Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.757
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 157(7): 1500-1, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949960

RESUMEN

Excessive sun tanning can result in addictive behavior. In this issue of Cell, Fell et al. utilize a combination of behavioral pharmacology and transgenic mice to demonstrate that chronic UV light exposure recruits p53 signaling in keratinocytes, subsequently increasing ß-endorphin signaling at opioid receptors, and produces an endogenous opioid-dependent state.


Asunto(s)
Conducta Adictiva , Piel/efectos de la radiación , betaendorfina/metabolismo , Animales , Humanos
2.
Cell ; 157(7): 1527-34, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949966

RESUMEN

UV light is an established carcinogen, yet evidence suggests that UV-seeking behavior has addictive features. Following UV exposure, epidermal keratinocytes synthesize proopiomelanocortin (POMC) that is processed to melanocyte-stimulating hormone, inducing tanning. We show that, in rodents, another POMC-derived peptide, ß-endorphin, is coordinately synthesized in skin, elevating plasma levels after low-dose UV. Increases in pain-related thresholds are observed and reversed by pharmacologic opioid antagonism. Opioid blockade also elicits withdrawal signs after chronic UV exposure. This effect was sufficient to guide operant behavioral choices to avoidance of opioid withdrawal (conditioned place aversion). These UV-induced nociceptive and behavioral effects were absent in ß-endorphin knockout mice and in mice lacking p53-mediated POMC induction in epidermal keratinocytes. Although primordial UV addiction, mediated by the hedonic action of ß-endorphin and anhedonic effects of withdrawal, may theoretically have enhanced evolutionary vitamin D biosynthesis, it now may contribute to the relentless rise in skin cancer incidence in humans.


Asunto(s)
Conducta Adictiva , Piel/efectos de la radiación , betaendorfina/metabolismo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Piel/metabolismo , Rayos Ultravioleta , betaendorfina/genética
3.
Nature ; 618(7966): 834-841, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286599

RESUMEN

Tumours most often arise from progression of precursor clones within a single anatomical niche. In the bone marrow, clonal progenitors can undergo malignant transformation to acute leukaemia, or differentiate into immune cells that contribute to disease pathology in peripheral tissues1-4. Outside the marrow, these clones are potentially exposed to a variety of tissue-specific mutational processes, although the consequences of this are unclear. Here we investigate the development of blastic plasmacytoid dendritic cell neoplasm (BPDCN)-an unusual form of acute leukaemia that often presents with malignant cells isolated to the skin5. Using tumour phylogenomics and single-cell transcriptomics with genotyping, we find that BPDCN arises from clonal (premalignant) haematopoietic precursors in the bone marrow. We observe that BPDCN skin tumours first develop at sun-exposed anatomical sites and are distinguished by clonally expanded mutations induced by ultraviolet (UV) radiation. A reconstruction of tumour phylogenies reveals that UV damage can precede the acquisition of alterations associated with malignant transformation, implicating sun exposure of plasmacytoid dendritic cells or committed precursors during BPDCN pathogenesis. Functionally, we find that loss-of-function mutations in Tet2, the most common premalignant alteration in BPDCN, confer resistance to UV-induced cell death in plasmacytoid, but not conventional, dendritic cells, suggesting a context-dependent tumour-suppressive role for TET2. These findings demonstrate how tissue-specific environmental exposures at distant anatomical sites can shape the evolution of premalignant clones to disseminated cancer.


Asunto(s)
Transformación Celular Neoplásica , Células Dendríticas , Leucemia Mieloide Aguda , Neoplasias Cutáneas , Piel , Rayos Ultravioleta , Humanos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Células de la Médula Ósea/efectos de la radiación , Muerte Celular/efectos de la radiación , Linaje de la Célula/genética , Linaje de la Célula/efectos de la radiación , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/efectos de la radiación , Células Clonales/metabolismo , Células Clonales/patología , Células Clonales/efectos de la radiación , Células Dendríticas/metabolismo , Células Dendríticas/patología , Células Dendríticas/efectos de la radiación , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación/efectos de la radiación , Especificidad de Órganos , Análisis de Expresión Génica de una Sola Célula , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Rayos Ultravioleta/efectos adversos , Piel/patología , Piel/efectos de la radiación
4.
Nature ; 594(7861): 94-99, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34012116

RESUMEN

Inflammation is a defence response to tissue damage that requires tight regulation in order to prevent impaired healing. Tissue-resident macrophages have a key role in tissue repair1, but the precise molecular mechanisms that regulate the balance between inflammatory and pro-repair macrophage responses during healing remain poorly understood. Here we demonstrate a major role for sensory neurons in promoting the tissue-repair function of macrophages. In a sunburn-like model of skin damage in mice, the conditional ablation of sensory neurons expressing the Gαi-interacting protein (GINIP) results in defective tissue regeneration and in dermal fibrosis. Elucidation of the underlying molecular mechanisms revealed a crucial role for the neuropeptide TAFA4, which is produced in the skin by C-low threshold mechanoreceptors-a subset of GINIP+ neurons. TAFA4 modulates the inflammatory profile of macrophages directly in vitro. In vivo studies in Tafa4-deficient mice revealed that TAFA4 promotes the production of IL-10 by dermal macrophages after UV-induced skin damage. This TAFA4-IL-10 axis also ensures the survival and maintenance of IL-10+TIM4+ dermal macrophages, reducing skin inflammation and promoting tissue regeneration. These results reveal a neuroimmune regulatory pathway driven by the neuropeptide TAFA4 that promotes the anti-inflammatory functions of macrophages and prevents fibrosis after tissue damage, and could lead to new therapeutic perspectives for inflammatory diseases.


Asunto(s)
Citocinas/metabolismo , Macrófagos/metabolismo , Regeneración , Células Receptoras Sensoriales/metabolismo , Cicatrización de Heridas , Animales , Supervivencia Celular , Citocinas/deficiencia , Modelos Animales de Enfermedad , Femenino , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Fibrosis/prevención & control , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Inflamación/prevención & control , Interleucina-10/biosíntesis , Interleucina-10/metabolismo , Macrófagos/efectos de la radiación , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Receptoras Sensoriales/efectos de la radiación , Piel/patología , Piel/efectos de la radiación , Quemadura Solar/complicaciones , Quemadura Solar/etiología , Quemadura Solar/metabolismo , Quemadura Solar/patología , Rayos Ultravioleta/efectos adversos
5.
Mol Cell ; 72(3): 444-456.e7, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401431

RESUMEN

Skin sun exposure induces two protection programs: stress responses and pigmentation, the former within minutes and the latter only hours afterward. Although serving the same physiological purpose, it is not known whether and how these programs are coordinated. Here, we report that UVB exposure every other day induces significantly more skin pigmentation than the higher frequency of daily exposure, without an associated increase in stress responses. Using mathematical modeling and empirical studies, we show that the melanocyte master regulator, MITF, serves to synchronize stress responses and pigmentation and, furthermore, functions as a UV-protection timer via damped oscillatory dynamics, thereby conferring a trade-off between the two programs. MITF oscillations are controlled by multiple negative regulatory loops, one at the transcriptional level involving HIF1α and another post-transcriptional loop involving microRNA-148a. These findings support trait linkage between the two skin protection programs, which, we speculate, arose during furless skin evolution to minimize skin damage.


Asunto(s)
Factor de Transcripción Asociado a Microftalmía/metabolismo , Piel/metabolismo , Piel/efectos de la radiación , Animales , Línea Celular , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Masculino , Melanocitos/fisiología , Melanocitos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , MicroARNs/fisiología , Factor de Transcripción Asociado a Microftalmía/efectos de la radiación , Cultivo Primario de Células , Pigmentación de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos
6.
FASEB J ; 38(9): e23641, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690717

RESUMEN

Cholinergic urticaria is a dermatological disease characterized by the presence of large patches of red skin and transient hives triggered by factors, such as exercise, sweating, and psychological tension. This skin problem is hypothesized to be attributed to a reduced expression of acetylcholinesterase (AChE), an enzyme responsible for hydrolyzing acetylcholine (ACh). Consequently, ACh is thought to the leak from sympathetic nerves to skin epidermis. The redundant ACh stimulates the mast cells to release histamine, triggering immune responses in skin. Here, the exposure of ultraviolet B in skin suppressed the expression of AChE in keratinocytes, both in in vivo and in vitro models. The decrease of the enzyme was resulted from a declined transcription of ACHE gene mediated by micro-RNAs, that is, miR-132 and miR-212. The levels of miR-132 and miR-212 were markedly induced by exposure to ultraviolet B, which subsequently suppressed the transcriptional rate of ACHE. In the presence of low level of AChE, the overflow ACh caused the pro-inflammatory responses in skin epidermis, including increased secretion of cytokines and COX-2. These findings suggest that ultraviolet B exposure is one of the factors contributing to cholinergic urticaria in skin.


Asunto(s)
Acetilcolinesterasa , Queratinocitos , MicroARNs , Piel , Rayos Ultravioleta , Urticaria , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/genética , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Piel/efectos de la radiación , Piel/metabolismo , Urticaria/metabolismo , Urticaria/etiología , Ratones , Acetilcolina/metabolismo , Masculino
7.
Chem Rev ; 123(16): 9720-9785, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37459506

RESUMEN

Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.


Asunto(s)
Fármacos Fotosensibilizantes , Neoplasias Cutáneas , Humanos , Piel/efectos de la radiación , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/prevención & control , Rayos Ultravioleta , Luz
8.
J Cell Mol Med ; 28(14): e18536, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39044341

RESUMEN

Low-dose 5-aminolevulinic acid photodynamic therapy (ALA-PDT) has been used to cope with skin photoaging, and is thought to involve DNA damage repair responses. However, it is still unknown how low-dose ALA-PDT regulates DNA damage repair to curb skin photoaging. We established a photoaging model using human dermal fibroblasts (HDFs) and rat skin. RNA-sequencing (RNA-seq) analysis was conducted to identify differentially expressed genes (DEGs) in HDFs before and after low-dose ALA-PDT treatment, followed by bioinformatics analysis. Senescence-associated ß-galactosidase (SA-ß-gal) staining was employed to assess skin aging-related manifestations and Western blotting to evaluate the expression of associated proteins. A comet assay was used to detect cellular DNA damage, while immunofluorescence to examine the expression of 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) in cells and skin tissues. In both in vivo and in vitro models, low-dose ALA-PDT alleviated the manifestations of ultraviolet B (UVB)-induced skin photoaging. Low-dose ALA-PDT significantly reduced DNA damage in photoaged HDFs. Furthermore, low-dose ALA-PDT accelerated the clearance of the photoproduct 8-oxo-dG in photoaged HDFs and superficial dermis of photoaged rat skin. RNA-seq analysis suggested that low-dose ALA-PDT upregulated the expression of key genes in the base excision repair (BER) pathway. Further functional validation showed that inhibition on BER expression by using UPF1069 significantly suppressed SA-ß-gal activity, G2/M phase ratio, expression of aging-associated proteins P16, P21, P53, and MUTYH proteins, as well as clearance of the photoproduct 8-oxo-dG in photoaged HDFs. Low-dose ALA-PDT exerts anti-photoaging effects by activating the BER signalling pathway.


Asunto(s)
Ácido Aminolevulínico , Daño del ADN , Reparación del ADN , Fibroblastos , Fotoquimioterapia , Transducción de Señal , Envejecimiento de la Piel , Rayos Ultravioleta , Ácido Aminolevulínico/farmacología , Reparación del ADN/efectos de los fármacos , Animales , Rayos Ultravioleta/efectos adversos , Humanos , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Fotoquimioterapia/métodos , Ratas , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Daño del ADN/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Piel/efectos de la radiación , Piel/patología , Masculino , Fármacos Fotosensibilizantes/farmacología , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo
9.
J Biol Chem ; 299(7): 104895, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37290532

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme that promotes the degradation of low-density lipoprotein receptors. It is involved in hyperlipidemia as well as other diseases, such as cancer and skin inflammation. However, the detailed mechanism for PCSK9 on ultraviolet B (UVB)-induced skin lesions was not clear. Thus, the role and possible action mechanism of PCSK9 in UVB-induced skin damage in mice were studied here using siRNA and a small molecule inhibitor (SBC110736) against PCSK9. Immunohistochemical staining revealed a significant increase in PCSK9 expression after UVB exposure, indicating the possible role of PCSK9 in UVB damage. Skin damage, increase in epidermal thickness, and keratinocyte hyperproliferation were significantly alleviated after treatment with SBC110736 or siRNA duplexes, compared with that in the UVB model group. Notably, UVB exposure triggered DNA damage in keratinocytes, whereas substantial interferon regulatory factor 3 (IRF3) activation was observed in macrophages. Pharmacologic inhibition of STING or cGAS knockout significantly reduced UVB-induced damage. In the co-culture system, supernatant from UVB-treated keratinocyte induced IRF3 activation in macrophages. This activation was inhibited with SBC110736 and by PCSK9 knockdown. Collectively, our findings reveal that PCSK9 plays a critical role in the crosstalk between damaged keratinocytes and STING activation in macrophages. The interruption of this crosstalk by PCSK9 inhibition may be a potential therapeutic strategy for UVB-induced skin damage.


Asunto(s)
Queratinocitos , Proproteína Convertasa 9 , Envejecimiento de la Piel , Piel , Animales , Ratones , Queratinocitos/enzimología , Queratinocitos/efectos de la radiación , Macrófagos/metabolismo , Inhibidores de PCSK9/farmacología , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , ARN Interferente Pequeño/metabolismo , Piel/enzimología , Piel/efectos de la radiación , Envejecimiento de la Piel/efectos de los fármacos , Rayos Ultravioleta/efectos adversos
10.
Biol Chem ; 405(6): 407-415, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38598859

RESUMEN

Radiation-induced skin injury is a common side effect of radiotherapy, but there are few therapeutic drugs available for prevention or treatment. In this study, we demonstrate that 18ß-Glycyrrhetinic acid (18ß-GA), a bioactive component derived from Glycyrrhiza glabra, substantially reduces the accumulation of reactive oxygen species (ROS) and inhibits apoptosis in HaCaT cells after ionizing radiation (IR), thereby mitigating radiation-induced skin injury. Mechanistically, 18ß-GA promotes the nuclear import of Nrf2, leading to activation of the Nrf2/HO-1 signaling pathway in response to IR. Importantly, Nrf2 silencing increases cell apoptosis and reverse the protective effect of 18ß-GA on radiation-induced skin injury. Furthermore, 18ß-GA preserves skin tissue structure after irradiation, inhibits inflammatory cell infiltration, and alleviates radiation dermatitis. In conclusion, our results suggest that 18ß-GA reduces intracellular ROS production and apoptosis by activating the Nrf2/HO-1 signaling pathway, leading to amelioration of radiation dermatitis.


Asunto(s)
Ácido Glicirretínico , Hemo-Oxigenasa 1 , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Transducción de Señal , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/análogos & derivados , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Piel/efectos de los fármacos , Piel/efectos de la radiación , Piel/metabolismo , Piel/patología , Apoptosis/efectos de los fármacos , Ratones
11.
Clin Exp Immunol ; 216(3): 252-261, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38310540

RESUMEN

Psoriasis is a chronic inflammatory skin disease with a characteristic isomorphic reaction, i.e. the Köbner reaction, induced by slight epidermal trauma. In this study, the tape-stripping technique was used to induce the development of Köbner reaction in 18 subjects with psoriasis. Eight subjects developed a positive reaction. To study the early cellular changes, skin biopsies were taken at the baseline and subsequent time points of 2 h, 1 d, 3 d, and 7 d for the immunostaining of complement C3c, iC3b, and cells expressing complement receptor 3 (CD11b/CD18; a receptor of iC3b) or CD14. The results show that the positive Köbner reaction is associated with rapid (2 h-1 d) and sustained (3-7 d) increase in the expression of epidermal C3c and iC3b and dermal C3c. In addition, there was a positive correlation between CD11b+ and CD14+ cells in baseline and 2 h-1 d biopsies with a subsequent increase in CD11b+ and CD14+ cells in 3-7 d biopsies in the Köbner-positive group. In the Köbner-negative group, only a transient increase in epidermal iC3b at 2 h-1 d, as well as rapid (2 h-1 d) and sustained increase (3-7 d) in dermal iC3b and CD14+ cells, was observed. In experiments with cultured monolayer keratinocytes, a slight cell damage already at 30 mJ/cm2 ultraviolet B irradiation led to increased expression of C3c, but not iC3b. Therefore, there are marked differences between Köbner groups in respect to the expression of C3c, iC3b, and cells expressing CD11b or CD14. Of note is the rapid and sustained increase in epidermal C3c and iC3b in the positive Köbner reaction.


Asunto(s)
Antígeno CD11b , Complemento C3b , Receptores de Lipopolisacáridos , Psoriasis , Humanos , Receptores de Lipopolisacáridos/metabolismo , Masculino , Psoriasis/inmunología , Psoriasis/metabolismo , Femenino , Antígeno CD11b/metabolismo , Adulto , Persona de Mediana Edad , Complemento C3b/metabolismo , Complemento C3b/inmunología , Piel/patología , Piel/inmunología , Piel/metabolismo , Piel/efectos de la radiación , Biopsia , Epidermis/metabolismo , Epidermis/inmunología , Epidermis/patología
12.
Exp Dermatol ; 33(5): e15109, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38794812

RESUMEN

Cornulin (CRNN) and repetin (RPTN) belong to the fused-type S100 protein family. Although these proteins have been reported to be expressed in the granular layer of the epidermis and have been suggested to be associated with barrier formation in the epidermis, their exact function remains unclear. This study examined the effects of ultraviolet B (UVB) irradiation on CRNN and RPTN expression in human skin xenotransplantation. The CRNN expression increased in the granular layer of UVB-irradiated skin 2 days after UVB irradiation compared to that in sham-irradiated skin. Interestingly, CRNN signals were observed not only in the cytoplasm, but also in the peripheral regions of granular keratinocytes. In contrast, RPTN was rarely expressed in sham-irradiated skin; however, RPTN signals were markedly increased in the granular layer of the UVB-irradiated skin. In addition, activation of ERK1/2 and STAT3 was observed in UVB-irradiated skin. Accordingly, the present study demonstrated that CRNN and RPTN are novel proteins whose expression can be increased by UVB irradiation. The activation of ERK1/2 and STAT3 may be associated with the regeneration of a UVB-damaged epidermis, and CRNN and RPTN may be induced to repair any dysfunction in the epidermal barrier during this regeneration process.


Asunto(s)
Factor de Transcripción STAT3 , Rayos Ultravioleta , Humanos , Factor de Transcripción STAT3/metabolismo , Trasplante Heterólogo , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Animales , Piel/metabolismo , Piel/efectos de la radiación , Epidermis/metabolismo , Epidermis/efectos de la radiación , Trasplante de Piel , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Proteínas Ricas en Prolina del Estrato Córneo/genética , Xenoinjertos , Proteínas S100/metabolismo , Proteínas S100/genética , Ratones
13.
J Rheumatol ; 51(8): 744-751, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38825361

RESUMEN

OBJECTIVE: Concerns regarding offering radiotherapy to patients with systemic sclerosis (SSc) stem from the potential worsening of SSc manifestations and radiotherapy toxicity. We conducted a systematic review to evaluate the effects of radiotherapy on SSc outcomes and radiotherapy-related toxicity. METHODS: MEDLINE, Embase, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials were searched for SSc and radiotherapy. Inclusion criteria were SSc diagnosis, subsequent cancer development, and radiotherapy exposure. Outcomes were SSc manifestations (cutaneous thickening, pulmonary fibrosis, and SSc flare) and radiotherapy toxicity (acute and late) using Common Terminology Criteria for Adverse Events for grading. Grade 1 and 2 toxicities were categorized as nonsevere and grade 3 to 5 toxicities as severe. RESULTS: Of 121 patients with SSc undergoing radiotherapy (mean age 56.4 years, 83.3% female, median radiotherapy dose 50 Gy), most did not show worsened SSc skin thickening (74.5%) or pulmonary complications (74%) post radiotherapy. In retrospective studies, the average rates of acute adverse effects were 57.3% for nonsevere and 25.8% for severe, whereas the rates of late adverse effects were 32.4% for nonsevere and 24% for severe. CONCLUSION: Although most patients with SSc do not exhibit significant worsening of SSc manifestations post radiotherapy, there is a variable risk of acute and late toxicity. These findings suggest that although radiotherapy may be a viable option for patients with cancer with SSc, it requires caution.


Asunto(s)
Neoplasias , Radioterapia , Esclerodermia Sistémica , Humanos , Esclerodermia Sistémica/radioterapia , Esclerodermia Sistémica/complicaciones , Neoplasias/radioterapia , Radioterapia/efectos adversos , Femenino , Masculino , Persona de Mediana Edad , Traumatismos por Radiación/etiología , Piel/efectos de la radiación , Piel/patología
14.
Biogerontology ; 25(4): 649-664, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38592565

RESUMEN

Skin photoaging is mostly caused by ultraviolet A (UVA), although active medications to effectively counteract UVA-induced photoaging have not yet been created. Resveratrol, a naturally occurring polyphenol found in the skin of grapes, has been shown to have various biological functions such as anti-inflammatory and antioxidant characteristics. However, the role of resveratrol in UVA-induced photoaging has not been clarified. We investigated the mechanism of action of resveratrol by UVA irradiation of human skin fibroblasts (HSF) and innovatively modified a mouse model of photoaging. The results demonstrated that resveratrol promoted AMP-activated protein kinase (AMPK) phosphorylation to activate autophagy, reduce reactive oxygen species (ROS) production, inhibit apoptosis, and restore normal cell cycle to alleviate UVA-induced photoaging. In addition, subcutaneous injection of resveratrol not only improved the symptoms of roughness, erythema, and increased wrinkles in the skin of UVA photodamaged mice, but also alleviated epidermal hyperkeratosis and hyperpigmentation, reduced inflammatory responses, and inhibited collagen fiber degradation. In conclusion, our studies proved that resveratrol can treat UVA-induced photoaging and elucidated the possible molecular mechanisms involved, providing a new therapeutic strategy for future anti-aging.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Fibroblastos , Resveratrol , Envejecimiento de la Piel , Piel , Rayos Ultravioleta , Resveratrol/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Fibroblastos/metabolismo , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Animales , Rayos Ultravioleta/efectos adversos , Humanos , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones , Piel/efectos de los fármacos , Piel/efectos de la radiación , Piel/patología , Piel/metabolismo , Estilbenos/farmacología , Transducción de Señal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación
15.
Pharm Res ; 41(7): 1475-1491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38992234

RESUMEN

OBJECTIVE: Zinc Oxide nanoparticles (ZnO NPs) are used widely in nowadays personal care products, especially sunscreens, as a protector against UV irradiation. Yet, they have some reports of potential toxicity. Silica is widely used to cage ZnO NPs to reduce their potential toxicity. Vitamin C derivative, Magnesium Ascorpyl Phosphate (MAP), is a potent antioxidant that can efficiently protect human skin from harmful impacts of UV irradiation and oxidative stress. The combination of silica coated ZnO NPs and MAP nanovesicles could have potential synergistic protective effect against skin photodamage. METHODS: Silica coated ZnO NPs and MAP nanovesicles (ethosomes and niosomes) were synthesized, formulated, and evaluated as topical gels. These gel formulations were evaluated in mice for their photoprotective effect against UV irradiation through histopathology and immuno-histochemistry study. Split-face clinical study was conducted to compare the effect of application of silica coated ZnO NPs either alone or combined with MAP nanovesicles. Their photoprotective action was evaluated, using Antera 3D® camera, for melanin level, roughness index and wrinkles depth. RESULTS: Silica coated ZnO NPs when combined with MAP nanovesicles protected mice skin from UV irradiation and decreased the expression of the proinflammatory cytokines, NF-κB. Clinically, silica coated ZnO NPs, alone or combined with MAP nanovesicles, could have significant effect to decrease melanin level, roughness index and wrinkles depth with higher effect for the combination. CONCLUSION: A composite of silica coated ZnO NPs and MAP nanovesicles could be a promising cosmetic formulation for skin protection against photodamage signs such as hyperpigmentation, roughness, and wrinkles.


Asunto(s)
Ácido Ascórbico , Dióxido de Silicio , Piel , Protectores Solares , Rayos Ultravioleta , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Óxido de Zinc/administración & dosificación , Animales , Dióxido de Silicio/química , Rayos Ultravioleta/efectos adversos , Ratones , Humanos , Ácido Ascórbico/química , Ácido Ascórbico/farmacología , Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/análogos & derivados , Protectores Solares/química , Protectores Solares/farmacología , Protectores Solares/administración & dosificación , Piel/efectos de los fármacos , Piel/efectos de la radiación , Piel/metabolismo , Femenino , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/administración & dosificación , Nanopartículas/química , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Masculino , Adulto , Persona de Mediana Edad
16.
Wound Repair Regen ; 32(3): 217-228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38602068

RESUMEN

Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation-associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three-dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation-associated skin injuries. Combining with the cutting-edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation-associated skin injuries.


Asunto(s)
Bioimpresión , Impresión Tridimensional , Traumatismos por Radiación , Piel , Humanos , Bioimpresión/métodos , Traumatismos por Radiación/terapia , Piel/efectos de la radiación , Piel/lesiones , Piel/patología , Cicatrización de Heridas , Ingeniería de Tejidos/métodos
17.
Photochem Photobiol Sci ; 23(4): 711-718, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430370

RESUMEN

BACKGROUND: Previous studies have shown that visible light (VL), especially blue light (BL), could cause significant skin damage. With the emergence of VL protection products, a harmonization of light protection methods has been proposed, but it has not been widely applied in the Chinese population. OBJECTIVE: Based on this framework, we propose an accurate and simplified method to evaluate the efficacy of BL photoprotection for the Chinese population. METHODS: All subjects (n = 30) were irradiated daily using a blue LED light for four consecutive days. Each irradiation dose was 3/4 MPPD (minimum persistent pigmentation darkening). The skin pigmentation parameters, including L*, M, and ITA°, were recorded. We proposed the blue light protection factor (BPF) metric based on the skin pigmentation parameters to evaluate the anti-blue light efficacies of different products. RESULTS: We found that the level of pigmentation rose progressively and linearly as blue light exposure increased. We proposed a metric, BPF, to reflect the anti-blue light efficacy of products based on the linear changes in skin pigment characteristics following daily BL exposure. Moreover, we discovered that the BPF metric could clearly distinguish the anti-blue light efficacies between two products and the control group, suggesting that BPF is an efficient and simple-to-use metric for anti-blue light evaluation. CONCLUSION: Our study proposed an accurate and simplified method with an easy-to-use metric, BPF, to accurately characterize the anti-blue light efficacies of cosmetic products, providing support for further development of anti-blue light cosmetics.


Asunto(s)
Luz Azul , Pigmentación de la Piel , Humanos , Luz , China , Piel/efectos de la radiación , Rayos Ultravioleta
18.
Photochem Photobiol Sci ; 23(2): 271-284, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38305951

RESUMEN

Ultraviolet A (UVA) radiation, present in sunlight, can induce cell redox imbalance leading to cellular damage and even cell death, compromising skin health. Here, we evaluated the in vitro antioxidant and photochemoprotective effect of dithiothreitol (DTT). DTT neutralized the free radicals 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+), 2,2-diphenyl-1-picrylhydrazyl (DPPH·), and superoxide anion (O2·-) in in vitro assays, as well as the ferric ion (Fe3+) in the ferric reducing antioxidant power (FRAP) assay. We also evaluated the effect of DTT pre-treatment in L929 dermal fibroblasts and DTT (50 and 100 µM) led to greater cell viability following UVA-irradiation compared to cells that were untreated. Furthermore, the pre-treatment of cells with DTT prevented the increase of intracellular reactive oxygen species (ROS) production, including hydrogen peroxide (H2O2), lipid peroxidation, and DNA condensation, as well as the decrease in mitochondrial membrane potential (Δψm), that occurred following irradiation in untreated cells. The endogenous antioxidant system of cells was also improved in irradiated cells that were DTT pre-treated compared to the untreated cells, as the activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes remained as high as non-irradiated cells, while the activity levels were depleted in the untreated irradiated cells. Furthermore, DTT reduced necrosis in UVA-irradiated fibroblasts. Together, these results showed that DTT may have promising use in the prevention of skin photoaging and photodamage induced by UVA, as it provided photochemoprotection against the harmful effects of this radiation, reducing oxidative stress and cell death, due mainly to its antioxidant capacity.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ditiotreitol/farmacología , Ditiotreitol/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta , Necrosis , Fibroblastos
19.
Photochem Photobiol Sci ; 23(3): 517-526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38337129

RESUMEN

Squamous cell carcinoma represents the second most common type of keratinocyte carcinoma with ultraviolet radiation (UVR) making up the primary risk factor. Oral photoprotection aims to reduce incidence rates through oral intake of photoprotective compounds. Recently, drug repurposing has gained traction as an interesting source of chemoprevention. Because of their reported photoprotective properties, we investigated the potential of bucillamine, carvedilol, metformin, and phenformin as photoprotective compounds following oral intake in UVR-exposed hairless mice. Tumour development was observed in all groups in response to UVR, with only the positive control (Nicotinamide) demonstrating a reduction in tumour incidence (23.8%). No change in tumour development was observed in the four repurposed drug groups compared to the UV control group, whereas nicotinamide significantly reduced carcinogenesis (P = 0.00012). Metformin treatment significantly reduced UVR-induced erythema (P = 0.012), bucillamine and phenformin increased dorsal pigmentation (P = 0.0013, and P = 0.0005), but no other photoprotective effect was observed across the repurposed groups. This study demonstrates that oral supplementation with bucillamine, carvedilol, metformin, or phenformin does not affect UVR-induced carcinogenesis in hairless mice.


Asunto(s)
Carcinoma de Células Escamosas , Cisteína/análogos & derivados , Neoplasias Cutáneas , Ratones , Animales , Rayos Ultravioleta , Carvedilol/farmacología , Ratones Pelados , Fenformina/farmacología , Carcinoma de Células Escamosas/prevención & control , Carcinoma de Células Escamosas/etiología , Carcinogénesis/efectos de la radiación , Niacinamida/farmacología , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/prevención & control , Neoplasias Cutáneas/patología , Piel/efectos de la radiación
20.
Photochem Photobiol Sci ; 23(5): 853-869, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613600

RESUMEN

Synthetic sunscreen offers protection against excessive exposure to ultraviolet (UV) radiation from the sun, and protects the skin from possible damage. However, they have low efficacy against the formation of reactive oxygen species (ROS), which are highly reactive molecules that can be generated in the skin when it is exposed to UV radiation, and are known to play a role in oxidative stress, which can contribute to skin aging and damage. Thus, there is an ongoing search for sunscreens that do not have these negative effects. One promising source for these is natural products. Therefore, the current patent review summarizes topical formulations made from natural compounds that have antioxidant properties and can be used as photoprotective or anti-aging agents, either using a single natural extract or a combination of extracts. The review reports basic patent information (applicant country, type of applicant, and year of filing) and gives details about the invention, including its chemical composition, and the in vitro and in vivo tests performed. These patents describe natural products that can be used to protect the skin and validate their efficacy, and safety, in addition to standardizing their formulations. The compositions described illustrate the consistent innovation in the use of natural products to protect against UV damage and photoaging disorders, a promising field which is receiving growing global recognition.


Asunto(s)
Productos Biológicos , Protectores Solares , Rayos Ultravioleta , Protectores Solares/farmacología , Protectores Solares/química , Humanos , Productos Biológicos/química , Productos Biológicos/farmacología , Rayos Ultravioleta/efectos adversos , Patentes como Asunto , Piel/efectos de los fármacos , Piel/efectos de la radiación , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Antioxidantes/farmacología , Antioxidantes/química , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA