Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
Más filtros

Intervalo de año de publicación
1.
Zoolog Sci ; 41(1): 14-20, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38587513

RESUMEN

The Japanese spiny lobster Panulirus japonicus lives on rocky shores and is mainly distributed along the Pacific coast around Japan. Due to the high demand for it, the development of aquaculture systems and increasing its resource volume requires further expansive production. However, a major factor preventing the establishment of aquaculture technology for this lobster is the difficulty with rearing processes from larval to juvenile production. A recent study shed light on the molecular mechanisms underlying larval development from the perspective of physiological functions of endocrine factors such as molting hormones. However, physiological studies of P. japonicus are still lacking. In decapod crustaceans, the X-organ/sinus gland complex is a well-known endocrine system that secretes the crustacean hyperglycemic hormone (CHH)-superfamily peptides that regulate growth, molting, sexual maturation, reproduction, and change in body color. In this study, we identified two CHHs from the sinus glands of P. japonicus using reversed-phase high-performance liquid chromatography in order to elucidate their physiological function for the first time.


Asunto(s)
Proteínas de Artrópodos , Decápodos , Hormonas de Invertebrados , Proteínas del Tejido Nervioso , Palinuridae , Animales , Japón
2.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256143

RESUMEN

Cytochrome P450s (CYP450s) are a versatile superfamily of enzymes known to undergo rapid evolution. They have important roles across growth and development pathways in crustaceans, although it is difficult to characterise orthologs between species due to their sequence diversity. Conserved CYP450s enzymes in crustaceans are those associated with ecdysteroidogenesis: synthesising and breaking down the active moult hormone, 20-hydroxyecdysone. The complex life cycle of the ornate spiny lobster, Panulirus ornatus, relies on moulting in order to grow and develop. Many of these diverse life stages have been analysed to establish a comprehensive transcriptomic database for this species. The transcripts putatively encoding for CYP450s were mapped using transcriptomic analysis and identified across growth and development stages. With the aid of phylogeny, 28 transcripts of 42 putative P. ornatus CYP450s were annotated, including the well conserved Halloween genes, which are involved in ecdysteroidogenesis. Expression patterns across the life stages determined that only a subset of the CYP450s can be detected in each life stage or tissue. Four Shed transcripts show overlapping expression between metamorphosis and adult tissues, suggesting pleotropic functions of the multiple Shed orthologs within P. ornatus.


Asunto(s)
Palinuridae , Animales , Palinuridae/genética , Sistema Enzimático del Citocromo P-450/genética , Muda , Metamorfosis Biológica/genética , Bases de Datos Factuales
3.
Gen Comp Endocrinol ; 332: 114183, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36471526

RESUMEN

Neuropeptides are commonly produced in the neural tissues yet can have effects on far-reaching targets, with varied biological responses. We describe here the neuropeptidome of the ornate spiny lobster, Panulirus ornatus, a species of emerging importance to closed-system aquaculture, with a focus on peptide hormones produced by the reproductive tissues. Transcripts for a precursor to one neuropeptide, adipokinetic hormone/corazonin-related peptide (ACP) were identified in high numbers in the sperm duct of adult spiny lobsters suggesting a role for ACP in the reproduction of this species. Neuropeptide production in the sperm duct may be linked with physiological control of spermatophore production in the male, or alternatively may function in signalling to the female. The enzymes which process nascent neuropeptide precursors into their mature, active forms have seldom been studied in decapods, and never before at the multi-tissue level. We have identified transcripts for multiple members of the proprotein convertase subtisilin/kexin family in the ornate spiny lobster, with some enzymes showing specificity to certain tissues. In addition, other enzyme transcripts involved with neuropeptide processing are identified along with their tissue and life stage expression patterns.


Asunto(s)
Neuropéptidos , Palinuridae , Hormonas Peptídicas , Animales , Masculino , Femenino , Palinuridae/metabolismo , Hormonas Peptídicas/metabolismo , Semen/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo
4.
Vet Pathol ; 60(5): 618-623, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37042270

RESUMEN

A Caribbean spiny lobster, Panulirus argus, was submitted for necropsy after a number of species-specific fatalities in a public aquarium. The hemolymph was opaque and did not clot and the hepatopancreas had multiple foci of necrosis centered on gram-negative bacteria. Pure cultures of Vibrio harveyi were isolated, identified initially by matrix laser desorption ionization-time of flight mass spectrometry, and confirmed by multilocus sequencing of the gyrB, recA, rpoA, and pyrH genes. As Caribbean spiny lobsters continue to be used for consumption and displayed in public aquariums, chronicling potential pathogens is warranted to inform differential diagnoses and to develop management strategies to reduce incidence of infectious disease in captive populations.


Asunto(s)
Palinuridae , Animales , Hepatopáncreas , Región del Caribe , Hemolinfa
5.
Vet Pathol ; 60(5): 611-617, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37377061

RESUMEN

Panulirus argus virus 1 (PaV1) is the first and only naturally occurring pathogenic virus described in the Caribbean spiny lobster, Panulirus argus. PaV1 infection in decapod species that commonly co-occur with P. argus, including the spotted spiny lobster Panulirus guttatus, has not been previously described. In 2016, 14 Caribbean and 5 spotted spiny lobsters were collected near Summerland Key, Florida, to supplement the resident population of the Audubon Aquarium of the Americas in New Orleans, Louisiana. After 5 months in quarantine, Caribbean and spotted spiny lobsters began to exhibit clinical signs of lethargy and dying in the molt. Initial histologic evaluation revealed intranuclear inclusion bodies in circulating hemocytes in the spongy connective tissue of the epidermis, suggesting a viral infection. Samples of hepatopancreas and hemolymph from deceased Caribbean and spotted spiny lobsters tested negative for white spot syndrome virus and positive for PaV1 using real-time quantitative polymerase chain reaction (qPCR). Intranuclear, eosinophilic to amphophilic, Cowdry type A inclusion bodies observed primarily within fixed phagocytes and circulating hemocytes in the hepatopancreas of freshly euthanized Caribbean spiny lobsters were consistent with PaV1 infection. Transmission electron microscopy revealed that hemocytes associated with hepatopancreatic tubules contained viral inclusions with location, size, and morphology consistent with previously described PaV1 infection. These findings highlight the significance of using molecular diagnostics in conjunction with histopathology and electron microscopy in the investigation and diagnosis of PaV1 in spiny lobsters. Further study is required to investigate the relationship of PaV1-associated mortality events and microscopic lesions in the spotted spiny lobster.


Asunto(s)
Palinuridae , Animales , Región del Caribe , Hemolinfa , Hemocitos , Microscopía Electrónica de Transmisión/veterinaria
6.
J Acoust Soc Am ; 153(1): 529, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36732263

RESUMEN

Marine crustaceans produce broadband sounds that are useful for passive acoustic monitoring to support conservation and management efforts. However, the propagation characteristics and detection ranges of their signals are poorly known, limiting our leveraging of these sounds. Here, we used a four-hydrophone linear array to measure source levels (SLs) and sound propagation from Caribbean spiny lobsters (Panulirus argus) of a wide range of sizes within a natural, shallow water habitat (3.3 m depth). Source level in peak-peak (SLpp) varied with body size; larger individuals produced SLpp up to 166 dB re 1 µPa. However, transmission losses (TL) were similar across all sizes, with a global fitted TL of 12.1 dB. Correspondingly, calculated detection ranges varied with body size, ranging between 14 and 364 m for small and large individuals (respectively). This increased up to 1612 m for large spiny lobsters when considering lower ambient noise levels. Despite the potential ease of tank studies, our results highlight the importance of empirical in situ sound propagation studies for marine crustaceans. Given the important ecological and economic role of spiny lobsters, these data are a key step to supporting remote monitoring of this species for fisheries management and efforts to acoustically quantify coral reefs' health.


Asunto(s)
Palinuridae , Animales , Sonido , Región del Caribe , Acústica , Ecosistema
7.
BMC Genomics ; 23(1): 750, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36368918

RESUMEN

BACKGROUND: Evolutionary divergence and speciation often occur at a slower rate in the marine realm due to the higher potential for long-distance reproductive interaction through larval dispersal. One common evolutionary pattern in the Indo-Pacific, is divergence of populations and species at the peripheries of widely-distributed organisms. However, the evolutionary and demographic histories of such divergence are yet to be well understood. Here we address these issues by coupling genome-wide SNP data with mitochondrial DNA sequences to test the patterns of genetic divergence and possible secondary contact among geographically distant populations of the highly valuable spiny lobster Panulirus homarus species complex, distributed widely through the Indo-Pacific, from South Africa to the Marquesas Islands. RESULT: After stringent filtering, 2020 SNPs were used for population genetic and demographic analyses, revealing strong regional structure (FST = 0.148, P < 0001), superficially in accordance with previous analyses. However, detailed demographic analyses supported a much more complex evolutionary history of these populations, including a hybrid origin of a North-West Indian Ocean (NWIO) population, which has previously been discriminated morphologically, but not genetically. The best-supported demographic models suggested that the current genetic relationships among populations were due to a complex series of past divergences followed by asymmetric migration in more recent times. CONCLUSION: Overall, this study suggests that alternating periods of marine divergence and gene flow have driven the current genetic patterns observed in this lobster and may help explain the observed wider patterns of marine species diversity in the Indo-Pacific.


Asunto(s)
Palinuridae , Animales , Palinuridae/genética , Nephropidae/genética , Polimorfismo de Nucleótido Simple , Genoma , Flujo Génico , ADN Mitocondrial/genética , Filogenia , Variación Genética
8.
J Exp Biol ; 225(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35647661

RESUMEN

The anaesthetic isoeugenol has been used as metabolic suppressant for commercial transport of live lobsters in order to decrease energy expenditure and improve survival. Given the central role of mitochondria in metabolism and structural similarities of isoeugenol to the mitochondrial electron carrier coenzyme Q, we explored the influence on mitochondrial function of isoeugenol. Mitochondrial function was measured using high-resolution respirometry and saponin-permeabilised heart fibres from the Australasian red spiny lobster, Jasus edwardsii. Relative to vehicle (polysorbate), isoeugenol inhibited respiration supported by complex I (CI) and cytochrome c oxidase (CCO). While complex II (CII), which also reduces coenzyme Q, was largely unaffected by isoeugenol, respiration supported by CII when uncoupled was depressed. Titration of isoeugenol indicates that respiration through CI has a half-maximal inhibitory concentration (IC50) of 2.4±0.1 µmol l-1, and a full-maximal inhibitory concentration (IC100-) of approximately 6.3 µmol l-1. These concentrations are consistent with those used for transport and euthanasia of J. edwardsii and indicate that CI is a possible target of isoeugenol, like many other anaesthetics with quinone-like structures.


Asunto(s)
Anestésicos , Crangonidae , Palinuridae , Animales , Eugenol/análogos & derivados , Mitocondrias , Ubiquinona
9.
Dis Aquat Organ ; 151: 11-22, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36047670

RESUMEN

Panulirus argus virus 1 (PaV1) (Family Mininucleoviridae) causes chronic and systemic infection in wild juvenile spiny lobsters Panulirus argus (Latreille, 1804), ending in death by starvation and metabolic wasting. In marine decapods, the antennal gland is involved in osmoregulation and excretion. In this compact organ, fluid is filtered from the hemolymph, and ions are reabsorbed to produce a hypotonic urine. Although PaV1 is released with the urine in infected individuals, little is known regarding the metabolic effect of PaV1 in the antennal gland. The objective of this study was to perform a comparative evaluation of the metabolic profile of the antennal gland of clinically PaV1-infected lobsters versus those with no clinical signs of infection, using proton nuclear magnetic resonance analysis. Overall, 48 compounds were identified, and the most represented metabolites were those involved in carbohydrate, amino acid, energy, and nucleotide metabolism. Most of the metabolites that were down-regulated in the infected group were essential and non-essential amino acids. Some metabolites involved in the urea cycle and carbohydrate metabolism were also altered. This study represents a first approach to the metabolic evaluation of the antennal gland. We broadly discuss alterations in the content of several proteinogenic and non-proteinogenic amino acids and other key metabolites involved in energetic and nucleotide metabolism.


Asunto(s)
Crangonidae , Palinuridae , Aminoácidos , Animales , Región del Caribe , Virus ADN , Nucleótidos
10.
J Acoust Soc Am ; 152(6): 3235, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36586865

RESUMEN

Sound is an important cue for arthropods. In insects, sound features and sound-producing apparatus are tightly correlated to enhance signal emission in larger individuals. In contrast, acoustic scaling in marine arthropods is poorly described even if they possess similar sound-producing apparatus. Here, the acoustic scaling of the European spiny lobster is analyzed by recording sounds in situ at 1 m from a wide range of body sizes. The dimensions of associated sound-producing apparatus increased with body size, indicating sound features would also be influenced by spiny lobster size. Indeed, temporal sound features changed with body size, suggesting differences in calling songs could be used for spiny lobster acoustic communication. Source levels (peak-peak) ranged from 131 to 164 dB re 1µPa for smaller and larger lobsters, respectively, which could be explained by more efficient resonating structures in larger animals. In addition, dominant frequencies were highly constrained by ambient noise levels, masking the low-frequency content of low intensity sounds from smaller spiny lobsters. Although the ecological function of spiny lobster sounds is not clear yet, these results suggest larger body sizes benefit because louder calls increase the broadcast area and potential interactions with conspecifics, as shown in the insect bioacoustic literature.


Asunto(s)
Palinuridae , Animales , Sonido , Acústica , Tamaño Corporal
11.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233053

RESUMEN

RNA interference (RNAi) has been widely utilised in many invertebrate models since its discovery, and in a majority of instances presents as a highly efficient and potent gene silencing mechanism. This is emphasized in crustaceans with almost all taxa having the capacity to trigger effective silencing, with a notable exception in the spiny lobsters where repeated attempts at dsRNA induced RNAi have demonstrated extremely ineffective gene knockdown. A comparison of the core RNAi machinery in transcriptomic data from spiny lobsters (Panulirus ornatus) and the closely related slipper lobsters (Thenus australiensis, where silencing is highly effective) revealed that both lobsters possess all proteins involved in the small interfering and microRNA pathways, and that there was little difference at both the sequence and domain architecture level. Comparing the expression of these genes however demonstrated that T. australiensis had significantly higher expression in the transcripts encoding proteins which directly interact with dsRNA when compared to P. ornatus, validated via qPCR. These results suggest that low expression of the core RNAi genes may be hindering the silencing response in P. ornatus, and suggest that it may be critical to enhance the expression of these genes to induce efficient silencing in spiny lobsters.


Asunto(s)
Decápodos , MicroARNs , Palinuridae , Animales , Palinuridae/genética , Interferencia de ARN , Transcriptoma
12.
BMC Genomics ; 22(1): 313, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931033

RESUMEN

BACKGROUND: The complex life cycle of the coconut crab, Birgus latro, begins when an obligate terrestrial adult female visits the intertidal to hatch zoea larvae into the surf. After drifting for several weeks in the ocean, the post-larval glaucothoes settle in the shallow subtidal zone, undergo metamorphosis, and the early juveniles then subsequently make their way to land where they undergo further physiological changes that prevent them from ever entering the sea again. Here, we sequenced, assembled and analyzed the coconut crab genome to shed light on its adaptation to terrestrial life. For comparison, we also assembled the genomes of the long-tailed marine-living ornate spiny lobster, Panulirus ornatus, and the short-tailed marine-living red king crab, Paralithodes camtschaticus. Our selection of the latter two organisms furthermore allowed us to explore parallel evolution of the crab-like form in anomurans. RESULTS: All three assembled genomes are large, repeat-rich and AT-rich. Functional analysis reveals that the coconut crab has undergone proliferation of genes involved in the visual, respiratory, olfactory and cytoskeletal systems. Given that the coconut crab has atypical mitochondrial DNA compared to other anomurans, we argue that an abundance of kif22 and other significantly proliferated genes annotated with mitochondrial and microtubule functions, point to unique mechanisms involved in providing cellular energy via nuclear protein-coding genes supplementing mitochondrial and microtubule function. We furthermore detected in the coconut crab a significantly proliferated HOX gene, caudal, that has been associated with posterior development in Drosophila, but we could not definitively associate this gene with carcinization in the Anomura since it is also significantly proliferated in the ornate spiny lobster. However, a cuticle-associated coatomer gene, gammacop, that is significantly proliferated in the coconut crab, may play a role in hardening of the adult coconut crab abdomen in order to mitigate desiccation in terrestrial environments. CONCLUSION: The abundance of genomic features in the three assembled genomes serve as a source of hypotheses for future studies of anomuran environmental adaptations such as shell-utilization, perception of visual and olfactory cues in terrestrial environments, and cuticle sclerotization. We hypothesize that the coconut crab exhibits gene proliferation in lieu of alternative splicing as a terrestrial adaptation mechanism and propose life-stage transcriptomic assays to test this hypothesis.


Asunto(s)
Anomuros , Braquiuros , Palinuridae , Animales , Braquiuros/genética , Cocos , Femenino , Genómica
13.
Microbiology (Reading) ; 167(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34846286

RESUMEN

Bdellovibrio and like organisms (BALOs) are Gram-negative obligate predators of other bacteria in a range of environments. The recent discovery of BALOs in the circulatory system of cultured spiny lobster P. ornatus warrants more investigation. We used a combination of co-culture agar and broth assays and transmission electron microscopy to show a Halobacteriovorax sp. strain Hbv preyed upon the model prey bacterium Vibrio sp. strain Vib. The haemolymph microbiome of juvenile P. ornatus was characterised following injection of phosphate buffered saline (control) or prey and/or predator bacteria for 3 d. The predator Hbv had no effect on survival compared to the control after 3 d. However, when compared to the prey only treatment group, lobsters injected with both prey and predator showed significantly lower abundance of genus Vibrio in the haemolymph bacterial community composition. This study indicates that predatory bacteria are not pathogenic and may assist in controlling microbial population growth in the haemolymph of lobsters.


Asunto(s)
Bdellovibrio , Microbiota , Palinuridae , Animales , Bacterias , Hemolinfa , Palinuridae/microbiología
14.
Ecol Appl ; 31(6): e02364, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33899297

RESUMEN

An ultimate benefit of marine protected areas (MPAs) is to reverse trophic cascades caused by human-driven collapse of critical ecological interactions. Here we demonstrate that, despite a small scale (0.28 km2 ) and not being fully protected, an MPA with strict fishing management and habitat enhancement by artificial reefs (ARs) in southwest Japan can lead to well-established macroalgal communities on widespread sea urchin barrens through cascading effects of predator recovery. Areas with low urchin densities occurred in and around daytime lobster (Panulirus japonicus) shelters primarily formed by quarry-rock ARs inside the MPA. We confirmed in the laboratory that lobsters preyed on two dominant sea urchins (Echinometra sp. A and Heliocidaris crassispina), with size- and species-dependent predation. The area with few urchins extended farther (˜65 m) from an AR with numerous lobsters than from a natural shelter (patch reef) with far fewer lobsters. Causation of this pattern was confirmed by a tethering experiment showing that predation on urchins was similarly high at and near lobster shelters but decreased at ˜100 m from the AR to a similar level as at an unprotected site. Time-lapse photography revealed that predation on tethered urchins was due mostly to the largest size class of lobsters (>100 mm carapace length), which comprised only 7% of the population, highlighting the importance of large-sized lobsters in controlling urchin abundance in localized areas adjacent to urchin-dominated barrens. Despite an ongoing once-a-year fishing event permitted within the MPA, lobster populations were persistent, demonstrating that the cascading effect of the lobsters on urchins and ultimately macroalgae was robust to temporary reductions in predator population size. Erect macroalgal cover was not simply accounted for by snapshot urchin density or biomass, suggesting a hysteresis effect of the phase shifts between macroalgal dominance and urchin barren states.


Asunto(s)
Cadena Alimentaria , Palinuridae , Conducta Predatoria , Erizos de Mar , Animales , Ecosistema
15.
Mar Drugs ; 19(6)2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34204083

RESUMEN

We investigated a spray drying process for preparing water-soluble salts of high molecular weight chitosan (CH) intended for pharmaceutical excipient applications. CH was derived from chitin of marine lobster origin (Panulirus argus). The effects of organic acid (acetic or lactic acid) and the ratio (difference) of inlet/outlet air temperature (140/90 °C or 160/100 °C) on spray drying were studied. The yield of spray-dried CH salt powders ranged from 50% to 99% in laboratory and industrial-scale processes. The spray-dried dry powder of CH salts consisted of spherical agglomerated particles with an average diameter of 36.2 ± 7.0 µm (CH acetate) and 108.6 ± 11.5 µm (CH lactate). After dispersing the spray-dried CH salt powder samples in purified water, the mean particle sizes obtained for the CH acetate salts were 31.4 nm (batch A001), 33.0 nm (A002) and 44.2 nm (A003), and for the CH lactate salts 100.8 nm (batch L001), 103.2 nm (L002) and 121.8 nm (L003). The optimum process conditions for spray drying were found: an inlet air temperature of 160 ± 5 °C, an outlet temperature of 100 ± 5 °C and an atomizer disk rotational speed of 18,200 min-1. The X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) results confirmed the amorphous state of the CH salts. The 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectra of CH acetate and lactate salts verified that the spray drying process does not affect the polymer backbone. In conclusion, both laboratory and industrial-scale spray drying methods for preparing water-soluble acid salts of CH are reproducible, and the physicochemical properties of the corresponding CH acid salts are uniform.


Asunto(s)
Quitosano/síntesis química , Excipientes/síntesis química , Sales (Química)/síntesis química , Secado por Pulverización , Animales , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Quitosano/química , Excipientes/química , Espectroscopía de Resonancia Magnética , Palinuridae/química , Tamaño de la Partícula , Sales (Química)/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Difracción de Rayos X
16.
Mar Drugs ; 19(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34564172

RESUMEN

Paralytic shellfish toxins (PST) are found in the hepatopancreas of Southern Rock Lobster Jasus edwardsii from the east coast of Tasmania in association with blooms of the toxic dinoflagellate Alexandrium catenella. Tasmania's rock lobster fishery is one of the state's most important wild capture fisheries, supporting a significant commercial industry (AUD 97M) and recreational fishing sector. A comprehensive 8 years of field data collected across multiple sites has allowed continued improvements to the risk management program protecting public health and market access for the Tasmanian lobster fishery. High variability was seen in toxin levels between individuals, sites, months, and years. The highest risk sites were those on the central east coast, with July to January identified as the most at-risk months. Relatively high uptake rates were observed (exponential rate of 2% per day), similar to filter-feeding mussels, and meant that lobster accumulated toxins quickly. Similarly, lobsters were relatively fast detoxifiers, losing up to 3% PST per day, following bloom demise. Mussel sentinel lines were effective in indicating a risk of elevated PST in lobster hepatopancreas, with annual baseline monitoring costing approximately 0.06% of the industry value. In addition, it was determined that if the mean hepatopancreas PST levels in five individual lobsters from a site were <0.22 mg STX equiv. kg-1, there is a 97.5% probability that any lobster from that site would be below the bivalve maximum level of 0.8 mg STX equiv. kg-1. The combination of using a sentinel species to identify risk areas and sampling five individual lobsters at a particular site, provides a cost-effective strategy for managing PST risk in the Tasmanian commercial lobster fishery.


Asunto(s)
Bivalvos , Monitoreo del Ambiente , Toxinas Marinas/análisis , Palinuridae , Intoxicación por Mariscos/prevención & control , Animales , Demografía , Ecosistema , Explotaciones Pesqueras , Humanos , Enfermedades Profesionales/prevención & control , Reproducibilidad de los Resultados , Tasmania
17.
An Acad Bras Cienc ; 93(2): e20190715, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34076036

RESUMEN

Spiny lobsters (Family Palinuridae) are a popular seafood in Brazil. We characterize the fishing activity and analyze the population of lobster species captured in the coast of the state of Rio Grande do Norte, Northeast Brazil. We monitored the landings of lobster fishermen at the start of the fishing season, from May 24 to November 21, in 2010, at Pirangi beach, the main landing point in the metropolitan area of Natal. The lobster fisherman in the region use small vessels and a compressor to dive in artificial reefs known as marambaias. The artisanal fishermen are engaged in several illegal practices and revealed a greater capture of lobsters categorized as small-sized for the market (11-13.95cm tail length). The capture area led to different fishing pressures for each species. For P. laevicauda, fishing pressure occurred for all size classes, while for P. meripurpuratus, pressure occurred partially, only for a few population cohorts. On regional scale, fishing involved a demand-supply trade balance centered on the size of capture vs. abundance, regardless of the natural interespecific differences on body size and the preferential distribution area. Our results provide key information for future decision making involving the fishing of spiny lobster.


Asunto(s)
Decápodos , Palinuridae , Animales , Brasil , Explotaciones Pesqueras , Alimentos Marinos
18.
J Neurosci ; 39(4): 596-611, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30504282

RESUMEN

Neurons operate within defined activity limits, and feedback control mechanisms dynamically tune ionic currents to maintain this optimal range. This study describes a novel, rapid feedback mechanism that uses SUMOylation to continuously adjust ionic current densities according to changes in activity. Small ubiquitin-like modifier (SUMO) is a peptide that can be post-translationally conjugated to ion channels to influence their surface expression and biophysical properties. Neuronal activity can regulate the extent of protein SUMOylation. This study on the single, unambiguously identifiable lateral pyloric neuron (LP), a component of the pyloric network in the stomatogastric nervous system of male and female spiny lobsters (Panulirus interruptus), focused on dynamic SUMOylation in the context of activity homeostasis. There were four major findings: First, neuronal activity adjusted the balance between SUMO conjugation and deconjugation to continuously and bidirectionally fine-tune the densities of two opposing conductances: the hyperpolarization activated current (Ih) and the transient potassium current (IA). Second, tonic 5 nm dopamine (DA) gated activity-dependent SUMOylation to permit and prevent activity-dependent regulation of Ih and IA, respectively. Third, DA-gated, activity-dependent SUMOylation contributed to a feedback mechanism that restored the timing and duration of LP activity during prolonged modulation by 5 µm DA, which initially altered these and other activity features. Fourth, DA modulatory and metamoduatory (gating) effects were tailored to simultaneously alter and stabilize neuronal output. Our findings suggest that modulatory tone may select a subset of rapid activity-dependent mechanisms from a larger menu to achieve homeostasis under varying conditions.SIGNIFICANCE STATEMENT Post-translational SUMOylation of ion channel subunits controls their interactions. When subunit SUMOylation is dysregulated, conductance densities mediated by the channels are distorted, leading to nervous system disorders, such as seizures and chronic pain. Regulation of ion channel SUMOylation is poorly understood. This study demonstrated that neuronal activity can regulate SUMOylation to reconfigure ionic current densities over minutes, and this regulation was gated by tonic nanomolar dopamine. Dynamic SUMOylation was necessary to maintain specific aspects of neuronal output while the neuron was being modulated by high (5 µm) concentrations of dopamine, suggesting that the gating function may ensure neuronal homeostasis during extrinsic modulation of a circuit.


Asunto(s)
Homeostasis/fisiología , Canales Iónicos/fisiología , Palinuridae/fisiología , Sumoilación/fisiología , Animales , Dopamina/fisiología , Femenino , Ganglios de Invertebrados/fisiología , Células HEK293 , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/fisiología , Masculino , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional , Canales de Potasio Shal/fisiología
19.
BMC Genomics ; 21(1): 882, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33297960

RESUMEN

BACKGROUND: Whole mitogenomes or short fragments (i.e., 300-700 bp of the cox1 gene) are the markers of choice for revealing within- and among-species genealogies. Protocols for sequencing and assembling mitogenomes include 'primer walking' or 'long PCR' followed by Sanger sequencing or Illumina short-read low-coverage whole genome (LC-WGS) sequencing with or without prior enrichment of mitochondrial DNA. The aforementioned strategies assemble complete and accurate mitochondrial genomes but are time consuming and/or expensive. In this study, I first tested whether mitogenomes can be sequenced from long-read nanopore sequencing data exclusively. Second, I explored the accuracy of the long-read assembled genomes by comparing them to a 'gold' standard reference mitogenome retrieved from the same individual using Illumina sequencing. Third and lastly, I tested if the long-read assemblies are useful for mitophylogenomics and barcoding research. To accomplish these goals, I used the Caribbean spiny lobster Panulirus argus, an ecologically relevant species in shallow water coral reefs and target of the most lucrative fishery in the greater Caribbean region. RESULTS: LC-WGS using a MinION ONT device and various de-novo and reference-based assembly pipelines retrieved a complete and highly accurate mitogenome for the Caribbean spiny lobster Panulirus argus. Discordance between each of the long-read assemblies and the reference mitogenome was mostly due to indels at the flanks of homopolymer regions. Although not 'perfect', phylogenetic analyses using entire mitogenomes or a fragment of the cox1 gene demonstrated that mitogenomes assembled using long reads reliably identify the sequenced specimen as belonging to P. argus and distinguish it from other related species in the same genus, family, and superorder. CONCLUSIONS: This study serves as a proof-of-concept for the future implementation of in-situ surveillance protocols using the MinION to detect mislabeling in P. argus across its supply chain. Mislabeling detection will improve fishery management in this overexploited lobster. This study will additionally aid in decreasing costs for exploring meta-population connectivity in the Caribbean spiny lobster and will aid with the transfer of genomics technology to low-income countries.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Palinuridae , Animales , Región del Caribe , Palinuridae/genética , Filogenia
20.
BMC Genomics ; 21(1): 649, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32962631

RESUMEN

BACKGROUND: Crustaceans express several classes of receptor genes in their antennules, which house olfactory sensory neurons (OSNs) and non-olfactory chemosensory neurons. Transcriptomics studies reveal that candidate chemoreceptor proteins include variant Ionotropic Receptors (IRs) including both co-receptor IRs and tuning IRs, Transient Receptor Potential (TRP) channels, Gustatory Receptors, epithelial sodium channels, and class A G-protein coupled receptors (GPCRs). The Caribbean spiny lobster, Panulirus argus, expresses in its antennules nearly 600 IRs, 17 TRP channels, 1 Gustatory Receptor, 7 epithelial sodium channels, 81 GPCRs, 6 G proteins, and dozens of enzymes in signaling pathways. However, the specific combinatorial expression patterns of these proteins in single sensory neurons are not known for any crustacean, limiting our understanding of how their chemosensory systems encode chemical quality. RESULTS: The goal of this study was to use transcriptomics to describe expression patterns of chemoreceptor genes in OSNs of P. argus. We generated and analyzed transcriptomes from 7 single OSNs, some of which were shown to respond to a food odor, as well as an additional 7 multicell transcriptomes from preparations containing few (2-4), several (ca. 15), or many (ca. 400) OSNs. We found that each OSN expressed the same 2 co-receptor IRs (IR25a, IR93a) but not the other 2 antennular coIRs (IR8a, IR76b), 9-53 tuning IRs but only one to a few in high abundance, the same 5 TRP channels plus up to 5 additional TRPs, 12-17 GPCRs including the same 5 expressed in every single cell transcriptome, the same 3 G proteins plus others, many enzymes in the signaling pathways, but no Gustatory Receptors or epithelial sodium channels. The greatest difference in receptor expression among the OSNs was the identity of the tuning IRs. CONCLUSIONS: Our results provide an initial view of the combinatorial expression patterns of receptor molecules in single OSNs in one species of decapod crustacean, including receptors directly involved in olfactory transduction and others likely involved in modulation. Our results also suggest differences in receptor expression in OSNs vs. other chemosensory neurons.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Palinuridae/genética , Transcriptoma , Animales , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Palinuridae/metabolismo , RNA-Seq , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Análisis de la Célula Individual , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA