGEs and their soluble receptor (sRAGE) with CRC-specific and overall mortality were estimated using multivariable-adjusted Cox proportional hazards regression among 1369 CRC cases in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Concentrations of major plasma AGEs, Nε-[carboxy-methyl]lysine (CML), Nε-[carboxy-ethyl]lysine (CEL) and Nδ-[5-hydro-5-methyl-4-imidazolon-2-yl]-ornithine (MG-H1), were measured using ultra-performance liquid chromatography mass-spectrometry. sRAGE was assessed by enzyme-linked immunosorbent assay. Over a mean follow-up period of 96 months, 693 deaths occurred of which 541 were due to CRC. Individual and combined AGEs were not statistically significantly associated with CRC-specific or overall mortality. However, there was a possible interaction by sex for CEL (Pinteraction = .05). Participants with higher sRAGE had a higher risk of dying from CRC (HRQ5vs.Q1 = 1.67, 95% CI: 1.21-2.30, Ptrend = .02) or any cause (HRQ5vs.Q1 = 1.38, 95% CI: 1.05-1.83, Ptrend = .09). These associations tended to be stronger among cases with diabetes (Pinteraction = .03) and pre-diabetes (Pinteraction <.01) before CRC diagnosis. Pre-diagnostic AGEs were not associated with CRC-specific and overall mortality in individuals with CRC. However, a positive association was observed for sRAGE. Our findings may stimulate further research on the role of AGEs and sRAGE in survival among cancer patients with special emphasis on potential effect modifications by sex and diabetes.
Asunto(s)
Neoplasias Colorrectales , Productos Finales de Glicación Avanzada , Receptor para Productos Finales de Glicación Avanzada , Humanos , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/diagnóstico , Masculino , Femenino , Productos Finales de Glicación Avanzada/sangre , Persona de Mediana Edad , Receptor para Productos Finales de Glicación Avanzada/sangre , Anciano , Estudios Prospectivos , Lisina/sangre , Lisina/análogos & derivados , Ornitina/sangre , Ornitina/análogos & derivados , Modelos de Riesgos Proporcionales , Biomarcadores de Tumor/sangre , ImidazolesRESUMEN
BACKGROUND: L-arginase, is a powerful anticancer that hydrolyzes L-arginine to L-ornithine and urea. This enzyme is widely distributed and expressed in organisms like plants, fungi, however very scarce from bacteria. Our study is based on isolating, purifying, and screening the marine bacteria that can produce arginase. RESULTS: The highest arginase producing bacteria will be identified by using microbiological and molecular biology methods as Bacillus licheniformis OF2. Characterization of arginase is the objective of this study. The activity of enzyme was screened, and estimated beside partial sequencing of arginase gene was analyzed. In silico homology modeling was applied to generate the protein's 3D structure, and COACH and COFACTOR were applied to determine the protein's binding sites and biological annotations based on the I-TASSER structure prediction. The purified enzyme was undergone an in vitro anticancer test. CONCLUSIONS: L-arginase demonstrated more strong anti-cancer cells with an IC50 of 21.4 ug/ml in a dose-dependent manner. L-arginase underwent another investigation for its impact on the caspase 7 and BCL2 family of proteins (BCL2, Bax, and Bax/Bcl2). Through cell arrest in the G1/S phase, L-arginase signals the apoptotic cascade, which is supported by a flow cytometry analysis of cell cycle phases.
Asunto(s)
Arginasa , Bacillus licheniformis , Arginasa/genética , Arginasa/metabolismo , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Proteína X Asociada a bcl-2/genética , Arginina/metabolismo , Ornitina/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2RESUMEN
BACKGROUND: Hemolysis is a cardinal feature of hemolytic uremic syndrome (HUS) and during hemolysis excess arginase 1 is released from red blood cells. Increased arginase activity leads to reduced L-arginine, as it is converted to urea and L-ornithine, and thereby reduced nitric oxide bioavailability, with secondary vascular injury. The objective of this study was to investigate arginase release in HUS patients and laboratory models and correlate arginase levels to hemolysis and kidney injury. METHODS: Two separate cohorts of patients (n = 47 in total) with HUS associated with Shiga toxin-producing enterohemorrhagic E. coli (EHEC) and pediatric controls (n = 35) were investigated. Two mouse models were used, in which mice were either challenged intragastrically with E. coli O157:H7 or injected intraperitoneally with Shiga toxin 2. An in vitro model of thrombotic microangiopathy was developed in which Shiga toxin 2- and E. coli O157 lipopolysaccharide-stimulated human blood cells combined with ADAMTS13-deficient plasma were perfused over glomerular endothelial cells. Two group statistical comparisons were performed using the Mann-Whitney test, multiple groups were compared using the Kruskal-Wallis test followed by Dunn's procedure, the Wilcoxon signed rank test was used for paired data, or linear regression for continuous variables. RESULTS: HUS patients had excessively high plasma arginase 1 levels and activity (conversion of L-arginine to urea and L-ornithine) during the acute phase, compared to remission and controls. Arginase 1 levels correlated with lactate dehydrogenase activity, indicating hemolysis, as well as the need for dialysis treatment. Patients also exhibited high levels of plasma alpha-1-microglobulin, a heme scavenger. Both mouse models exhibited significantly elevated plasma arginase 1 levels and activity. Plasma arginase 1 levels correlated with lactate dehydrogenase activity, alpha-1-microglobulin and urea levels, the latter indicative of kidney dysfunction. In the in vitro model of thrombotic microangiopathy, bioactive arginase 1 was released and levels correlated to the degree of hemolysis. CONCLUSIONS: Elevated red blood cell-derived arginase was demonstrated in HUS patients and in relevant in vivo and in vitro models. The excessively high arginase levels correlated to the degree of hemolysis and kidney dysfunction. Thus, arginase inhibition should be investigated in HUS.
Asunto(s)
Infecciones por Escherichia coli , Escherichia coli O157 , Síndrome Hemolítico-Urémico , Insuficiencia Renal , Microangiopatías Trombóticas , Humanos , Niño , Animales , Ratones , Toxina Shiga II , Células Endoteliales , Hemólisis , Arginasa , Síndrome Hemolítico-Urémico/complicaciones , Síndrome Hemolítico-Urémico/terapia , Eritrocitos , Microangiopatías Trombóticas/complicaciones , Urea , Arginina , Ornitina , Lactato Deshidrogenasas , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/terapiaRESUMEN
Gyrate atrophy of the choroid and retina (GACR) is caused by pathogenic biallelic variants in the gene encoding ornithine-δ-aminotransferase (OAT), and is characterized by progressive vision loss leading to blindness. OAT is a pyridoxal-5'-phosphate (PLP) dependent enzyme that is mainly involved in ornithine catabolism, and patients with a deficiency develop profound hyperornithinemia. Therapy is aimed at lowering ornithine levels through dietary arginine restriction and, in some cases, through enhancement of OAT activity via supraphysiological dosages of pyridoxine. In this study, we aimed to extend diagnostic practices in GACR by extensively characterizing the consequences of pathogenic variants on the enzymatic function of OAT, both at the level of the enzyme itself as well as the flux through the ornithine degradative pathway. In addition, we developed an in vitro pyridoxine responsiveness assay. We identified 14 different pathogenic variants, of which one variant was present in all patients of Dutch ancestry (p.(Gly353Asp)). In most patients the enzymatic activity of OAT as well as the rate of [14C]-ornithine flux was below the limit of quantification (LOQ). Apart from our positive control, only one patient cell line showed responsiveness to pyridoxine in vitro, which is in line with the reported in vivo pyridoxine responsiveness in this patient. None of the patients harboring the p.(Gly353Asp) substitution were responsive to pyridoxine in vivo or in vitro. In silico analysis and small-scale expression experiments showed that this variant causes a folding defect, leading to increased aggregation properties that could not be rescued by PLP. Using these results, we developed a diagnostic pipeline for new patients suspected of having GACR. Adding OAT enzymatic analyses and in vitro pyridoxine responsiveness to diagnostic practices will not only increase knowledge on the consequences of pathogenic variants in OAT, but will also enable expectation management for therapeutic modalities, thus eventually improving clinical care.
Asunto(s)
Atrofia Girata , Ornitina-Oxo-Ácido Transaminasa , Piridoxina , Humanos , Piridoxina/metabolismo , Atrofia Girata/genética , Atrofia Girata/diagnóstico , Atrofia Girata/tratamiento farmacológico , Ornitina-Oxo-Ácido Transaminasa/genética , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Masculino , Femenino , Ornitina/metabolismo , Mutación , Fosfato de Piridoxal/metabolismo , NiñoRESUMEN
BACKGROUND: Despite improved glycemic treatment, the impact of glycation on pathological consequences may persist and contribute to adverse clinical outcomes in diabetes. In the present study we investigated the association between serum protein glycation products and progression of kidney disease as well as incident major adverse cardiovascular events (MACE) in type 1 diabetes. METHODS: Fructosamine, advanced glycation end products (AGEs), and methylglyoxal-modified hydro-imidazolone (MG-H1) were measured from baseline serum samples in the FinnDiane study (n = 575). Kidney disease progression was defined as steep eGFR decline (> 3 mL/min/1.73 m2/year) or progression of albuminuria (from lower to higher stage of albuminuria). MACE was defined as acute myocardial infarction, coronary revascularization, cerebrovascular event (stroke), and cardiovascular death. RESULTS: Fructosamine was independently associated with steep eGFR decline (OR 2.15 [95% CI 1.16-4.01], p = 0.016) in the fully adjusted model (age, sex, baseline eGFR). AGEs were associated with steep eGFR decline (OR 1.58 per 1 unit of SD [95% CI 1.07-2.32], p = 0.02), progression to end-stage kidney disease (ESKD) (HR 2.09 per 1 unit of SD [95% CI 1.43-3.05], p < 0.001), and pooled progression (to any stage of albuminuria) (HR 2.72 per 1 unit of SD [95% CI 2.04-3.62], p < 0.001). AGEs (HR 1.57 per 1 unit of SD [95% CI 1.23-2.00], p < 0.001) and MG-H1 (HR 4.99 [95% CI 0.98-25.55], p = 0.054) were associated with incident MACE. MG-H1 was also associated with pooled progression (HR 4.19 [95% CI 1.11-15.89], p = 0.035). Most AGEs and MG-H1 associations were no more significant after adjusting for baseline eGFR. CONCLUSIONS: Overall, these findings suggest that protein glycation products are an important risk factor for target organ damage in type 1 diabetes. The data provide further support to investigate a potential causal role of serum protein glycation in the progression of diabetes complications.
Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Progresión de la Enfermedad , Fructosamina , Tasa de Filtración Glomerular , Productos Finales de Glicación Avanzada , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Femenino , Masculino , Productos Finales de Glicación Avanzada/sangre , Persona de Mediana Edad , Factores de Riesgo , Adulto , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/epidemiología , Biomarcadores/sangre , Incidencia , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/sangre , Medición de Riesgo , Fructosamina/sangre , Riñón/fisiopatología , Factores de Tiempo , Albuminuria/diagnóstico , Albuminuria/epidemiología , Albuminuria/sangre , Pronóstico , Estudios Prospectivos , Imidazoles , Ornitina/análogos & derivadosRESUMEN
Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.