Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(19): 4874-4885.e16, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34433011

RESUMEN

Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.


Asunto(s)
Evolución Molecular , Genoma , Perisodáctilos/genética , Animales , Demografía , Flujo Génico , Variación Genética , Geografía , Heterocigoto , Homocigoto , Especificidad del Huésped , Cadenas de Markov , Mutación/genética , Filogenia , Especificidad de la Especie , Factores de Tiempo
2.
Nature ; 574(7776): 103-107, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31511700

RESUMEN

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.


Asunto(s)
ADN Antiguo/análisis , Esmalte Dental/metabolismo , Fósiles , Perisodáctilos/clasificación , Perisodáctilos/genética , Filogenia , Proteoma/genética , Proteómica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Historia Antigua , Humanos , Masculino , Perisodáctilos/metabolismo , Fosforilación/genética , Proteoma/análisis
3.
Mol Biol Evol ; 40(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561011

RESUMEN

The black rhinoceros (Diceros bicornis L.) is a critically endangered species historically distributed across sub-Saharan Africa. Hunting and habitat disturbance have diminished both its numbers and distribution since the 19th century, but a poaching crisis in the late 20th century drove them to the brink of extinction. Genetic and genomic assessments can greatly increase our knowledge of the species and inform management strategies. However, when a species has been severely reduced, with the extirpation and artificial admixture of several populations, it is extremely challenging to obtain an accurate understanding of historic population structure and evolutionary history from extant samples. Therefore, we generated and analyzed whole genomes from 63 black rhinoceros museum specimens collected between 1775 and 1981. Results showed that the black rhinoceros could be genetically structured into six major historic populations (Central Africa, East Africa, Northwestern Africa, Northeastern Africa, Ruvuma, and Southern Africa) within which were nested four further subpopulations (Maasailand, southwestern, eastern rift, and northern rift), largely mirroring geography, with a punctuated north-south cline. However, we detected varying degrees of admixture among groups and found that several geographical barriers, most prominently the Zambezi River, drove population discontinuities. Genomic diversity was high in the middle of the range and decayed toward the periphery. This comprehensive historic portrait also allowed us to ascertain the ancestry of 20 resequenced genomes from extant populations. Lastly, using insights gained from this unique temporal data set, we suggest management strategies, some of which require urgent implementation, for the conservation of the remaining black rhinoceros diversity.


Asunto(s)
Evolución Biológica , Perisodáctilos , Animales , África Oriental , África del Sur del Sahara , Perisodáctilos/genética , Especies en Peligro de Extinción
4.
Biol Reprod ; 111(2): 376-390, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38775197

RESUMEN

Efforts to implement effective assisted reproductive technologies (ARTs) for the conservation of the northern white rhinoceros (NWR; Ceratotherium simum cottoni) to prevent its forthcoming extinction, could be supported by research conducted on the closely related southern white rhinoceros (SWR; Ceratotherium simum simum). Within the follicle, extracellular vesicles (EVs) play a fundamental role in the bidirectional communication facilitating the crucial transport of regulatory molecules such as microRNAs (miRNAs) that control follicular growth and oocyte development. This study aimed to elucidate the dynamics of EV-miRNAs in stage-dependent follicular fluid (FF) during SWR ovarian antral follicle development. Three distinct follicular stages were identified based on diameter: Growing (G; 11-17 mm), Dominant (D; 18-29 mm), and Pre-ovulatory (P; 30-34 mm). Isolated EVs from the aspirated FF of segmented follicle stages were used to identify EV-miRNAs previously known via subsequent annotation to all equine (Equus caballus; eca), bovine (Bos taurus; bta), and human (Homo sapiens; hsa) miRNAs. A total of 417 miRNAs were detected, with 231 being mutually expressed across all three stages, including eca-miR-148a and bta-miR-451 as the top highly expressed miRNAs. Distinct expression dynamics in miRNA abundance were observed across the three follicular stages, including 31 differentially expressed miRNAs that target various pathways related to follicular growth and development, with 13 miRNAs commonly appearing amidst two different comparisons. In conclusion, this pioneering study provides a comprehensive understanding of the stage-specific expression dynamics of FF EV-miRNAs in the SWR. These findings provide insights that may lead to novel approaches in enhancing ARTs to catalyze rhinoceros conservation efforts.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Folículo Ovárico , Perisodáctilos , Animales , MicroARNs/metabolismo , MicroARNs/genética , Perisodáctilos/metabolismo , Perisodáctilos/genética , Vesículas Extracelulares/metabolismo , Femenino , Folículo Ovárico/metabolismo , Líquido Folicular/metabolismo
5.
J Virol ; 97(4): e0193222, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37022231

RESUMEN

High-throughput sequences were generated from DNA and cDNA from four Southern white rhinoceros (Ceratotherium simum simum) located in the Taronga Western Plain Zoo in Australia. Virome analysis identified reads that were similar to Mus caroli endogenous gammaretrovirus (McERV). Previous analysis of perissodactyl genomes did not recover gammaretroviruses. Our analysis, including the screening of the updated white rhinoceros (Ceratotherium simum) and black rhinoceros (Diceros bicornis) draft genomes identified high-copy orthologous gammaretroviral ERVs. Screening of Asian rhinoceros, extinct rhinoceros, domestic horse, and tapir genomes did not identify related gammaretroviral sequences in these species. The newly identified proviral sequences were designated SimumERV and DicerosERV for the white and black rhinoceros retroviruses, respectively. Two long terminal repeat (LTR) variants (LTR-A and LTR-B) were identified in the black rhinoceros, with different copy numbers associated with each (n = 101 and 373, respectively). Only the LTR-A lineage (n = 467) was found in the white rhinoceros. The African and Asian rhinoceros lineages diverged approximately 16 million years ago. Divergence age estimation of the identified proviruses suggests that the exogenous retroviral ancestor of the African rhinoceros ERVs colonized their genomes within the last 8 million years, a result consistent with the absence of these gammaretroviruses from Asian rhinoceros and other perissodactyls. The black rhinoceros germ line was colonized by two lineages of closely related retroviruses and white rhinoceros by one. Phylogenetic analysis indicates a close evolutionary relationship with ERVs of rodents including sympatric African rats, suggesting a possible African origin of the identified rhinoceros gammaretroviruses. IMPORTANCE Rhinoceros genomes were thought to be devoid of gammaretroviruses, as has been determined for other perissodactyls (horses, tapirs, and rhinoceros). While this may be true of most rhinoceros, the African white and black rhinoceros genomes have been colonized by evolutionarily young gammaretroviruses (SimumERV and DicerosERV for the white and black rhinoceros, respectively). These high-copy endogenous retroviruses (ERVs) may have expanded in multiple waves. The closest relative of SimumERV and DicerosERV is found in rodents, including African endemic species. Restriction of the ERVs to African rhinoceros suggests an African origin for the rhinoceros gammaretroviruses.


Asunto(s)
Evolución Biológica , Retrovirus Endógenos , Gammaretrovirus , Perisodáctilos , Animales , Ratones , Ratas , Retrovirus Endógenos/clasificación , Retrovirus Endógenos/genética , Gammaretrovirus/clasificación , Gammaretrovirus/genética , Caballos/genética , Caballos/virología , Perisodáctilos/genética , Perisodáctilos/virología , Filogenia , Provirus/genética
6.
Zoo Biol ; 43(4): 364-370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549509

RESUMEN

Although black rhinoceros Diceros bicornis are mostly solitary in the wild, the Hiroshima City Asa Zoological Park (Asa Zoo) has kept a family group together during the daytime, with good reproductive performance over five decades. Management procedures at the zoo include temporary single housing of the mother before and after giving birth, which facilitates maintenance of a compatible family group. We recorded intra-group spatial relationships for 4 years and 4 months, during which time an adult female reared two consecutive calves. During daytime she remained in an enclosure with her new calf, one or two older offspring, and an adult male, the sire of all her offspring. Proximity (within two adult body-lengths) scores between the mother and her two calves were especially high during the first year after birth, and only slightly lower for her older offspring. The adult male had the lowest proximity scores. The spatial relationships were visualized by applying multidimensional scaling (MDS) to the proximity scores. Mother and calves were plotted close to each other, with older offspring slightly farther apart on the two-dimensional MDS representation; the adult male was more distant from the other group members. These findings indicate clear follower-type characteristics in the mother-calf pair and also older immature offspring, albeit to a lesser degree. Although black rhinoceros are generally solitary in the wild, our results duplicate observations of some wild black rhinoceros groups containing an adult female, her calf, and an older immature, with adult males being largely solitary.


Asunto(s)
Animales de Zoológico , Perisodáctilos , Animales , Perisodáctilos/fisiología , Perisodáctilos/genética , Femenino , Masculino , Japón , Conducta Social , Crianza de Animales Domésticos/métodos
7.
BMC Genomics ; 24(1): 527, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674108

RESUMEN

BACKGROUND: The harsh conditions of high-altitude environments are known to drive the evolution of physiological and morphological traits in endothermic animals. These conditions are expected to result in the adaptive evolution of protein coding genes encoded in mitochondrial genomes that are vital for the oxidative phosphorylation pathway. In this study, we formally tested for signatures of adaptive evolution on mitochondrial protein coding genes in Tapirus pinchaque and other odd-toed ungulates inhabiting high-elevation environments. RESULTS: The AT-rich mitochondrial genome of T. pinchaque is 16,750 bp long. A phylomitogenomic analysis supports the monophyly of the genus Tapirus and families in the Perissodactyla. The ratio of non-synonymous to synonymous substitutions demonstrated that all mitochondrial genes undergo purifying selection in T. pinchaque and other odd ungulates living at high elevations. Over this negative background selection, Branch Models suggested that cox3 and nad6 might be undergoing stronger purifying selection than other mitochondrial protein coding genes. Furthermore, Site Models suggested that one and four sites in nad2 and nad5, respectively, could be experiencing positive selection. However, these results were supported by Likelihood Ratio Tests but not Bayesian Empirical Bayes posterior probabilities. Additional analyses (in DataMonkey) indicated a relaxation of selection strength in nad6, evidence of episodic diversifying selection in cob, and revealed episodic positive/diversifying selection signatures for two sites in nad1, and one site each in nad2 and nad4. CONCLUSION: The mitochondrial genome of T. pinchaque is an important genomic resource for conservation of this species and this study contributes to the understanding of adaptive evolution of mitochondrial protein coding genes in odd-toed ungulates inhabiting high-altitude environments.


Asunto(s)
Altitud , Genoma Mitocondrial , Animales , Teorema de Bayes , Perisodáctilos/genética , Proteínas Mitocondriales
8.
Arch Microbiol ; 205(5): 169, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017778

RESUMEN

A Gram-negative strain, anaerobic, non-motile, non-spore-forming, rod-shaped bacterial strain named as NGMCC 1.200684 T was isolated from the fresh feces of rhinoceros in Beijing Zoo. Based on 16S rRNA gene sequences, phylogenetic analysis indicated that strain NGMCC 1.200684 T belonged to the genus Bacteroides and was most strongly related to the type strain of Bacteroides uniformis ATCC 8492 T (96.88%). The G + C content of the genomic DNA was determined to be 46.62%. Between strains NGMCC 1.200684 T and B. uniformis ATCC 8492 T, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were 93.89 and 67.60%, respectively. Strain NGMCC 1.200684 T can produce acid from fermentation of several substrates, including glucose, mannitol, lactose, saccharose, maltose, salicin, xylose, cellobiose, mannose, raffinose, sorbitol, trehalose, D-galactose, and maltotriose. The major cellular fatty acids (> 10%) were identified as anteiso-C15:0, iso-C15:0, iso-C14:0, and iso-C17:0 3-OH. The polar lipid profiles of strain NGMCC 1.200684 T were determined to contain diphosphatidyl glycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, and two unknown amino-phospholipids. Based on phenotypic, phylogenetic, and chemotaxonomic characteristics, a novel species of the genus Bacteroides, Bacteroides rhinocerotis sp. nov. is proposed. The type strain is NGMCC 1.200684 T (= CGMCC 1.18013 T = JCM 35702 T).


Asunto(s)
Bacteroides , Ácidos Grasos , Animales , Beijing , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Ácidos Grasos/química , Heces/microbiología , Bacteroides/genética , Perisodáctilos/genética , Técnicas de Tipificación Bacteriana
9.
Artículo en Inglés | MEDLINE | ID: mdl-37074162

RESUMEN

Two strains of Chryseobacterium identified from different experiments are proposed to represent new species. Strain WLa1L2M3T was isolated from the digestive tract of an Oryctes rhinoceros beetle larva. Strain 09-1422T was isolated from a cage housing the stick insect Eurycantha calcarata. Sequence analysis of the 16S rRNA and rpoB genes found both strains to be similar but not identical to other Chryseobacterium species. Whole-genome sequencing suggested the isolates represent new species, with average nucleotide identity values ranging from 74.6 to 80.5 %. Genome-to-genome distance calculations produced values below 25.3 %, and digital DNA-DNA hybridization values were 13.7-29.9 %, all suggesting they are distinct species. The genomic DNA G+C content of WLa1L2M3T is approximately 32.53 %, and of 09-1422T is approximately 35.89 %. The predominant cellular fatty acids of strain WLa1L2M3T are C15 : 0 iso, summed feature 9 (C16 : 0 10OH or C17 : 1 iso ω6c), C17 : 0 iso 3OH, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C15 : 0 iso 3OH, C15 : 0 anteiso and C13 : 0 iso, and those of strain 09-1422T are C15 : 0 iso, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C17 : 0 iso 3OH, C15 : 0 anteiso, C15 : 0 iso 3OH, C16 : 1 ω7c, C17 : 0 2OH and C18 : 0. In addition, physiological and biochemical tests revealed phenotypic differences from related Chryseobacterium type strains. These cumulative data indicate that the two strains represent novel species of the genus Chryseobacterium for which the names Chryseobacterium oryctis sp. nov. and Chryseobacterium kimseyorum sp. nov. are proposed with WLa1L2M3T (=BCRC 81350T=JCM 35215T=CIP 112035T) and 09-1422T (=UCDFST 09-1422T=BCRC 81359T=CIP 112165T), as type strains, respectively.


Asunto(s)
Chryseobacterium , Escarabajos , Animales , Ácidos Grasos/química , Técnicas de Tipificación Bacteriana , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Composición de Base , Filogenia , Insectos , Hibridación de Ácido Nucleico , Perisodáctilos/genética
10.
Biol Lett ; 19(11): 20230343, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37909055

RESUMEN

The woolly rhinoceros (Coelodonta antiquitatis) is an iconic species of the Eurasian Pleistocene megafauna, which was abundant in Eurasia in the Pleistocene until its demise beginning approximately 10 000 years ago. Despite the early recovery of several specimens from well-known European archaeological sites, including its type specimen (Blumenbach 1799), no genomes of European populations were available so far, and all available genomic data originated exclusively from Siberian populations. Using coprolites of cave hyenas (Crocuta crocuta spelea) recovered from Middle Palaeolithic layers of two caves in Germany (Bockstein-Loch and Hohlenstein-Stadel), we isolated and enriched predator and prey DNA to assemble the first European woolly rhinoceros mitogenomes, in addition to cave hyena mitogenomes. Both coprolite samples produced copious sequences assigned to C. crocuta (27% and 59% mitogenome coverage, respectively) and woolly rhinoceros (Coelodonta antiquitatis; 27% and 81% coverage, respectively). The sequences suggested considerable DNA degradation, which may limit the conclusions to be drawn; however, the mitogenomes of European woolly rhinoceros are genetically distinct from the Siberian woolly rhinoceros, and analyses of the more complete mitogenome suggest a split of the populations potentially coinciding with the earliest fossil records of woolly rhinoceros in Europe.


Asunto(s)
Genoma Mitocondrial , Hyaenidae , Animales , Filogenia , Hyaenidae/genética , ADN , Perisodáctilos/genética , Perisodáctilos/metabolismo , Fósiles
11.
Proc Natl Acad Sci U S A ; 117(45): 28150-28159, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33077602

RESUMEN

Local wild bovids have been determined to be important prey on the northeastern Tibetan Plateau (NETP), where hunting game was a major subsistence strategy until the late Neolithic, when farming lifestyles dominated in the neighboring Loess Plateau. However, the species affiliation and population ecology of these prehistoric wild bovids in the prehistoric NETP remain unknown. Ancient DNA (aDNA) analysis is highly informative in decoding this puzzle. Here, we applied aDNA analysis to fragmented bovid and rhinoceros specimens dating ∼5,200 y B.P. from the Neolithic site of Shannashuzha located in the marginal area of the NETP. Utilizing both whole genomes and mitochondrial DNA, our results demonstrate that the range of the present-day tropical gaur (Bos gaurus) extended as far north as the margins of the NETP during the late Neolithic from ∼29°N to ∼34°N. Furthermore, comparative analysis with zooarchaeological and paleoclimatic evidence indicated that a high summer temperature in the late Neolithic might have facilitated the northward expansion of tropical animals (at least gaur and Sumatran-like rhinoceros) to the NETP. This enriched the diversity of wildlife, thus providing abundant hunting resources for humans and facilitating the exploration of the Tibetan Plateau as one of the last habitats for hunting game in East Asia.


Asunto(s)
Biodiversidad , Bovinos , ADN Antiguo/análisis , Genoma/genética , Migración Animal , Animales , Bovinos/clasificación , Bovinos/genética , ADN Mitocondrial , Historia Antigua , Fenómenos de Retorno al Lugar Habitual , Humanos , Perisodáctilos/clasificación , Perisodáctilos/genética , Dinámica Poblacional/historia , Rumiantes/clasificación , Rumiantes/genética , Tibet
12.
BMC Genomics ; 23(1): 426, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672676

RESUMEN

BACKGROUND: An optimal starting point for relating genome function to organismal biology is a high-quality nuclear genome assembly, and long-read sequencing is revolutionizing the production of this genomic resource in insects. Despite this, nuclear genome assemblies have been under-represented for agricultural insect pests, particularly from the order Coleoptera. Here we present a de novo genome assembly and structural annotation for the coconut rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae), based on Oxford Nanopore Technologies (ONT) long-read data generated from a wild-caught female, as well as the assembly process that also led to the recovery of the complete circular genome assemblies of the beetle's mitochondrial genome and that of the biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). As an invasive pest of palm trees, O. rhinoceros is undergoing an expansion in its range across the Pacific Islands, requiring new approaches to management that may include strategies facilitated by genome assembly and annotation. RESULTS: High-quality DNA isolated from an adult female was used to create four ONT libraries that were sequenced using four MinION flow cells, producing a total of 27.2 Gb of high-quality long-read sequences. We employed an iterative assembly process and polishing with one lane of high-accuracy Illumina reads, obtaining a final size of the assembly of 377.36 Mb that had high contiguity (fragment N50 length = 12 Mb) and accuracy, as evidenced by the exceptionally high completeness of the benchmarked set of conserved single-copy orthologous genes (BUSCO completeness = 99.1%). These quality metrics place our assembly ahead of the published Coleopteran genomes, including that of an insect model, the red flour beetle (Tribolium castaneum). The structural annotation of the nuclear genome assembly contained a highly-accurate set of 16,371 protein-coding genes, with only 2.8% missing BUSCOs, and the expected number of non-coding RNAs. The number and structure of paralogous genes in a gene family like Sigma GST is lower than in another scarab beetle (Onthophagus taurus), but higher than in the red flour beetle (Tribolium castaneum), which suggests expansion of this GST class in Scarabaeidae. The quality of our gene models was also confirmed with the correct placement of O. rhinoceros among other members of the rhinoceros beetles (subfamily Dynastinae) in a phylogeny based on the sequences of 95 protein-coding genes in 373 beetle species from all major lineages of Coleoptera. Finally, we provide a list of 30 candidate dsRNA targets whose orthologs have been experimentally validated as highly effective targets for RNAi-based control of several beetles. CONCLUSIONS: The genomic resources produced in this study form a foundation for further functional genetic research and management programs that may inform the control and surveillance of O. rhinoceros populations, and we demonstrate the efficacy of de novo genome assembly using long-read ONT data from a single field-caught insect.


Asunto(s)
Escarabajos , Secuenciación de Nanoporos , Nudiviridae , Animales , Escarabajos/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Perisodáctilos/genética , Filogenia
13.
Nature ; 599(7884): 209-210, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34667298
14.
Reprod Fertil Dev ; 34(13): 875-888, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35871524

RESUMEN

CONTEXT: With two northern white rhinos (NWR) remaining, the continued existence of this species relies on studying their relative, the southern white rhino (SWR). AIMS: (1) Characterise gene expression in granulosa cells (GC) from SWR cumulus oocyte complexes (COCs) prior to (Pre-) and after (Post-) in vitro maturation (IVM), comparing culture media and oocytes from donors treated with or without gonadotropin stimulation prior to ovum recovery; and (2) evaluate COC glucose consumption in spent media. METHODS: COCs were retrieved from four SWRs. Granulosa cells were collected before and after IVM in SDZ or IZW medium. Total RNA was evaluated by qPCR. KEY RESULTS: Oocyte maturation was greater in SDZ than IZW media. Expression of genes associated with follicle development increased in Pre-IVM GC. Six genes were differentially expressed in Post-IVM GC from stimulated compared to unstimulated donors. COCs from stimulated animals consumed more glucose. Fifty seven percent of oocytes in SDZ medium consumed all available glucose. CONCLUSIONS: Gene expression changed upon in vitro maturation and gonadotropin stimulation. Higher glucose availability might be needed during IVM. IMPLICATIONS: This is the first study examining GC gene expression and COC metabolic requirements in rhinoceros, which are critical aspects to optimise IVM of rhinoceros oocytes.


Asunto(s)
Células del Cúmulo , Técnicas de Maduración In Vitro de los Oocitos , Animales , Células del Cúmulo/metabolismo , Femenino , Expresión Génica , Glucosa/metabolismo , Gonadotropinas , Células de la Granulosa/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/metabolismo , Perisodáctilos/genética
15.
Mol Biol Evol ; 37(11): 3105-3117, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32585004

RESUMEN

Africa's black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros are closely related sister-taxa that evolved highly divergent obligate browsing and grazing feeding strategies. Although their precursor species Diceros praecox and Ceratotherium mauritanicum appear in the fossil record ∼5.2 Ma, by 4 Ma both were still mixed feeders, and were even spatiotemporally sympatric at several Pliocene sites in what is today Africa's Rift Valley. Here, we ask whether or not D. praecox and C. mauritanicum were reproductively isolated when they came into Pliocene secondary contact. We sequenced and de novo assembled the first annotated black rhinoceros reference genome and compared it with available genomes of other black and white rhinoceros. We show that ancestral gene flow between D. praecox and C. mauritanicum ceased sometime between 3.3 and 4.1 Ma, despite conventional methods for the detection of gene flow from whole genome data returning false positive signatures of recent interspecific migration due to incomplete lineage sorting. We propose that ongoing Pliocene genetic exchange, for up to 2 My after initial divergence, could have potentially hindered the development of obligate feeding strategies until both species were fully reproductively isolated, but that the more severe and shifting paleoclimate of the early Pleistocene was likely the ultimate driver of ecological specialization in African rhinoceros.


Asunto(s)
Flujo Génico , Perisodáctilos/genética , Aislamiento Reproductivo , Animales , Conducta Alimentaria , Femenino , Genoma , Masculino , Tasa de Mutación
16.
Genome Res ; 28(6): 780-788, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29798851

RESUMEN

The critically endangered northern white rhinoceros is believed to be extinct in the wild, with the recent death of the last male leaving only two remaining individuals in captivity. Its extinction would appear inevitable, but the development of advanced cell and reproductive technologies such as cloning by nuclear transfer and the artificial production of gametes via stem cells differentiation offer a second chance for its survival. In this work, we analyzed genome-wide levels of genetic diversity, inbreeding, population history, and demography of the white rhinoceros sequenced from cryopreserved somatic cells, with the goal of informing how genetically valuable individuals could be used in future efforts toward the genetic rescue of the northern white rhinoceros. We present the first sequenced genomes of the northern white rhinoceros, which show relatively high levels of heterozygosity and an average genetic divergence of 0.1% compared with the southern subspecies. The two white rhinoceros subspecies appear to be closely related, with low genetic admixture and a divergent time <80,000 yr ago. Inbreeding, as measured by runs of homozygosity, appears slightly higher in the southern than the northern white rhinoceros. This work demonstrates the value of the northern white rhinoceros cryopreserved genetic material as a potential gene pool for saving this subspecies from extinction.


Asunto(s)
Conservación de los Recursos Naturales , Variación Genética/genética , Perisodáctilos/genética , Animales , Criopreservación/métodos , Endogamia , Especificidad de la Especie
17.
Mol Ecol ; 30(23): 6355-6369, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34176179

RESUMEN

Large vertebrates are extremely sensitive to anthropogenic pressure, and their populations are declining fast. The white rhinoceros (Ceratotherium simum) is a paradigmatic case: this African megaherbivore has suffered a remarkable decline in the last 150 years due to human activities. Its subspecies, the northern (NWR) and the southern white rhinoceros (SWR), however, underwent opposite fates: the NWR vanished quickly, while the SWR recovered after the severe decline. Such demographic events are predicted to have an erosive effect at the genomic level, linked to the extirpation of diversity, and increased genetic drift and inbreeding. However, there is little empirical data available to directly reconstruct the subtleties of such processes in light of distinct demographic histories. Therefore, we generated a whole-genome, temporal data set consisting of 52 resequenced white rhinoceros genomes, representing both subspecies at two time windows: before and during/after the bottleneck. Our data reveal previously unknown population structure within both subspecies, as well as quantifiable genomic erosion. Genome-wide heterozygosity decreased significantly by 10% in the NWR and 36% in the SWR, and inbreeding coefficients rose significantly by 11% and 39%, respectively. Despite the remarkable loss of genomic diversity and recent inbreeding it suffered, the only surviving subspecies, the SWR, does not show a significant accumulation of genetic load compared to its historical counterpart. Our data provide empirical support for predictions about the genomic consequences of shrinking populations, and our findings have the potential to inform the conservation efforts of the remaining white rhinoceroses.


Asunto(s)
Efectos Antropogénicos , Perisodáctilos , Animales , Genómica , Endogamia , Perisodáctilos/genética
18.
J Hered ; 112(4): 385-390, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33950221

RESUMEN

Current management models for many endangered species focus primarily on demographic recovery, often ignoring their intrinsic ecological requirements. Across the protected area network of southern Africa, most southern white rhinoceros are managed in populations of less than 50 individuals, experiencing restricted dispersal opportunities, and limited breeding male numbers due to their exclusive home range requirements. In the absence of information on the breeding structure of these populations, poor management decisions may require females to either forego a breeding opportunity or select to inbreed with close relatives. Here, we use a combination of social pedigree data together with genetic analyses to reconstruct the parentage of all 28 offspring produced in a 5-year period in a managed free-ranging southern white rhinoceros population. During this period, all breeding females (founders and first-generation daughters) had access to both a founder male (father to most of the daughters) and two recently introduced inexperienced males. We report that while founder females were more likely to breed with the founder male, their daughters, in contrast, were more likely to breed with the introduced males, thus avoiding inbreeding. However, we also found evidence of father-daughter inbreeding in this population, and contend that in the absence of choice, rather than forego a breeding opportunity, female white rhinoceros will inbreed with their fathers. We argue that to effectively conserve the southern white rhinoceros, managers need to understand the breeding structure of these small populations, particularly in terms of parentage and kinship.


Asunto(s)
Endogamia , Perisodáctilos , Animales , Especies en Peligro de Extinción , Femenino , Masculino , Perisodáctilos/genética
19.
J Virol ; 92(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30209175

RESUMEN

The evolution of mammalian genomes has been shaped by interactions with endogenous retroviruses (ERVs). In this study, we investigated the distribution and diversity of ERVs in the mammalian order Perissodactyla, with a view to understanding their impact on the evolution of modern equids (family Equidae). We characterize the major ERV lineages in the horse genome in terms of their genomic distribution, ancestral genome organization, and time of activity. Our results show that subsequent to their ancestral divergence from rhinoceroses and tapirs, equids acquired four novel ERV lineages. We show that two of these ERV lineages proliferated extensively in the lineage leading to modern horses, and one contains loci that are actively transcribed in specific tissues. In addition, we show that the white rhinoceros has resisted germ line colonization by retroviruses for more than 54 million years-longer than any other extant mammalian species. The map of equine ERVs that we provide here will be of great utility to future studies aiming to investigate the potential functional roles of equine ERVs and their impact on equine evolution.IMPORTANCE ERVs in the host genome are highly informative about the long-term interactions of retroviruses and hosts. They are also interesting because they have influenced the evolution of mammalian genomes in various ways. In this study, we derive a calibrated timeline describing the process through which ERV diversity has been generated in the equine germ line. We determined the distribution and diversity of perissodactyl ERV lineages and inferred their retrotranspositional activity during evolution, thereby gaining insight into the long-term coevolutionary history of retroviruses and mammals. Our study provides a platform for future investigations to identify equine ERV loci involved in physiological processes and/or pathological conditions.


Asunto(s)
Retrovirus Endógenos/clasificación , Retrovirus Endógenos/genética , Evolución Molecular , Variación Genética , Genoma , Caballos/virología , Infecciones por Retroviridae/veterinaria , Animales , Secuencia de Bases , Linaje de la Célula , Biología Computacional , Retrovirus Endógenos/aislamiento & purificación , Genómica , Caballos/genética , Perisodáctilos/genética , Perisodáctilos/virología , Filogenia , Infecciones por Retroviridae/virología , Homología de Secuencia , Transcriptoma
20.
Proc Biol Sci ; 285(1890)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404873

RESUMEN

The white rhinoceros (Ceratotherium simum) has a discontinuous African distribution, which is limited by the extent of sub-Saharan grasslands. The southern population (SWR) declined to its lowest number around the turn of the nineteenth century, but recovered to become the world's most numerous rhinoceros. In contrast, the northern population (NWR) was common during much of the twentieth century, declining rapidly since the 1970s, and now only two post-reproductive individuals remain. Despite this species's conservation status, it lacks a genetic assessment of its demographic history. We therefore sampled 232 individuals from extant and museum sources and analysed ten microsatellite loci and the mtDNA control region. Both marker types reliably partitioned the species into SWR and NWR, with moderate nuclear genetic diversity and only three mtDNA haplotypes for the species, including historical samples. We detected ancient interglacial demographic declines in both populations. Both populations may also have been affected by recent declines associated with the colonial expansion for the SWR, and with the much earlier Bantu migrations for the NWR. Finally, we detected post-divergence secondary contact between NWR and SWR, possibly occurring as recently as the last glacial maximum. These results suggest the species was subjected to regular periods of fragmentation and low genetic diversity, which may have been replenished upon secondary contact during glacial periods. The species's current situation thus reflects prehistoric declines that were exacerbated by anthropogenic pressure associated with the rise of late Holocene technological advancement in Africa. Importantly, secondary contact suggests a potentially positive outcome for a hybrid rescue conservation strategy, although further genome-wide data are desirable to corroborate these results.


Asunto(s)
Evolución Biológica , Variación Genética , Perisodáctilos/fisiología , África , Distribución Animal , Animales , Perisodáctilos/genética , Dinámica Poblacional , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA