Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 879
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Mol Cell ; 75(1): 66-75.e5, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31175012

RESUMEN

Liquid granules rich in intrinsically disordered proteins and RNA play key roles in critical cellular functions such as RNA processing and translation. Many details of the mechanism via which this occurs remain to be elucidated. Motivated by the lacuna in the field and by the prospects of developing de novo artificial granules that provide extrinsic control of translation, we report a bottom-up approach to engineer ribonucleoprotein granules composed of a recombinant RNA-binding IDP that exhibits phase behavior in water. We developed a kinetic model to illustrate that these granules inhibit translation through reversible or irreversible sequestration of mRNA. Within monodisperse droplets capable of transcription and translation, we experimentally demonstrate temporal inhibition of translation by using designer IDPs that exhibit tunable phase behavior. This work lays the foundation for developing artificial granules that promise to further our mechanistic understanding of their naturally occurring counterparts.


Asunto(s)
Células Artificiales/metabolismo , Gránulos Citoplasmáticos/genética , Proteínas Intrínsecamente Desordenadas/genética , Peptidomiméticos/metabolismo , ARN Mensajero/genética , Ribonucleoproteínas/genética , Secuencia de Aminoácidos , Células Artificiales/citología , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Elastina/química , Elastina/genética , Elastina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Biológicos , Peptidomiméticos/química , Transición de Fase , Plásmidos/genética , Plásmidos/metabolismo , Biosíntesis de Proteínas , Ingeniería de Proteínas/métodos , ARN/genética , ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo
2.
Nature ; 576(7787): 452-458, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31645764

RESUMEN

There is an urgent need for new antibiotics against Gram-negative pathogens that are resistant to carbapenem and third-generation cephalosporins, against which antibiotics of last resort have lost most of their efficacy. Here we describe a class of synthetic antibiotics inspired by scaffolds derived from natural products. These chimeric antibiotics contain a ß-hairpin peptide macrocycle linked to the macrocycle found in the polymyxin and colistin family of natural products. They are bactericidal and have a mechanism of action that involves binding to both lipopolysaccharide and the main component (BamA) of the ß-barrel folding complex (BAM) that is required for the folding and insertion of ß-barrel proteins into the outer membrane of Gram-negative bacteria. Extensively optimized derivatives show potent activity against multidrug-resistant pathogens, including all of the Gram-negative members of the ESKAPE pathogens1. These derivatives also show favourable drug properties and overcome colistin resistance, both in vitro and in vivo. The lead candidate is currently in preclinical toxicology studies that-if successful-will allow progress into clinical studies that have the potential to address life-threatening infections by the Gram-negative pathogens, and thus to resolve a considerable unmet medical need.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Peptidomiméticos/química , Peptidomiméticos/farmacología , Animales , Antibacterianos/efectos adversos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Productos Biológicos/química , Descubrimiento de Drogas , Farmacorresistencia Microbiana/efectos de los fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fluorescencia , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/patogenicidad , Humanos , Lipopolisacáridos/química , Compuestos Macrocíclicos/efectos adversos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Modelos Moleculares , Mutación , Peptidomiméticos/efectos adversos , Etiquetas de Fotoafinidad
3.
Proc Natl Acad Sci U S A ; 119(20): e2200155119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35561211

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) agonists are effective in treating type 2 diabetes and obesity with proven cardiovascular benefits. However, most of these agonists are peptides and require subcutaneous injection except for orally available semaglutide. Boc5 was identified as the first orthosteric nonpeptidic agonist of GLP-1R that mimics a broad spectrum of bioactivities of GLP-1 in vitro and in vivo. Here, we report the cryoelectron microscopy structures of Boc5 and its analog WB4-24 in complex with the human GLP-1R and Gs protein. Bound to the extracellular domain, extracellular loop 2, and transmembrane (TM) helices 1, 2, 3, and 7, one arm of both compounds was inserted deeply into the bottom of the orthosteric binding pocket that is usually accessible by peptidic agonists, thereby partially overlapping with the residues A8 to D15 in GLP-1. The other three arms, meanwhile, extended to the TM1-TM7, TM1-TM2, and TM2-TM3 clefts, showing an interaction feature substantially similar to the previously known small-molecule agonist LY3502970. Such a unique binding mode creates a distinct conformation that confers both peptidomimetic agonism and biased signaling induced by nonpeptidic modulators at GLP-1R. Further, the conformational difference between Boc5 and WB4-24, two closed related compounds, provides a structural framework for fine-tuning of pharmacological efficacy in the development of future small-molecule therapeutics targeting GLP-1R.


Asunto(s)
Ciclobutanos , Receptor del Péptido 1 Similar al Glucagón , Peptidomiméticos , Microscopía por Crioelectrón , Ciclobutanos/química , Ciclobutanos/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/química , Humanos , Peptidomiméticos/química , Peptidomiméticos/farmacología , Dominios Proteicos
4.
Proc Natl Acad Sci U S A ; 119(10): e2117283119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238683

RESUMEN

SignificanceWe report the development of peptidomimetic antibiotics derived from a natural antimicrobial peptide, human α-defensin 5. By engaging multiple bacterial targets, the lead compound is efficacious in vitro and in vivo against bacteria with highly inducible antibiotic resistance, promising a useful therapeutic agent for the treatment of infections caused by antibiotic-resistant bacteria.


Asunto(s)
Antibacterianos/química , Defensinas/química , Descubrimiento de Drogas/métodos , Peptidomiméticos/química , Antibacterianos/farmacología , Defensinas/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Peptidomiméticos/farmacología , Relación Estructura-Actividad
5.
J Am Chem Soc ; 146(32): 22236-22246, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39096501

RESUMEN

Peptide-based frameworks aim to integrate protein architecture into solid-state materials using simpler building blocks. Despite the growing number of peptide frameworks, there are few strategies to rationally engineer essential properties like pore size and shape. Designing peptide assemblies is generally hindered by the difficulty of predicting complex networks of weak intermolecular interactions. Peptides conjugated to polyaromatic groups are a unique case where assembly appears to be strongly driven by π-π interactions, suggesting that rationally adjusting the geometry of the π-stackers could create novel structures. Here, we report peptide elongation as a simple mechanism to predictably tune the angle between the π-stacking groups to produce a remarkable diversity of pore shapes and sizes, including some that are mesoporous. Notably, rapid jumps in pore size and shape can occur with just a single amino acid insertion. The geometry of the π-stacking residues also significantly influences framework structure, representing an additional dimension for tuning. Lastly, sequence identity can also indirectly modulate the π-π interactions. By correlating each of these factors with detailed crystallographic data, we find that, despite the complexity of peptide structure, the shape and polarity of the tectons are straightforward predictors of framework structure. These guidelines are expected to accelerate the development of advanced porous materials with protein-like capabilities.


Asunto(s)
Péptidos , Péptidos/química , Porosidad , Modelos Moleculares , Peptidomiméticos/química , Peptidomiméticos/síntesis química
6.
J Am Chem Soc ; 146(33): 23121-23137, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38980064

RESUMEN

Addressing the global challenge of bacterial resistance demands innovative approaches, among which multitargeting is a widely used strategy. Current strategies of multitargeting, typically achieved through drug combinations or single agents inherently aiming at multiple targets, face challenges such as stringent pharmacokinetic and pharmacodynamic requirements and cytotoxicity concerns. In this report, we propose a bacterial-specific global disruption approach as a vastly expanded multitargeting strategy that effectively disrupts bacterial subcellular organization. This effect is achieved through a pioneering chemical design of ligand-receptor interaction-induced aggregation of small molecules, i.e., DNA-induced aggregation of a diarginine peptidomimetic within bacterial cells. These intracellular aggregates display affinity toward various proteins and thus substantially interfere with essential bacterial functions and rupture bacterial cell membranes in an "inside-out" manner, leading to robust antibacterial activities and suppression of drug resistance. Additionally, biochemical analysis of macromolecule binding affinity, cytoplasmic localization patterns, and bacterial stress responses suggests that this bacterial-specific intracellular aggregation mechanism is fundamentally different from nonselective classic DNA or membrane binding mechanisms. These mechanistic distinctions, along with the peptidomimetic's selective permeation of bacterial membranes, contribute to its favorable biocompatibility and pharmacokinetic properties, enabling its in vivo antimicrobial efficacy in several animal models, including mice-based superficial wound models, subcutaneous abscess models, and septicemia infection models. These results highlight the great promise of ligand-receptor interaction-induced intracellular aggregation in achieving a globally disruptive multitargeting effect, thereby offering potential applications in the treatment of malignant cells, including pathogens, tumor cells, and infected tissues.


Asunto(s)
Antibacterianos , Ligandos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/efectos de los fármacos , Peptidomiméticos/farmacología , Peptidomiméticos/química , Separación de Fases
7.
Biochem Biophys Res Commun ; 733: 150584, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39208642

RESUMEN

Dysregulation in Janus kinase-Signal Transducer and Activation of Transcription (JAK-STAT) pathway is closely linked to various cancer types. The N-terminal domain (NTD) of STAT proteins, upon dimerization, assumes a multifaceted role with remarkable adaptability in mediating interactions between proteins. Consequently, the strategic targeting of the N-terminal domain of STATs has emerged as a promising tactic for disrupting dimerization and impeding the translocation of STAT proteins. In this study, we have deployed an integrated in-silico methodology to rationally design Peptidomimetic foldamers as inhibitors of the N-terminal domains of STAT3 and STAT4, with the objective of disrupting protein dimerization. Consequently, we have judiciously designed a series of peptidomimetics that encompass ß3-amino acids, bearing side chains that mimic the residues within interface II of the dimeric structures of the NTDs. Employing molecular docking techniques; we have assessed the binding affinity of these designed peptidomimetics toward both the NTDs. Furthermore, we have conducted an evaluation of the stability and conformational alterations within the docked complexes over an extensive Molecular Dynamics, subsequently computing the binding free energy utilizing MM/PBSA calculations. Our findings unequivocally demonstrate that the peptidomimetic foldamers we have devised (Peptide-A, Peptide-B, and Peptide-C) exhibit a propensity to bind to and impede the dimerization process of the NTDs of both STAT3 and STAT4. These outcomes serve to underscore the potential of these meticulously designed peptidomimetics as potential candidates meriting further exploration in the realm of cancer prevention and management.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Peptidomiméticos , Multimerización de Proteína , Factor de Transcripción STAT3 , Factor de Transcripción STAT4 , Peptidomiméticos/química , Peptidomiméticos/farmacología , Peptidomiméticos/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/química , Multimerización de Proteína/efectos de los fármacos , Humanos , Factor de Transcripción STAT4/metabolismo , Factor de Transcripción STAT4/química , Unión Proteica , Dominios Proteicos , Diseño de Fármacos , Termodinámica
8.
Chemistry ; 30(38): e202401103, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38716707

RESUMEN

This review covers the most recent advances in the development of inhibitors for the bacterial enzyme sortase A (SrtA). Sortase A (SrtA) is a critical virulence factor, present ubiquitously in Gram-positive bacteria of which many are pathogenic. Sortases are key enzymes regulating bacterial adherence to host cells, by anchoring extracellular matrix-binding proteins to the bacterial outer cell wall. By targeting virulence factors, effective treatment can be achieved, without inducing antibiotic resistance to the treatment. This is a potentially more sustainable, long-term approach to treating bacterial infections, including ones that display multiple resistance to current therapeutics. There are many promising approaches available for SrtA inhibition, some of which have the potential to advance into further clinical development, with peptidomimetic and in vivo active small molecules being among the most promising. There are currently no approved drugs on the market targeting SrtA, despite its promise, adding to the relevance of this review article, as it extends to the pharmaceutical industry additionally to academic researchers.


Asunto(s)
Aminoaciltransferasas , Antibacterianos , Proteínas Bacterianas , Cisteína Endopeptidasas , Peptidomiméticos , Bibliotecas de Moléculas Pequeñas , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/química , Peptidomiméticos/química , Peptidomiméticos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Antibacterianos/química , Antibacterianos/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Bacterias Grampositivas/efectos de los fármacos
9.
Bioorg Med Chem Lett ; 110: 129887, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002936

RESUMEN

Human cathepsin K (CatK) stands out as a promising target for the treatment of osteoporosis, considering its role in degrading the bone matrix. Given the small and shallow S2 subsite of CatK and considering its preference for proline or hydroxyproline, we now propose the rigidification of the leucine fragment found at the P2 position in a dipeptidyl-based inhibitor, generating rigid proline-based analogs. Accordingly, with these new proline-based peptidomimetics inhibitors, we selectively inhibited CatK against other human cathepsins (B, L and S). Among these new ligands, the most active one exhibited a high affinity (pKi = 7.3 - 50.1 nM) for CatK and no inhibition over the other cathepsins. This specific inhibitor harbors two novel substituents never employed in other CatK inhibitors: the trifluoromethylpyrazole and the 4-methylproline at P3 and P2 positions. These results broaden and advance the path toward new potent and selective inhibitors for CatK.


Asunto(s)
Catepsina K , Peptidomiméticos , Prolina , Catepsina K/antagonistas & inhibidores , Catepsina K/metabolismo , Peptidomiméticos/farmacología , Peptidomiméticos/química , Peptidomiméticos/síntesis química , Prolina/química , Prolina/farmacología , Humanos , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga
10.
Bioorg Med Chem ; 110: 117811, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959684

RESUMEN

Ample biologically active peptides have been found, identified and modified for use in drug discovery to date. However, several factors, such as low metabolic stability due to proteolysis and non-specific interactions with multiple off-target molecules, might limit the therapeutic use of peptides. To enhance the stability and/or bioactivity of peptides, the development of "peptidomimetics," which mimick peptide molecules, is considered to be idealistic. Hence, chloroalkene dipeptide isosteres (CADIs) was designed, and their synthetic methods have been developed by us. Briefly, in a CADI an amide bond in peptides is replaced with a chloroalkene structure. CADIs might be superior mimetics of amide bonds because the Van der Waals radii (VDR) and the electronegativity value of a chlorine atom are close to those of the replaced oxygen atom. By a developed method of the "liner synthesis", N-tert-butylsulfonyl protected CADIs can be synthesized via a key reaction involving diastereoselective allylic alkylation using organocopper reagents. On the other hand, by a developed method of the "convergent synthesis", N-fluorenylmethoxycarbonyl (Fmoc)-protected carboxylic acids can be also constructed based on N- and C-terminal analogues from corresponding amino acid starting materials via an Evans syn aldol reaction and the Ichikawa allylcyanate rearrangement reaction involving a [3.3] sigmatropic rearrangement. Notably, CADIs can also be applied for Fmoc-based solid-phase peptide synthesis and therefore introduced into bioactive peptides including as the Arg-Gly-Asp (RGD) peptide and the amyloid ß fragment Lys-Leu-Val-Phe-Phe (KLVFF) peptide, which are correlated with cell attachment and Alzheimer's disease (AD), respectively. These CADI-containing peptidomimetics stabilized the conformation and enhanced the potency of the cyclic RGD peptide and the cyclic KLVFF peptide.


Asunto(s)
Dipéptidos , Diseño de Fármacos , Peptidomiméticos , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Peptidomiméticos/farmacología , Dipéptidos/química , Dipéptidos/síntesis química , Dipéptidos/farmacología , Humanos , Alquenos/química , Alquenos/síntesis química
11.
Bioorg Med Chem ; 111: 117846, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106653

RESUMEN

The coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spread worldwide for more than 3 years. Although the hospitalization rate and mortality have decreased dramatically due to wide vaccination effort and improved treatment options, the disease is still a global health issue due to constant viral mutations, causing negative impact on social and economic activities. In addition, long COVID and complications arising from COVID-19 weeks after infection have become a concern for public health experts. Therefore, better treatments for COVID-19 are still needed. Herein, we describe a class of macrocyclic peptidomimetic compounds that are potent inhibitors of SARS-Cov-2 3CL protease (3CLpro). Significantly, some of the compounds showed a higher stability against human liver microsomes (HLM t1/2 > 180 min) and may be suitable for oral administration without the need for a pharmacokinetic (PK) boosting agent such as ritonavir.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Compuestos Macrocíclicos , SARS-CoV-2 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Humanos , SARS-CoV-2/efectos de los fármacos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/farmacocinética , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Antivirales/farmacocinética , Microsomas Hepáticos/metabolismo , Peptidomiméticos/farmacología , Peptidomiméticos/química , Peptidomiméticos/síntesis química , Descubrimiento de Drogas , Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/farmacocinética , Relación Estructura-Actividad
12.
Bioorg Chem ; 147: 107316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583246

RESUMEN

Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.


Asunto(s)
Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Proteolisis/efectos de los fármacos , Estructura Molecular , Peptidomiméticos/farmacología , Peptidomiméticos/química , Peptidomiméticos/síntesis química , Endopeptidasas
13.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338655

RESUMEN

Trypsin-like serine proteases are involved in many important physiological processes like blood coagulation and remodeling of the extracellular matrix. On the other hand, they are also associated with pathological conditions. The urokinase-pwlasminogen activator (uPA), which is involved in tissue remodeling, can increase the metastatic behavior of various cancer types when overexpressed and dysregulated. Another member of this protease class that received attention during the SARS-CoV 2 pandemic is TMPRSS2. It is a transmembrane serine protease, which enables cell entry of the coronavirus by processing its spike protein. A variety of different inhibitors have been published against both proteases. However, the selectivity over other trypsin-like serine proteases remains a major challenge. In the current study, we replaced the arginine moiety at the P1 site of peptidomimetic inhibitors with different bioisosteres. Enzyme inhibition studies revealed that the phenylguanidine moiety in the P1 site led to strong affinity for TMPRSS2, whereas the cyclohexylguanidine derivate potently inhibited uPA. Both inhibitors exhibited high selectivity over other structurally similar and physiologically important proteases.


Asunto(s)
Peptidomiméticos , Inhibidores de Serina Proteinasa , Activador de Plasminógeno de Tipo Uroquinasa , Ligandos , Péptido Hidrolasas , Peptidomiméticos/química , Peptidomiméticos/farmacología , Tripsina , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Serina Endopeptidasas , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología
14.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731881

RESUMEN

Aging and age-related diseases are associated with a decline in the capacity of protein turnover. Intrinsically disordered proteins, as well as proteins misfolded and oxidatively damaged, prone to aggregation, are preferentially digested by the ubiquitin-independent proteasome system (UIPS), a major component of which is the 20S proteasome. Therefore, boosting 20S activity constitutes a promising strategy to counteract a decrease in total proteasome activity during aging. One way to enhance the proteolytic removal of unwanted proteins appears to be the use of peptide-based activators of the 20S. In this study, we synthesized a series of peptides and peptidomimetics based on the C-terminus of the Rpt5 subunit of the 19S regulatory particle. Some of them efficiently stimulated human 20S proteasome activity. The attachment of the cell-penetrating peptide TAT allowed them to penetrate the cell membrane and stimulate proteasome activity in HEK293T cells, which was demonstrated using a cell-permeable substrate of the proteasome, TAS3. Furthermore, the best activator enhanced the degradation of aggregation-prone α-synuclein and Tau-441. The obtained compounds may therefore have the potential to compensate for the unbalanced proteostasis found in aging and age-related diseases.


Asunto(s)
Envejecimiento , Fragmentos de Péptidos , Complejo de la Endopetidasa Proteasomal , Humanos , Envejecimiento/metabolismo , alfa-Sinucleína/metabolismo , Células HEK293 , Péptidos/farmacología , Péptidos/química , Péptidos/metabolismo , Peptidomiméticos/farmacología , Peptidomiméticos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Proteínas tau/metabolismo , Fragmentos de Péptidos/farmacología
15.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39273149

RESUMEN

Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.


Asunto(s)
Furina , Furina/antagonistas & inhibidores , Furina/metabolismo , Humanos , Animales , Peptidomiméticos/farmacología , Peptidomiméticos/química , Peptidomiméticos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Péptidos/uso terapéutico , Péptidos/química , Péptidos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Desarrollo de Medicamentos
16.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125898

RESUMEN

The first example of applying salicylaldehyde derivatives, as well as coumarin with the formyl group at the C8 position in its structure, as carbonyl partners in a three-component Passerini reaction, is presented. As a result of research on the conditions of the Passerini reaction, the important role of the hydroxyl group in the salicylaldehyde used in the course of the multicomponent reaction was revealed. When an aldehyde with an unprotected hydroxyl group is used, only two-component α-hydroxy amide products are obtained. In contrast, the use of acylated aldehyde results in three-component α-acyloxy amide products with high efficiency. The developed protocol gives access to structurally diversified peptidomimetics with good yield. The compounds were also evaluated as antimicrobial agents against selected strains of nosocomial pathogenic bacteria. The structure-activity relationship revealed that inhibitory activity is strongly related to the presence of the trifluoromethyl group (CF3) or the methyl group at the C4 position in an unsaturated lactone ring of the coumarin scaffold. MIC and MBC studies were carried out on eight selected pathogenic bacteria strains (Gram-positive pathogenic Staphylococcus aureus strain (ATCC 23235), as well as on Gram-negative E. coli (K12 (ATCC 25404), R2 (ATCC 39544), R3 (ATCC 11775), and R4 (ATCC 39543)), Acinetobacter baumannii (ATCC 17978), Pseudomonas aeruginosa (ATCC 15442), and Enterobacter cloacae (ATCC 49141) have shown that the tested compounds show a strong bactericidal effect at low concentrations. Among all agents investigated, five exhibit higher antimicrobial activity than those observed for commonly used antibiotics. It should be noted that all the compounds tested showed very high activity against S. aureus, which is the main source of nosocomial infections that cause numerous fatalities. Additionally, the cytotoxicity of sixteen derivatives was measured with the use of the MTT test on BALB/c3T3 mouse fibroblast cell lines. The cytotoxicity studies revealed that the tested substances exert a similar or lower effect on cell proliferation than that observed for commonly used antibiotics within the range of therapeutic doses. A parallel MTT assay using ciprofloxacin, bleomycin, and cloxacillin showed that these antibiotics are more cytotoxic when tested in mammalian cells, and cell viability is in the range of 85.0-89.9%. Furthermore, we have shown that the studied coumarin-based peptidomimetics, depending on their structural characteristics, are nonselective and act efficiently against various Gram-positive and Gram-negative pathogens, which is of great importance for hospitalised patients.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Peptidomiméticos , Peptidomiméticos/farmacología , Peptidomiméticos/química , Peptidomiméticos/síntesis química , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Relación Estructura-Actividad , Cumarinas/farmacología , Cumarinas/química , Cumarinas/síntesis química , Staphylococcus aureus/efectos de los fármacos , Aldehídos/química , Aldehídos/farmacología , Infección Hospitalaria/microbiología , Infección Hospitalaria/tratamiento farmacológico
17.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893366

RESUMEN

The development of antimicrobial drugs with novel structures and clear mechanisms of action that are active against drug-resistant bacteria has become an urgent need of safeguarding human health due to the rise of bacterial drug resistance. The discovery of AMPs and the development of amphipathic peptidomimetics have lay the foundation for novel antimicrobial agents to combat drug resistance due to their overall strong antimicrobial activities and unique membrane-active mechanisms. To break the limitation of AMPs, researchers have invested in great endeavors through various approaches in the past years. This review summarized the recent advances including the development of antibacterial small molecule peptidomimetics and peptide-mimic cationic oligomers/polymers, as well as mechanism-of-action studies. As this exciting interdisciplinary field is continuously expanding and growing, we hope this review will benefit researchers in the rational design of novel antimicrobial peptidomimetics in the future.


Asunto(s)
Peptidomiméticos , Peptidomiméticos/química , Peptidomiméticos/farmacología , Peptidomiméticos/síntesis química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Pruebas de Sensibilidad Microbiana , Bacterias/efectos de los fármacos
18.
Nat Methods ; 17(7): 665-680, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32483333

RESUMEN

The Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities. Here we review tools developed in the last 5 years, including over 80 methods. We discuss improvements to the score function, user interfaces and usability. Rosetta is available at http://www.rosettacommons.org.


Asunto(s)
Sustancias Macromoleculares/química , Modelos Moleculares , Proteínas/química , Programas Informáticos , Simulación del Acoplamiento Molecular , Peptidomiméticos/química , Conformación Proteica
19.
Chemistry ; 29(12): e202203476, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36454662

RESUMEN

Small molecule-drug conjugates (SMDCs) mimicking the RGD sequence (-Arg-Gly-Asp-) with a non-peptide moiety require a pharmacophore-independent attachment site. A library of 36 sulfonamide-modified RGD mimetics with nM to pM affinity for integrin αV ß3 was synthesized and analysed via DAD mapping. The best structure of the conjugable RGD mimetic was used and a linker was attached to an aromatic ring by Negishi cross-coupling. The product retained high affinity and selectivity for integrin αV ß3 . The conjugable RGD mimetic was then attached to an enzymatically cleavable GKGEVA linker equipped with a self-immolative PABC and the antimitotic drug monomethyl auristatin E (MMAE). The resulting SMDC preferred binding to integrin αV ß3 over α5 ß1 in a ratio of 1 : 4519 (ELISA) and showed selectivity for αV ß3 -positive WM115 cells over αV ß3 -negative M21-L cells in the in vitro cell adhesion assay as well as in cell viability assays with a targeting index of 134 (M21-L/WM115).


Asunto(s)
Integrina alfaVbeta3 , Peptidomiméticos , Integrina alfaVbeta3/química , Peptidomiméticos/química , Oligopéptidos/química
20.
J Org Chem ; 88(14): 9910-9919, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37429014

RESUMEN

The efficient transformation of hydroxyproline "doubly customizable units" into rigid hexahydropyrimidine units takes place in good global yields and generates compounds of pharmaceutical interest. In particular, the process can readily provide access to peptidomimetics and peptides with reversed sequences or with valuable turns.


Asunto(s)
Péptidos , Peptidomiméticos , Hidroxiprolina , Péptidos/química , Peptidomiméticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA